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Entire solutions of q-difference equations and
value distribution of q-difference polynomials

by Jilong Zhang (Beijing) and Lianzhong Yang (Jinan)

Abstract. We investigate the existence and uniqueness of entire solutions of order
zero of the nonlinear q-difference equation of the form fn(z) + L(z) = p(z), where p(z)
is a polynomial and L(z) is a linear differential-q-difference polynomial of f with small
growth coefficients. We also study the zeros distribution of some special type of q-difference
polynomials.

1. Introduction. Let f be a meromorphic function in the whole com-
plex plane. We assume the reader is familiar with the standard notations
and results of Nevanlinna’s value distribution theory such as the proximity
function m(r, f), counting function N(r, f), characteristic function T (r, f),
the first and second main theorems, the lemma on the logarithmic deriva-
tive etc. (see, e.g., [H2, L]). In this paper, we denote by S(r, f) any quantity
satisfying S(r, f) = o(T (r, f)) for all r outside of a set of upper logarithmic
density 0, i.e., outside of a set E such that

lim sup
r→∞

∫
E∩[1,r]

dt
t

log r
= 0.

Moreover, we denote by ε(r, f) any quantity satisfying ε(r, f) = o(T (r, f))
for all r outside of a possible exceptional set of finite logarithmic measure.
A meromorphic function α is said to be a small function of f if T (r, α) =
S(r, f).

Meromorphic solutions of complex difference equations have become a
subject of great interest recently, due to applications of Nevanlinna’s value
distribution theory to difference expressions [BIY2, CF, HK1, HK2]. In par-
ticular, Halburd and Korhonen [HK2, Theorem 3.1] gave a difference ana-
logue of the Clunie lemma, which was developed by Laine and Yang [LY1,
Theorem 2.3] as follows.
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Theorem A. Let f(z) be a transcendental meromorphic solution of fi-
nite order ρ of a difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f) and Q(z, f) are difference polynomials such that the
total degree degU(z, f) of U(z, f) in f(z) and its shifts f(z+c1), . . . , f(z+ck)
is n, and degQ(z, f) ≤ n. Moreover, assume that U(z, f) contains just one
term of maximal total degree in f(z) and its shifts. Then for each ε > 0,

m(r, P (z, f)) = O(rρ−1+ε) + ε(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

Using Theorem A, Laine and Yang [LY2] studied some special types of
nonlinear difference equations:

Theorem B. Let p, q be polynomials. Then a nonlinear difference equa-
tion

f2(z) + q(z)f(z + 1) = p(z)

has no transcendental entire solutions of finite order.

Theorem C. Let n ≥ 4 be an integer, M(z, f) be a linear differential-
difference polynomial of f , not vanishing identically, and h be a meromor-
phic function of finite order. Then the differential-difference equation

fn(z) +M(z, f) = h

has at most one admissible transcendental entire solution of finite order such
that all coefficients of M(z, f) are small functions of f . If such a solution f
exists, then f is of the same order as h.

In this paper, we will study some q-difference equations and the value
distribution of related q-difference polynomials.

2. q-difference equations. The non-autonomous Schröder q-difference
equation

(2.1) f(qz) = R(z, f(z)),

where the right-hand side is rational in both arguments, has been widely
studied during the last decades ([B-M, IY1, IY2]). For the classical devel-
opments, the reader is invited to see [V]. Gundersen et al. [G-Y] considered
the order of growth of meromorphic solutions of (2.1); their results imply
a q-difference analogue of the classical Malmquist theorem [M]: if the q-
difference equation (2.1) admits a meromorphic solution of order zero, then
(2.1) reduces to a q-difference Riccati equation, i.e. degf R = 1.
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Bergweiler et al. [BIY1] treated the functional equation

(2.2)

n∑
j=0

aj(z)f(cjz) = Q(z),

where 0 < |c| < 1 is a complex number, and aj(z) (j = 0, 1, . . . , n) and
Q(z) are rational functions with a0(z) 6≡ 0, a1(z) ≡ 1. They concluded that
all meromorphic solutions of (2.2) satisfy T (r, f) = O((log r)2). This means
that all meromorphic solutions of (2.2) are of zero order of growth.

Barnett et al. [B-M] investigated the properties of f(qz) of order zero.
A key result, which is an analogue of the logarithmic derivative lemma, reads
as follows.

Lemma 2.1. Let f(z) be a non-constant meromorphic function of order
zero, and q ∈ C \ {0}. Then

m(r, f(qz)/f(z)) = S(r, f).

Using the above lemma, Zhang and Korhonen [ZK] got the relation be-
tween the characteristics of f(z) and f(qz):

Lemma 2.2. Let f(z) be a non-constant meromorphic function of order
zero, and q ∈ C \ {0}. Then

(2.3) T (r, f(qz)) = T (r, f(z)) + S(r, f).

In this paper, we get the following result corresponding to Theorem B:

Theorem 2.3. Let p, r be polynomials. Then a nonlinear difference
equation

(2.4) f2(z) + r(z)f(qz) = p(z)

has no transcendental meromorphic solutions of order zero.

Proof. Suppose that f is a transcendental meromorphic solution of order
zero to equation (2.4). Without loss of generality, we assume that r(z) does
not vanish identically. From (2.4), we conclude by Lemma 2.2 that

2T (r, f(z)) = T (r, f2(z)) = T (r, p(z)− r(z)f(qz))

≤ T (r, f(qz)) +O(log r) = T (r, f(z)) + S(r, f),

which is a contradiction.

If f is supposed to be an entire function, we get a similar result. To
formulate it, take a linear q-difference polynomial

L(z) =
k∑
j=1

bj(z)f(qjz),

where at least one of the arguments qj is non-zero, and the coefficients are
small functions of f .
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Theorem 2.4. Let p(z) be a polynomial and let L(z) be a linear differen-
tial-q-difference polynomial of f with small growth coefficients. Then a non-
linear q-difference equation

(2.5) fn(z) + L(z) = p(z)

has no transcendental entire solutions of order zero, where n ≥ 2 is an
integer.

If (2.5) has a transcendental entire solution f of order zero, then T (r, f)
= m(r, f). The proof of Theorem 2.4 is similar to that of Theorem 2.3,
just using Lemma 2.1 instead of Lemma 2.2 and the classical logarithmic
derivative lemma. We omit the details.

In Theorem 2.4, the right side of (2.5) is a polynomial, which is a small
function with respect to a transcendental entire function f . A natural ques-
tion is what happens if p(z) in (2.5) is replaced by a general meromorphic
function h. Concerning this, we obtain the following result.

Theorem 2.5. Let n ≥ 4 be an integer, L(z, f) be as in Theorem
2.4, not vanishing identically, and h be a meromorphic function. Then the
differential-difference equation

(2.6) fn(z) + L(z, f) = h

has at most one admissible transcendental entire solution of order zero. If
such a solution f exists, then the order of h is zero.

Proof. Some ideas here are from [LY2]. Suppose that f is a transcen-
dental zero-order entire solution to (2.6). We deduce from Lemma 2.2 and
(2.6) that T (r, h) = O(T (r, f)). Then ρ(h) = ρ(f) = 0.

Assume to the contrary that f and g are two distinct transcendental
entire solutions of order zero to (2.6). We get

fn(z) + L(z, f) = gn(z) + L(z, g).

Then
fn(z)− gn(z) = L(z, g)− L(z, f) = L(z, g − f).

Denote F = fn−gn
f−g . Obviously, F is an entire function. From the above

equation, we have

(2.7) F =
n−1∏
j=1

(f − ωjg) = −L(z, f − g)

f − g
,

where ωj 6= 1 (j = 1, . . . , n− 1) are distinct roots of unity. From Lemma 2.1
and the logarithmic derivative lemma, we obtain

T (r, F ) = m(r, F ) = m

(
r,
L(z, f − g)

f − g

)
= S(r, f − g) ≤ S(r, f) + S(r, g) =: S(r).
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An immediate observation now is that
n−1∑
j=1

N

(
r,

1

f − ωjg

)
= N(r, 1/F ) = S(r),

and therefore

N

(
r,

1

f − ωjg

)
= S(r) for all j = 1, . . . , n− 1.

Since 1
f/g−ωj

= g
f−ωjg

, we conclude that N
(
r, 1
f/g−ωj

)
=S(r) (j=1, . . . , n−1).

Denote φ = f/g. As n ≥ 4, the second main theorem implies that T (r, φ) =
S(r). Then

(2.8) T (r, f) = T (r, g) + S(r).

Again by (2.7), we deduce that

F =
n−1∏
j=1

(f − ωjg) = gn−1
n−1∏
j=1

(φ− ωj).

From this and (2.8), provided that φ 6= ωj (j = 1, . . . , n− 1), we get

(n− 1)T (r, f) = (n− 1)T (r, g) + S(r)

≤ T (r, F ) + T

(
r,

1∏n−1
j=1 (φ− ωj)

)
+ S(r) = S(r),

which means T (r, f) + T (r, g) = S(r, f) + S(r, g), a contradiction. Hence,
φ = ωj for some j = 1, . . . , n− 1. But then f = ωjg, and fn = gn, L(z, f) =
L(z, g). On the other hand, since L is linear, we have L(z, f) = ωjL(z, g).
This is a contradiction since ωj 6= 1.

3. Value distribution of difference polynomials. Let f be a tran-
scendental entire function and n be a positive integer. Hayman [H1] and Clu-
nie [C] proved that fnf ′ assumes every non-zero value a ∈ C infinitely often.
From Section 1, it is easy to find that f(z+c) plays a parallel role in the value
distribution theory of difference polynomials to f ′ in the theory of differ-
ential polynomials. Noting this, Laine–Yang [LY2] and Bergweiler–Langley
[BL] investigated the distribution of zeros of fnf(z+ c) and f(z+ c)− f(z)
respectively.

Recently, Liu and Qi [LQ] studied the value distribution of q-differences
and obtained the following results.

Theorem D. Let f be a transcendental meromorphic function of order
zero with finitely many poles, q ∈ C\{0}, and let R(z) be a rational function.
Then fn(z)f(qz) − R(z) has infinitely many zeros for n ∈ N, and fn(z) +
f(qz)− f(z)−R(z) has infinitely many zeros for n ≥ 2.
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Theorem E. If we remove the condition ‘f has finitely many poles’ in
Theorem D, then fn(z)f(qz) − R(z) has infinitely many zeros for n ≥ 6,
and fn(z) + f(qz)− f(z)−R(z) has infinitely many zeros for n ≥ 8, where
R(z) is a nonzero rational function.

It is natural to ask what happens if f has infinitely many poles and
the rational function R(z) is replaced by an arbitrary small function in
Theorem D. Concerning this, we get the following theorem.

Theorem 3.1. Let f be a transcendental meromorphic function of order
zero with N(r, f) = S(r, f), q ∈ C \ {0}, and let α(z) ( 6≡ 0) be a small
function of f . Then fn(z)f(qz)− α(z) has infinitely many zeros for n ≥ 2,
and fn(z) + f(qz)− f(z)− α(z) has infinitely many zeros for n ≥ 3.

Proof. Denote

(3.1) F (z) = −f(qz)− f(z)− α(z)

fn(z)
.

Then fn(z) + f(qz)− f(z)−α(z) has infinitely many zeros if F (z)− 1 does.
We next show that the latter is indeed the case.

Noting that N(r, f) = S(r, f), we deduce from Lemma 2.1 and (3.1) that

(3.2) nT (r, f) = m(r, fn) + S(r, f) = m

(
r, fn

f(qz)− f − α
f(qz)− f − α

)
+ S(r, f)

≤ m(r, 1/F ) +m(r, f(qz)− f) + S(r, f)

≤ T (r, F )−N(r, 1/F ) +m(r, f) +m

(
r,
f(qz)

f(z)
− 1

)
+ S(r, f)

≤ T (r, F )−N(r, 1/F ) +m(r, f) + S(r, f).

Applying the second main theorem to F (z), we get

T (r, F ) = N(r, F ) +N(r, 1/F ) +N(r, 1/(F − 1)) + S(r, f)

≤ N(r, f(qz)) +N(r, 1/f) +N(r, 1/F ) +N(r, 1/(F − 1)) + S(r, f)

≤ T (r, f) +N(r, 1/F ) +N(r, 1/(F − 1)) + S(r, f)

Combining the last inequality with (3.2) yields

nT (r, f) ≤ T (r, f) +m(r, f) +N(r, 1/(F − 1)) + S(r, f),

which is

(n− 2)T (r, f) ≤ N(r, 1/(F − 1)) + S(r, f),

and the assertion follows since n ≥ 3.
Denote G(z) = fn(z)f(qz). By the same arguments as above, we have

(n+1)T (r, f) = m(r, fn+1) + S(r, f)(3.3)

≤ m(r, fn+1/G)+m(r,G)+S(r, f)≤T (r,G)+S(r, f).
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Applying the second main theorem for the small functions to G(z), we get

T (r,G) = N(r,G) +N(r, 1/G) +N(r, 1/(G− α)) + S(r, f)

≤ N(r, 1/G) +N(r, 1/(G− α)) + S(r, f)

≤ 2T (r, f) +N(r, 1/(G− α)) + S(r, f).

Combining the last inequality with (3.3) gives

(n− 1)T (r, f) ≤ N(r, 1/(G− α)) + S(r, f).

Then fn(z)f(qz)− α(z) has infinitely many zeros since n ≥ 2.

Remark 3.2. Using the proof Theorem 3.1 again, we deduce that Theo-
rem E still holds if the rational function R(z) is replaced by a small function
α(z) of f(z).

4. Concluding remarks. The original Theorems D and E in [LQ] con-
cern the zeros of fn(z)f(qz+η)−R(z) and fn(z) +f(qz+η)−f(z)−R(z),
where η ∈ C. In the present paper, we use f(qz) instead of f(qz + η) for
brevity. In fact, all results in Section 3 remain true for f(qz + η), by

Theorem 4.1. Let f(z) be a non-constant meromorphic function of or-
der zero, c ∈ C and q ∈ C \ {0}. Then

T (r, f(qz + c)) = T (r, f(z)) + S(r, f).

Theorem 4.1 comes immediately from Lemma 2.1 and the following the-
orem:

Theorem F ([CF, Theorem 2.1]). Let f be a meromorphic function of
finite order ρ and c is a non-zero complex constant. Then, for each ε > 0,

T (r, f(z + c)) = T (r, f(z)) +O(rρ−1+ε) +O(log r).
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