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On the relationship between hyperbolic and cone-hyperbolic
structures in metric spaces

by Marcin Mazur (Kraków)

Abstract. We give necessary and sufficient conditions for topological hyperbolicity
of a homeomorphism of a metric space, restricted to a given compact invariant set. These
conditions are related to the existence of an appropriate finite covering of this set and a
corresponding cone-hyperbolic graph-directed iterated function system.

1. Introduction. As has already been confirmed by the works of sev-
eral authors, the notion of a cone-field provides a useful tool for the study of
hyperbolic systems, both from analytical (see, e.g., [4]) and (strictly) numer-
ical (see, e.g., [2]) point of view. In particular, using this notion Newhouse
[4] gave necessary and sufficient conditions for the existence of a hyper-
bolic splitting for a diffeomorphism on a compact invariant subset of a given
smooth manifold.

In [3] Kułaga and Tabor constructed a global metric analogue of a cone-
field while in [9] Struski, Tabor and Kułaga defined and studied its local
version. Both these generalizations go beyond differential structure (by ad-
mitting small Lipschitz disturbances) and are well adapted for rigorous ver-
ification with the use of computers [9]. Moreover, they guarantee expansiv-
ity of the system, which, when combined with shadowing (also called the
pseudo-orbit tracing property), characterizes a hyperbolic structure in topo-
logical (metric) terms [5, 7]. Nevertheless, the existence of a metric cone-field
does not imply the shadowing property [9].

In this paper we explore these ideas and obtain an analogue of the re-
sult of [4] mentioned above, which makes a connection between the concepts
established in [5, 6, 7] and [3]. Specifically, we give necessary and sufficient
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conditions for the topological hyperbolicity of a homeomorphism of a met-
ric space, restricted to a given compact invariant set. These conditions are
related to the existence of an appropriate finite covering of the set and a
corresponding cone-hyperbolic graph-directed iterated function system (this
idea is, in a sense, similar to the construction of a Markov partition, see
Remark 3.2).

2. Preliminaries

2.1. Hyperbolicity in metric spaces. In this section we recall some
results on hyperbolicity in compact metric spaces from the works of Om-
bach [5], Ruelle [6] and Sakai [7, 8]. We begin by establishing the relevant
terminology.

Let (K, d) be a compact metric space and f : K → K be a homeomor-
phism, considered as a discrete dynamical system on K, where the orbit of a
point x ∈ K is the sequence (xn)

∞
n=−∞ ⊂ K defined as follows: x0 = x and

xn+1 = f(xn) for n ∈ Z.
Let δ ≥ 0 be a constant. A sequence (yn)

r
n=l ⊂ K, where l, r ∈ Z ∪

{−∞,∞} and l ≤ 0 < r, is called a δ-pseudo-orbit of f if

d(f(yn), yn+1) ≤ δ for every n ∈ {l, . . . , r − 1}.
Note that a 0-pseudo-orbit of f is simply a segment of a genuine orbit.

We say that f has the shadowing property if for every ε > 0 there exists
δ > 0 satisfying the following condition: given a δ-pseudo-orbit ξ = (yn)

r
n=l

we can find a point x ∈ K whose orbit ε-traces ξ, i.e.,

d(fn(x), yn) ≤ ε for every n ∈ {l, . . . , r}.
Let us note that (see, e.g., [1]) the “full” shadowing property is guaranteed
by the condition of tracing only finite pseudo-orbits (i.e., l, r ∈ Z) by finite
segments of orbits.

We call f expansive if there exists e > 0 (an expansive constant) with the
following property: there are no two different points x, y ∈ K whose orbits
are e-close, i.e.,

max
n∈Z

d(fn(x), fn(y)) ≤ e ⇒ x = y.

It can be easily seen (see, e.g., [1]) that both the properties above are inde-
pendent of the choice of a compatible metric on K.

If f is an expansive homeomorphism with the shadowing property, we
say that f is topologically hyperbolic.

The next concept originally comes from Ruelle [6], who considered it,
in terms of thermodynamic formalism, as a generalization of Axiom A for
diffeomorphisms. Afterwards, this notion was introduced into topological
dynamics, e.g., in the works of Ombach [5] and Sakai [7].



(Cone-)hyperbolicity in metric spaces 31

We say that (K, f) is a Smale space if the following conditions hold:

(LPS) (local product structure) there exists η > 0 and a continuous map

[·, ·] : {(x, y) ∈ K ×K : d(x, y) < η} → K

satisfying

[x, x] = x, [[x, y], z] = [x, z], [x, [y, z]] = [x, z]

and
f([x, y]) = [f(x), f(y)]

for all x, y, z ∈ K such that both sides of these relations are
defined,

(HS) (hyperbolic structure) there exist ν > 0 and λ ∈ (0, 1) such that
for all x ∈ K and n ≥ 0 we have

d(fn(y), fn(z)) ≤ λnd(y, z) if y, z ∈ V s
ν (x),

d(fn(y), fn(z)) ≥ λ−nd(y, z) if y, z ∈ V u
ν (x),

where

V s
ν (x) = {y ∈ K : y = [x, y], d(x, y) ≤ ν},

V u
ν (x) = {y ∈ K : y = [y, x], d(x, y) ≤ ν}.

In [6] Ruelle extended the above definition by introducing the following
extra condition, simultaneously asking whether it is a consequence of (LPS)
and (HS) after changing the metric on K to some compatible one. This
question was positively answered by Sakai [8].

(LC) (L-condition) There exists a constant L > 0 such that

max{d(x, [x, y]), d(y, [x, y])} ≤ Ld(x, y)

for all x, y ∈ K with d(x, y) < η.

We finish this section with a statement which combines the notions dis-
cussed above and gives an important tool for the proof of our main result.

Theorem 2.1. The following conditions are equivalent:

(i) (K, f) is a Smale space with respect to some compatible metric,
(ii) (K, f) is a Smale space satisfying condition (LC) with respect to

some compatible metric,
(iii) f is topologically hyperbolic.

Proof. This follows immediately from [7, Corollary], [8, Theorem 1] and
the following simple observation (see [6, (7.4)–(7.6)]):

V s
ν (x) =W s

ν (x) and V u
ν (x) =W u

ν (x)
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provided that ν > 0 is sufficiently small, where W s
ν (x) and W u

ν (x) denote
the local stable and unstable manifolds of x ∈ K, i.e,

W s
ν (x) = {y ∈ K : d(fn(x), fn(y)) ≤ ν for all n ≥ 0},

W u
ν (x) = {y ∈ K : d(fn(x), fn(y)) ≤ ν for all n ≤ 0}.

2.2. Cone-fields in metric spaces. In this section we recall and adapt
to our needs the relevant notions and results from the paper of Kułaga and
Tabor [3].

Let C be a compact subset of a metric space (X, d). A pair of functions
cs, cu : C ×C → [0,∞) is called a cone-field if there exists a constant D > 0
such that

1

D
d(x, y) ≤ c(x, y) ≤ Dd(x, y) for all x, y ∈ C,

where c(x, y) = max{cs(x, y), cu(x, y)}. In that case C is called a cone-set
in X and the sets

Cs = {(x, y) ∈ C × C : cs(x, y) ≥ cu(x, y)},
Cu = {(x, y) ∈ C × C : cs(x, y) ≤ cu(x, y)}

are called the stable and unstable cones, respectively. We will keep the above
notations cs, cu and c for all cone-sets, regardless of their names; we hope
this will not confuse the readers.

Let C1 and C2 be cone-sets in X and f : C1 ⇀ C2 be a partial map, i.e.,
the domain of f , denoted by dom f , is a nonempty subset of C1, not assumed
to be equal to C1. We define the constants

|f |s = inf{R ∈ [0,∞] : c(f(x), f(y)) ≤ Rc(x, y)
for x, y ∈ dom f, (f(x), f(y)) ∈ Cs2},

〈f〉u = sup{R ∈ [0,∞] : c(f(x), f(y)) ≥ Rc(x, y)
for x, y ∈ dom f, (x, y) ∈ Cu1 },

which we call the s-contraction rate and the u-expansion rate of f , respec-
tively. We say that f is cone-hyperbolic if

|f |s < 1 < 〈f〉u.
For the proof of our main result we need the following auxiliary lemma

that is an immediate consequence of [3, Corollary 2.1].

Lemma 2.2. Consider a sequence (fi)
r−1
i=l , where l < 0 < r and each fi is

a cone-hyperbolic map between some cone-sets Ci and Ci+1 in X. Let (xi)ri=l
and (yi)

r
i=l be sequences of points in X such that

xi, yi ∈ dom fi, xi+1 = fi(xi), yi+1 = fi(yi) for i ∈ {l, . . . , r − 1}.
Then

c(x0, y0) ≤ max(〈fr−1〉−1u · · · 〈f0〉−1u c(xr, yr), |f−1|s · · · |fl|sc(xl, yl)).
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We end this section by recalling several other notions that are necessary
for the statement of our main result.

A (directed) graph G is a pair (V,E), where V is a finite set of vertices,
and E is a set of edges, i.e., ordered pairs of vertices. If e = (v, w) is an edge
in G, we denote the vertices v and w by i(e) and t(e), respectively. By a
directed path in G we mean a finite sequence (e1, . . . , en) of edges such that
t(ek) = i(ek+1) for all k ∈ {1, . . . , n− 1}.

For a given graph G = (V,E) we define an iterated function system di-
rected byG (or, briefly, aG-directed system) as a triple (G, {Cv}v∈V , {fe}e∈E),
where each Cv is a cone-set inX and each fe : Ci(e) ⇀ Ct(e) is a (partial) map
with a closed graph. We call this system cone-hyperbolic if all the maps fe
are cone-hyperbolic with respect to some compatible metric on the subspace⋃
v∈V Cv ⊂ X.

3. Main result. In this section we state and prove the main result of the
paper, which compares two approaches to the concept of hyperbolic structure
in metric spaces (presented in the previous sections). First we formulate an
auxiliary definition.

Let X be a metric space and f : X → X be a continuous map. Assume
that K ⊂ X is a compact invariant set (i.e., f(K) = K) and {Bv}v∈V is a
finite covering ofK by nonempty sets open inK. Consider the corresponding
graph G = (V,E), where

E = {(v, w) ∈ V × V : Bv ∩ f−1(Bw) 6= ∅}.
We say that a G-directed system (G, {Cv}v∈V , {fe}e∈E) renders the dynam-
ics of the map f on K with accuracy {Bv}v∈V if the following conditions are
satisfied:

(R1) Bv ⊂ Cv for each v ∈ V , and for each e ∈ E we have
dom fe = Ci(e) ∩ f−1(Ct(e)) and fe|dom fe = f |dom fe ,

(R2) for each integer n ≥ 0 and each path α = (e0, . . . , en) in G there
exists x ∈ K such that α renders the motion of x until time n, i.e.,

fk(x) ∈ dom fek for every k ∈ {0, . . . , n}.
The following observations are immediate consequences of the above def-

inition:

(R3) for each n ≥ 0 and each x ∈ K there exists a path (e0, . . . , en) in
G that renders the motion of x until time n,

(R4) for each n ≥ 0 the family

Bn =
{ n⋂
k=−n

f−k(Bi(ek)) : (e−n, . . . , en) is a path in G
}

forms a covering of K by sets open in K,



34 M. Mazur

(R5) the families {Cv}v∈V , {dom fe}e∈E , and

Cn =
{ n⋂
k=−n

f−k(Ci(ek)) : (e−n, . . . , en) is a path in G
}

for each n ≥ 0, form coverings of K by nonempty compact sets
(note that in this case the assumption that the graphs of the maps
fe are closed means that their domains are compact).

Now we can state our main result.

Main Theorem 3.1. Assume that f : X → X is a continuous map and
K is a compact invariant subset of the metric space X such that f |K : K → K
is a homeomorphism. Then the following conditions are equivalent:

(1) f |K is topologically hyperbolic,
(2) there exist a finite covering {Bv}v∈V of K by nonempty sets open

in K, together with the corresponding graph G = (V,E), and a cone-
hyperbolic G-directed system (G, {Cv}v∈V , {fe}e∈E) that renders the
dynamics of f on K with accuracy {Bv}v∈V ,

(3) there exist a finite covering {Bv}v∈V of K by nonempty sets open
in K, together with the corresponding graph G = (V,E), and a cone-
hyperbolic G-directed system (G, {Cv}v∈V , {fe}e∈E) that renders the
dynamics of f on K with accuracy {Bv}v∈V , such that the diameters
of all Cv are uniformly bounded by an arbitrarily small constant.

Proof. It is enough to show the implications (1)⇒(3), (3)⇒(2) (obvious)
and (2)⇒(1).

(1)⇒(3). Assume that the homeomorphism f |K has the shadowing prop-
erty and is expansive. By Theorem 2.1, (K, f |K) is a Smale space satisfying
condition (LC) with respect to some compatible metric d. Let η, ν, L > 0
and λ ∈ (0, 1) be constants given by conditions (LPS), (HS) and (LC). Let
ε > 0 be an arbitrary constant. Without loss of generality we can assume
that

ε <
min{η/2, ν/2}
max{L, 1}

.

Let δ < ε be a constant corresponding to ε/2 by the shadowing property. Let
V be a finite set of points in K such that {Bδ/2(v)}v∈V is a covering of K.
(Here and subsequently, Br(x) denotes the open ball in X with radius r > 0,
centered at x ∈ X.) For each v ∈ V put Cv = Bδ(v)∩K, Bv = Bδ/2(v)∩K
and define

E = {e = (i(e), t(e)) ∈ V × V : Bi(e) ∩ f−1(Bt(e)) 6= ∅},
fe = f |Ci(e)∩f−1(Ct(e))

: Ci(e) ⇀ Ct(e) for all e ∈ E.
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(This means in particular that dom fe = Ci(e) ∩ f−1(Ct(e)) is compact.) So
we have obtained the covering {Bv}v∈V , together with the corresponding
graph G = (V,E), and the triple (G, {Cv}v∈V , {fe}e∈E) for which condition
(R1) is obviously satisfied.

To show condition (R2) assume that α = (e0, . . . , en) is a path in G.
Then there exist x0, . . . , xn ∈ K such that

xk ∈ Bδ/2(i(ek)) and f(xk) ∈ Bδ/2(t(ek)) for k = 0, . . . , n,

which means that ξ = (x0, . . . , xn, f(xn)) is a δ-pseudo-orbit of f |K . Let
y ∈ K be a point that ε/2-shadows ξ, i.e.,

d(xk, f
k(y)) ≤ ε/2 for k = 0, . . . , n, d(f(xn), f

n+1(y)) ≤ ε/2.
Hence y ∈ Ci(e0), and

fk(y) ∈ Ci(ek) = Ct(ek−1) for k = 1, . . . , n, fn+1(y) ∈ Ct(en)
and so

fk(y) ∈ dom fek for k = 0, . . . , n.

To finish the proof of this part we need to define a cone-field on each Cv,
with respect to which each fe is cone-hyperbolic.

For each v ∈ V and x, y ∈ Cv we define

cs(x, y) = d(x, [x, y]), cu(x, y) = d(y, [x, y]),

where [ · , · ] comes from condition (LPS). Note that

d(x, y) ≤ d(x, [x, y]) + d(y, [x, y]) = cs(x, y) + cu(x, y) ≤ 2c(x, y),

c(x, y) = max{d(x, [x, y]), d(y, [x, y])} ≤ Ld(x, y) ≤ min{η, ν}
for all x, y ∈ Cv.

Take any map fe : Ci(e) ⇀ Ct(e). Then, by condition (HS),

c(fe(x), fe(y)) = cs(f(x), f(y)) = d(f(x), [f(x), f(y)]) ≤ λd(x, [x, y])
= λcs(x, y) ≤ λc(x, y)

for x, y ∈ dom fe with (fe(x), fe(y)) ∈ Cst(e), while

c(fe(x), fe(y)) ≥ cu(f(x), f(y)) = d(f(y), [f(x), f(y)]) ≥ λ−1d(y, [x, y])
= λ−1cu(x, y) = λ−1c(x, y)

for x, y ∈ dom fe with (x, y) ∈ Cui(e).
Hence

|fe|s ≤ λ and 〈fe〉u ≥ λ−1,
which means that fe is cone-hyperbolic.

(2)⇒(1). Assume that {Bv}v∈V is a covering ofK by nonempty sets open
in K and G = (V,E) is the corresponding graph, and (G, {Cv}v∈V , {fe}e∈E)
is a G-directed system that renders the dynamics of f on K with accuracy
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{Bv}v∈V , which is cone-hyperbolic with respect to some compatible metric
d on

⋃
v∈V Cv. Let β > 0 be a Lebesgue number of the covering {Bv}v∈V .

Since our subsequent considerations are, in fact, restricted to the set K, we
use the notation f for the homeomorphism f |K .

First we show that β is an expansive constant for f . To do this, take
x, y ∈ K satisfying

d(fk(x), fk(y)) < β for all k ∈ Z.
Then, by (R1), there exists an infinite path α = (. . . , e−1, e0, e1, . . .) (i.e., for
each n > 0 the sequence (e−n, . . . , e0, . . . , en) is a path in G) such that

fk(x), fk(y) ∈ Bi(ek) ∩ f
−1(Bt(ek)) ⊂ dom fek for all k ∈ Z.

Using Lemma 2.2 we obtain

d(x, y) ≤ Dc(x, y)
≤ Dmax{〈fen−1〉−1u · · · 〈fe0〉−1u c(fn(x), fn(y)),

|fe−1 |s · · · |fe−n |sc(f−n(x), f−n(y))}

≤ D2max
v∈V

diamCv ·max{〈fen−1〉−1u · · · 〈fe0〉−1u , |fe−1 |s · · · |fe−n |s}
n→∞−−−→ 0

and so x = y, which shows that f |K is expansive.
To show that f has the shadowing property take any γ > 0 and for every

n ≥ 0 consider the coverings Bn and Cn defined by (R4) and (R5). Note that,
by Lemma 2.2, we can find N > 0 for which the diameters of all the sets
from CN are smaller than γ. Let δ > 0 be such that for any x, y ∈ K the
following implication holds:

d(x, y) < δ ⇒ max
k=−N,...,N

d(fk(x), fk(y)) < β/(2N).

Let ξ = (x0, . . . , xn−1) be a finite δ-pseudo-orbit in K. Then, putting
xn = f(xn−1), we get

d(f i+1(xj), f
i(xj+1)) < β/(2N) for i = −N, . . . , N, j = 0, . . . , n− 1,

hence for each k ∈ {−N, . . . , N + n} there exists vk ∈ V such that

f i(xj) ∈ Bvk for i = −N, . . . , N, j = 0, . . . , n, i+ j = k.

(Note that whenever

max{k −N, 0} ≤ j1 < j2 ≤ min{k +N,n},
then

d(fk−j1(xj1), f
k−j2(xj2)) ≤

j2−1∑
j=j1

d(fk−j(xj), f
k−j−1(xj+1))

≤ 2Nβ/(2N) = β.)
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It follows that for each k ∈ {−N, . . . , N+n−1} there exist i ∈ {−N, . . . , N}
and j ∈ {0, . . . , n} such that i+ j = k and

f i(xj) ∈ Bvk ∩ f
−1(Bvk+1

).

Hence there is a path α = (e−N , . . . , eN+n−1) in G passing through all the
vertices vk, i.e.,

i(ek) = vk, t(ek) = vk+1 for k = −N, . . . , N + n− 1,

and consequently, by (R2), we can find y ∈ K such that α renders the motion
of f−N (y) until time 2N + n− 1, i.e.,

fk+i(y) ∈ dom fek+i
⊂ Cvk+i

for k = 0, . . . , n− 1, i = −N, . . . , N.
Thus for k = 0, . . . , n− 1 we obtain

xk, f
k(y) ∈

N⋂
i=−N

f−i(Cvk+i
) ∈ CN ,

and since the diameters of all the sets in CN are less than γ, we conclude that
the δ-pseudo-orbit ξ is γ-traced by y, which means that f has the shadowing
property. This finishes the proof.

Remark 3.2. It is known (see, e.g., [1]) that if a continuous map re-
stricted to a compact invariant set K is a topologically hyperbolic homeo-
morphism, then it admits a Markov partition of K. Let us note that our
construction of a finite covering and a corresponding cone-hyperbolic graph-
directed system for the set K seems to be, in a sense, a similar but more
flexible concept (we do not work with partitions but with coverings of K).
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