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Existence of three solutions for
a Navier boundary value problem

involving the p(x)-biharmonic operator

by Honghui Yin and Mei Xu (Jiangsu)

Abstract. The existence of at least three weak solutions is established for a class of
quasilinear elliptic equations involving the p(x)-biharmonic operator with Navier bound-
ary value conditions. The proof is mainly based on a three critical points theorem due to
B. Ricceri [Nonlinear Anal. 70 (2009), 3084–3089].

1. Introduction. In this paper, we consider problems of the type{
∆2
p(x)u+ e(x)|u|p(x)−2u = λa(x)f(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with boundary of class C1;
λ, µ ≥ 0 are real numbers; p(·) ∈ C0(Ω) with max{2, N/2} < p− :=
infx∈Ω p(x) ≤ p+ := supx∈Ω p(x); and ∆2

p(x) := ∆(|∆u|p(x)−2∆u) is the op-

erator of fourth order called the p(x)-biharmonic operator, which is a natural
generalization of the p-biharmonic operator (where p > 1 is a constant).

In [LS], the authors studied the following superlinear p-biharmonic ellip-
tic problem with Navier boundary conditions:{

∆2
pu = g(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω.
(1.2)

By means of Morse theory, they proved the existence of a nontrivial solution
to (1.2) having a linking structure around the origin under the conditions:
Ω ⊆ RN is bounded with smooth boundary; N ≥ 2p+ 1; g : Ω × R→ R is
a Carathéodory function such that for some C > 0, |g(x, t)| ≤ C(1 + |t|q−1)
for a.e. x ∈ Ω and all t ∈ R; 1 ≤ q ≤ p∗ = Np/(N − 2p). Moreover, in the
case of both resonance near zero and nonresonance at ∞, the existence of
two nontrivial solutions was obtained.
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In [LT], the authors considered the following problem:{
∆2
pu = λf(x, u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω.
(1.3)

By the three critical points theorem due to Ricceri [Ri], they established the
existence of three weak solutions to (1.3).

For more results on fourth-order elliptic equations with variable expo-
nent, see [AA, AMM] and the references therein.

To obtain the existence of at least three solutions of problem (1.1), we
apply the three critical points theorem by B. Ricceri [Ri]:

Theorem A. Let X be a reflexive real Banach space; I ⊆ R an in-
terval; Φ : X → R a continuously Gâteaux differentiable and sequentially
weakly lower semicontinuous C1 functional, bounded on each bounded subset
of X, whose Gâteaux derivative admits a continuous inverse on X∗; and Ψ :
X → R a C1 functional with compact Gâteaux derivative. Assume that

(i) lim‖u‖→∞(Φ(u) + λΨ(u)) =∞ for all λ ∈ I;
(ii) there exists ρ ∈ R such that

sup
λ∈I

inf
t∈X

(Φ(t) + λ(Ψ(t) + ρ)) < inf
t∈X

sup
λ∈I

(Φ(t) + λ(Ψ(t) + ρ)).

Then there exists a nonempty open set Λ ⊆ I and a positive number σ with
the following property: for each λ ∈ Λ and every C1 functional J : X → R
with compact Gâteaux derivative, there exists δ > 0 such that for each µ ∈
[0, δ], the equation

Φ′(u) + λΨ ′(u) + µJ ′(u) = 0(1.4)

has at least three solutions in X whose norms are less than σ.

On the basis of [B], we state an equivalent formulation of Theorem A:

Theorem B. Let X be a reflexive real Banach space; Φ : X → R a
continuously Gâteaux differentiable and sequentially weakly lower semicon-
tinuous C1 functional, bounded on each bounded subset of X, whose Gâteaux
derivative admits a continuous inverse on X∗; and Ψ : X → R a C1 func-
tional with compact Gâteaux derivative. Assume that

(i) lim‖u‖→∞(Φ(u) + λΨ(u)) = ∞ for all λ > 0; and there are r ∈ R
and u0, u1 ∈ X such that:

(ii) Φ(u0) < r < Φ(u1);

(iii) infu∈Φ−1((−∞,r]) Ψ(u) > (Φ(u1)−r)Ψ(u0)+(r−Φ(u0))Ψ(u1)
Φ(u1)−Φ(u0) .

Then there exists a nonempty open set Λ ⊆ [0,∞) and a positive num-
ber σ with the following property: for each λ ∈ Λ and every C1 functional
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J : X → R with compact Gâteaux derivative, there exists δ > 0 such that for
each µ ∈ [0, δ], the equation

Φ′(u) + λΨ ′(u) + µJ ′(u) = 0(1.5)

has at least three solutions in X whose norms are less than σ.

To obtain the existence of at least three solutions of (1.1), we assume
the following conditions:

(A) e(·) ∈ L∞(Ω) and e− > 0; denote ‖e(·)‖1 :=
	
Ω e(x) dx;

(B) g : Ω×R→ R is a Carathéodory function, sup|ζ|≤s |g(·, ζ)| ∈ L1(Ω)
for all s > 0;

(C) a(·) ∈ Lr(·)(Ω), f : Ω ×R→ R is a Carathéodory function, |f(x, t)|
≤ b(x) + c|t|q(x)−1 for x ∈ Ω and t ∈ R, where c ≥ 0 is a constant,

b(·) ∈ Lq0(·)r0(·)(Ω), r(·), q(·) ∈ C(Ω), r− > 1, p− > q+ ≥ q− ≥ 1,
and

q(x) <
r(x)− 1

r(x)
p∗(x), ∀x ∈ Ω.

Here

p∗(x) =


Np(x)

N − p(x)
, p(x) < N,

∞, p(x) ≥ N

and r0(·) is the conjugate function of r(·), i.e., 1/r(x) + 1/r0(x) = 1.

The paper is organized as follows. In Section 2, we recall some facts that
will be needed. In Section 3, we establish our main results.

2. Notation and preliminaries. For the reader’s convenience, we re-
call some background facts concerning Lebesgue–Sobolev spaces with vari-
able exponent and introduce some notation. For more details, we refer the
reader to [FD, KR, Ru, S].

Set

C+(Ω) = {h ∈ C(Ω) | h(x) > 1 for all x ∈ Ω}.

For p(·) ∈ C+(Ω), define

Lp(·)(Ω) =
{
u
∣∣∣ u is a measurable real-valued function on Ω,

�

Ω

|u(x)|p(x) dx <∞
}
.

We can introduce a norm on Lp(·)(Ω) by

|u|p(·) = inf
{
λ > 0

∣∣∣ �
Ω

|u(x)/λ|p(x) dx ≤ 1
}
.
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Thus (Lp(·)(Ω), |u|p(·)) becomes a Banach space, called a variable exponent
Lebesgue space.

The space Wm,p(·)(Ω) is defined by

Wm,p(·)(Ω) = {u ∈ Lp(·)(Ω) | Dαu ∈ Lp(·)(Ω) whenever |α| ≤ m}.
Here α is a multi-index and |α| is its order;m is a positive integer.Wm,p(·)(Ω)
belongs to the class of so-called generalized Orlicz–Sobolev spaces. From [H],
we know that Wm,p(·)(Ω) can be equipped with the norm

‖u‖Wm,p(·)(Ω) =
∑
|α|≤m

|Dαu|p(·).

By [FD], Lp(·)(Ω) and Wm,p(·)(Ω) are separable, reflexive and uniformly
convex Banach spaces.

When e(·) satisfies (A), we define

L
p(·)
e(·)(Ω) =

{
u
∣∣∣ u is a measurable real-valued function on Ω,

�

Ω

e(x)|u(x)|p(x) dx <∞
}
,

with the norm

|u|(p(·),e(·)) = inf
{
λ > 0

∣∣∣ �
Ω

e(x)|u(x)/λ|p(x) dx ≤ 1
}
.

Then L
p(·)
e(·)(Ω) is a Banach space. Now we denoteX=W 2,p(·)(Ω)∩W 1,p(·)

0 (Ω),

where W
1,p(·)
0 (Ω) denotes the closure of C∞0 (Ω) in W 1,p(·)(Ω). For any u∈X,

define

‖u‖e = inf
{
λ > 0

∣∣∣ �
Ω

(|∆u(x)/λ|p(x) + e(x)|u(x)/λ|p(x)) dx ≤ 1
}
.

It is easy to see that X endowed with the above norm is also a separable,
reflexive Banach space. We denote by X∗ its dual.

Remark. According to [ZF], ‖u‖W 2,p(·)(Ω) is equivalent to |∆u|p(·) in X.

Consequently, the norms ‖u‖W 2,p(·)(Ω), |∆u|p(·) and ‖u‖e are equivalent.

From now on, we will use ‖ · ‖e instead of ‖ · ‖W 2,p(·)(Ω) on X.

Proposition 2.1 (see [FD, Ru]). The conjugate space of Lp(·)(Ω) is

Lp
0(·)(Ω). For any u ∈ Lp(·)(Ω) and v ∈ Lp0(·)(Ω), we have

�

Ω

|uv| dx ≤
(

1

p−
+

1

(p0)−

)
|u|p(·)|v|p0(·) ≤ 2|u|p(·)|v|p0(·).

Proposition 2.2 (see [FD, Ru]). Denote ρ(u) =
	
Ω |u|

p(x) dx for u ∈
Lp(·)(Ω). Then

(i) |u|p(·) < 1 (= 1;> 1)⇔ ρ(u) < 1 (= 1;> 1);
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(ii) |u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρ(u) ≤ |u|p
+

p(·); |u|p(x) < 1 ⇒ |u|p
+

p(·) ≤ ρ(u) ≤

|u|p
−

p(·);

(iii) |u|p(·) → 0 (∞)⇔ ρ(u)→ 0 (∞).

From Proposition 2.2, the following inequalities hold:

‖u‖p−e ≤
�

Ω

(|∇u(x)|p(x) + e(x)|u(x)|p(x)) dx ≤ ‖u‖p+e if ‖u‖e ≥ 1,(2.1)

‖u‖p+e ≤
�

Ω

(|∇u(x)|p(x) + e(x)|u(x)|p(x)) dx ≤ ‖u‖p−e if ‖u‖e ≤ 1.(2.2)

Proposition 2.3 (see [F]). Suppose that the boundary of Ω has the
cone property and a(·) ∈ Lr(·)(Ω), a(x) > 0 for a.e. x ∈ Ω, r(·) ∈ C(Ω) and
r− > 1. If p(·), q(·) ∈ C(Ω) and

1 ≤ q(x) <
r(x)− 1

r(x)
p∗(x), ∀x ∈ Ω,

then there is a compact embedding X ↪→ L
q(·)
a(·)(Ω).

Proposition 2.4. If Ω ⊂ RN is a bounded domain, then the embedding
X ↪→ C0(Ω) is compact whenever N/2 < p−.

Proof. It is well known that X ↪→W 2,p−(Ω)∩W 1,p−

0 (Ω) is a continuous

embedding, and the embedding W 2,p−(Ω)∩W 1,p−

0 (Ω) ↪→ C0(Ω) is compact
when N/2 < p− and Ω is bounded. So we obtain the compact embedding
X ↪→ C0(Ω) whenever N/2 < p−.

From Proposition 2.4, there exists a positive constant d depending on
p(·), N and Ω such that

‖u‖∞ = sup
x∈Ω
|u(x)| ≤ d‖u‖e, ∀u ∈ X.(2.3)

3. Existence of three solutions. We define Φ : X → R by

Φ(u) =
�

Ω

(
1

p(x)
|∆u(x)|p(x) +

e(x)

p(x)
|u(x)|p(x)

)
dx.(3.1)

Then

(Φ′(u), v) =
�

Ω

(|∆u|p(x)−2∆u∆v + e(x)|u|p(x)−2uv) dx, ∀u, v ∈ X.
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Denote

F (x, u) =

u�

0

a(x)f(x, t) dt, G(x, u) =

u�

0

g(x, t) dt,

Ψ(u) =
�

Ω

F (x, u) dx, J(u) =
�

Ω

G(x, u) dx.

Then for all u, v ∈ X,

(Ψ ′(u), v) =
�

Ω

a(x)f(x, u)v dx, (J ′(u), v) =
�

Ω

g(x, u)v dx.

We say that u ∈ X is a weak solution of problem (1.1) if�

Ω

|∆u|p(x)−2∆u∆v + e(x)|u|p(x)−2uv dx

= λ
�

Ω

a(x)f(x, u)v dx+ µ
�

Ω

g(x, u)v dx, ∀v ∈ X,

i.e.,

(Ψ ′(u), v)− λ(Ψ ′(u), v)− µ(J ′(u), v) = 0.

It follows that we can look for weak solutions of (1.1) by applying Theorem A
or Theorem B.

We first give the following results.

Lemma 3.1. If Φ is as in (3.1), then (Φ′)−1 : X∗ → X exists and is
continuous.

Proof. First, we show that Φ′ is uniformly monotone. In fact, for any
ζ, η ∈ RN (see [KV]),

(|ζ|p−2ζ − |η|p−2η)(ζ − η) ≥ 1

2p
|ζ − η|p, p ≥ 2.

Thus, we deduce that

(Φ′(u)− Φ′(v), u− v)

≥ 1

2p+

�

Ω

(|∆u−∆v|p(x) + e(x)|u− v|p(x)) dx, ∀u, v ∈ X,

i.e., Φ′ is uniformly monotone.

From (2.1), we can see that for any u ∈ X with ‖u‖e ≥ 1,

(Φ′(u), u)

‖u‖e
≥ ‖u‖p−−1e ,

which means that Φ′ is coercive on X.

By a standard argument, Φ′ is hemicontinuous. Therefore, the conclusion
follows immediately by applying [Z, Theorem 26.A].
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Lemma 3.2. If (A)–(C) hold, then for any λ ∈ R, Φ(u)− λΨ(u) is coer-
cive on X.

Proof. From |f(x, t)| ≤ b(x) + c|t|q(x)−1 and the Young inequality, we
have

|F (x, t)| ≤ |a(x)|
(
b(x)|t|+ c

q(x)
|t|q(x)

)
≤ |a(x)|[(b(x))q

0(x) + (1 + c)|t|q(x)].

Then from condition (C) and Proposition 2.3 we know that F (x, u) is inte-
grable on Ω for any u ∈ X, and Ψ(u) is well defined.

By Proposition 2.3, we have

Φ(u)− λΨ(u) =
�

Ω

(
1

p(x)
|∇u(x)|p(x) +

e(x)

p(x)
|u(x)|p(x)

)
dx− λ

�

Ω

F (x, u) dx

≥ ‖u‖
p−
e

p+
− |λ|

�

Ω

|a(x)|[|b(x)|q0(x) + (1 + c)|u|q(x)] dx

≥ ‖u‖
p−
e

p+
− |λ|C1 − |λ|(1 + c)|u|q

+

(q(·),|a(·)|)

≥ ‖u‖
p−
e

p+
− |λ|C1 − |λ|C2‖u‖q

+

e ,

where C1, C2 are positive constants. Since q+ < p−, we see that Φ(u)−λΨ(u)
is coercive.

Furthermore, we suppose:

(D) there are 0 < r < 1/p+ and 1 < |ξ1| ∈ R with meas(Ω)|ξ1|p
−‖e‖1 >

p+r such that

meas(Ω) sup
|ξ|≤d

F (x, ξ) <
p−r

|ξ1|p+‖e‖1
F (x, ξ1), a.e. x ∈ Ω.(3.2)

Then we have the following main theorem.

Theorem 3.3. Assume (A)–(D) hold. Then there exist a nonempty open
set Λ ⊆ R and a positive number σ with the following property: for each
λ ∈ Λ, there exists δ > 0 such that for each µ ∈ [0, δ], problem (1.1) has at
least three weak solutions whose norms are less than σ.

Proof. From Lemma 3.1 we can see that (Φ′)−1 is well defined, so we can
use Theorem A to obtain the result. Now we show that the other hypotheses
of Theorem A are satisfied.

From Lemma 3.2, we can see that (i) is satisfied.
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From Φ(u) ≤ r we deduce that ‖u‖e ≤ 1, so

‖u‖∞ ≤ d(rp+)1/p
+ ≤ d.(3.3)

Condition (D) implies that

Φ(ξ1) ≥
|ξ1|p

−

p+
‖e‖1 meas(Ω) > r.

Let u1(x) ≡ ξ1 on Ω. Then we have

sup
u∈Φ−1((−∞,r])

Ψ(u) ≤
�

Ω

sup
|u|≤d

F (x, u) dx(3.4)

<
p−r

meas(Ω)|u1|p+‖e‖1

�

Ω

F (x, u1) dx ≤ r
Ψ(u1)

Φ(u1)
.

Fix any h > 1; it is easy to see that

sup
u∈Φ−1((−∞,r])

Ψ(u) +
rΨ(u1)Φ(u1)

− supu∈Φ−1((−∞,r]) Ψ(u)

h
< r

Ψ(u1)

Φ(u1)
.

By [B1, Proposition 1.3], for ρ satisfying

sup
u∈Φ−1((−∞,r])

Ψ(u) +
rΨ(u1)Φ(u1)

− supu∈Φ−1((−∞,r]) Ψ(u)

h
< ρ < r

Ψ(u1)

Φ(u1)
,

we have

sup
λ∈R

inf
u∈X

(Φ(u) + λ(ρ− Ψ(u))) < inf
u∈X

sup
λ∈[0,α1]

(Φ(u) + λ(ρ− Ψ(u))),

where

α1 =
hr

rΨ(u1)Φ(u1)
− supu∈Φ−1((−∞,r]) Ψ(u)

> 0.

Thus (ii) of Theorem A holds with I = [0, α1]. Hence all the hypotheses of
Theorem A are satisfied. Consequently, there exist an open interval Λ ⊆ I
and a positive constant σ such that for any λ ∈ Λ, there exists δ > 0 such
that for each µ ∈ [0, δ], problem (1.1) has at least three weak solutions whose
norms are less than σ.

Next, we consider the case when f(x, t) in (1.1) is independent of x, i.e.,
we have the problem{

−∆2
p(x)u+ e(x)|u|p(x)−2u = λa(x)f(u) + µg(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω.
(3.5)

We suppose a(x) and f(t) satisfy
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(E) a(·) ∈ C0(Ω) and is nonnegative, and f : R → R is a continuous
function such that

lim inf
ρ→0

sup|ξ|≤ρ F (ξ)

ρp+
= 0,(3.6)

max

{
0, lim sup
|ξ|→∞

F (ξ)

|ξ|p−
}
< sup

ξ∈R

F (ξ)

|ξ|p−
,(3.7)

where F (u) =
	u
0 f(t) dt. Then we have the following result.

Theorem 3.4. Assume (A), (B) and (E) hold and e− is small enough.
Then there exist a nonempty open set Λ ⊆ R and a positive real number σ
with the following property: for each λ ∈ Λ, there exists δ > 0 such that for
each µ ∈ [0, δ], problem (3.5) has at least three weak solutions whose norms
are less than σ.

Proof. From (3.7) we can find a ξ2 ∈ R such that

lim sup
|ξ|→∞

F (ξ)

|ξ|p−
<
F (ξ2)

|ξ2|p−
.

Fix b > 0 such that

lim sup
|ξ|→∞

F (ξ)

|ξ|p−
<

b

p+
<
F (ξ2)

|ξ2|p−
.

Then for 0 ≤ λ < 1
ba+e− and a suitable β > 0, we have

Φ(u)−λΨ(u) =
�

Ω

(
1

p(x)
|∇u(x)|p(x) +

e(x)

p(x)
|u(x)|p(x)

)
dx−λ

�

Ω

a(x)F (u) dx

≥ ‖u‖
p−
e

p+
− λa+e− b

p+

�

Ω

e(x)|u|p− dx− β

≥ (1− λba+e−)
‖u‖p

−
e

p+
− β.

We can see that Φ(u)− λΨ(u) is coercive on X when 0 ≤ λ < 1/(ba+e−).

Now we denote u2(x) ≡ ξ2 on Ω. From (3.6), we can choose

0 < r < min

{
1

p+
,
|ξ2|p

+

p+
meas(Ω)‖e‖1,

|ξ2|p
−

p+
meas(Ω)‖e‖1

}
such that

(3.8)
�

Ω

a(x) sup
|u|≤d(p+r)1/p+

F (u) ≤ rΨ(u2)

Φ(u2)
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and

Φ(u2) =
�

Ω

e(x)
|ξ2|p(x)

p(x)
dx > r.

When Φ(u) ≤ r, (3.3) still holds, so by (3.8),

sup
u∈Φ−1((−∞,r])

Ψ(u) ≤ rΨ(u2)

Φ(u2)
.

By [B1, Proposition 1.3], for any h > 1 and ρ satisfying

sup
u∈Φ−1((−∞,r])

Ψ(u) +
rΨ(u2)Φ(u2)

− supu∈Φ−1((−∞,r]) Ψ(u)

h
< ρ < r

Ψ(u2)

Φ(u2)
,

we have

sup
λ∈R

inf
u∈X

(Φ(u) + λ(ρ− Ψ(u))) < inf
u∈X

sup
λ∈[0,α2]

(Φ(u) + λ(ρ− Ψ(u))),

where

α2 =
hr

rΨ(u2)Φ(u2)
− supu∈Φ−1((−∞,r]) Ψ(u)

> 0.

When e− is small enough and I = [0, α2], we see that all the hypotheses
of Theorem A are satisfied. Hence the conclusion follows.

If moreover

(F) F (x, t) > 0 for any x ∈ Ω and |t| large enough, and there exists
M > 0 such that

F (x, t) ≤ 0, x ∈ Ω, |t| ≤M, where F (x, t) =

t�

0

a(x)f(x, s) ds,

then we can obtain the following result.

Theorem 3.5. Assume (A)–(C) and (F) hold. Then there exist a non-
empty open set Λ ⊆ R and a positive number σ with the following property:
for each λ ∈ Λ, there exists δ > 0 such that for each µ ∈ [0, δ], problem (1.1)
has at least three weak solutions whose norms are less than σ.

Proof. We define Ψ(u) = −
	
Ω F (x, u) dx; we will prove that all hypothe-

ses of Theorem B are satisfied.
From (C) and the argument in Theorem 3.4, we can see that (i) of

Theorem B holds.
By (F), there exists |ξ3| > 1 such that F (x, ξ3) > 0 for any x ∈ Ω and

|ξ3|p
−‖e‖1 ≥ 1. Set a = min{d,M}. Then�

Ω

sup
|t|∈[0,a]

F (x, t) dx ≤ 0 <
�

Ω

F (x, ξ3) dx.(3.9)
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We denote u0 = 0, u3 = ξ3 and r = 1
p+

(a/d)p
+

. Then it is easy to see that

Φ(u3) > r > Φ(u0).

So, (ii) of Theorem B is satisfied.

When Φ(u) ≤ r, similarly to the above arguments, we obtain

‖u‖∞ ≤ a.(3.10)

At last, we see that

(3.11)
(Φ(u3)− r)Ψ(u0) + (r − Φ(u0))Ψ(u3)

Φ(u3)− Φ(u0)

= r
Ψ(u3)

Φ(u3)
≤ −r

	
Ω F (x, ξ3) dx

|ξ3|p+
p− ‖e‖1

< 0.

From the definition of Ψ and (3.10), we have

− inf
u∈Φ−1((−∞,r])

Ψ(u) = sup
u∈Φ−1((−∞,r])

−Ψ(u)(3.12)

≤
�

Ω

sup
|u|∈[0,a]

F (x, u) dx ≤ 0.

From (3.11) and (3.12), we can see that (iii) of Theorem B holds.

Thus all the hypotheses of Theorem B are satisfied. Hence the conclusion
follows.

Finally, as an application of Theorem 3.5, we consider the problem{
∆2
p(x)u+ e(x)|u|p(x)−2u = λ(|u|q(x)−2u− u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(3.13)

where q(·) ∈ C+(Ω) and 2 < q(x) < p− for any x ∈ Ω, and e(·) satisfies (A).
Set

F (x, u) =
1

q(x)
|u|q(x) − 1

2
|u|2.

Then it is easy to see that F (x, u) < 0 when |u| ≤ 1, and lim|u|→∞ F (x, u)→
+∞. By Theorem 3.5, there exist an open interval Λ ⊆ [0,∞) and a positive
constant ρ such that for any λ ∈ Λ, problem (3.13) has at least three weak
solutions whose norms are less than ρ.

Remark. We remark that problem (3.13) can be regarded as an eigen-
value problem. In that context, we have established the existence of a con-
tinuous family of eigenvalues for problem (3.13) which are not simple.
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