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On inhomogeneous self-similar measures
and their Lq spectra

by Przemysław Liszka (Katowice)

Abstract. Let Si : Rd → Rd for i = 1, . . . , N be contracting similarities, let (p1, . . . ,
pN , p) be a probability vector and let ν be a probability measure on Rd with compact
support. It is well known that there exists a unique inhomogeneous self-similar probability
measure µ on Rd such that µ =

∑N
i=1 piµ ◦ S

−1
i + pν.

We give satisfactory estimates for the lower and upper bounds of the Lq spectra of
inhomogeneous self-similar measures. The case in which there are a countable number of
contracting similarities and probabilities is considered. In particular, we generalise some
results obtained by Olsen and Snigireva [Nonlinearity 20 (2007), 151–175] and we give a
partial answer to Question 2.7 in that paper.

1. Introduction. Inhomogeneous self-similar measures are a natural
extension of the homogeneous measures that satisfy µ =

∑N
i=1 piµ ◦ S

−1
i ,

which have been an object of study for the past 25 years (for instance, see
[6] and the references therein). As homogeneous self-similar measures are
solutions of the equation

(1.1) µ−
N∑
i=1

piµ ◦ S−1i = 0,

it is of interest to investigate the corresponding inhomogeneous equation

(1.2) µ−
N∑
i=1

piµ ◦ S−1i = pν,

where ν is a fixed probability measure with support in a compact set C ⊂ Rd.
At this point, it is worth referring to the inhomogeneous self-similar sets that
satisfy K =

⋃N
i=1 Si(K) ∪ C. The proof of the existence and uniqueness of

such sets can be found in [1, Theorem 3.7.1]. These sets, which are actually
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fractals, are closely related to measures µ that satisfy (1.2). Specifically, it
is proved in [15, Proposition 1.2] that K = suppµ is as above.

Inhomogeneous self-similar measures and sets were introduced by Barns-
ley et al. [2, 4] as a tool for image compression; [4] gives a few examples of
such measures. They also feature in [3].

One may ask whether any dynamical interpretation of inhomogeneous
self-similar measures exists. The answer is affirmative: a measure µ which
satisfies (1.2), can be viewed as an invariant measure for the operatorMµ =∑N

i=1 piµ◦S
−1
i +pν, which acts on measures concentrated on the setK and is

generated by the iterated function system (S1, . . . , SN , p1, . . . , pN , p, ν). The
operatorM is then the transition operator for a random sequence that takes
values inK. Hence, an inhomogeneous self-similar measure can also be viewed
as an invariant distribution of a Markov chain, and moreover, every measure µ
that satisfiesMµ = µ is weakly asymptotically stable. These facts have been
described in detail by Lasota [11]. In connection with the above-mentioned
interpretation, a method of construction of such measures connected with
probabilities will be presented.

Because µ is invariant for M , it is also natural to consider estimates for
various dimensions of measures satisfying (1.2) or, if p = 0, (1.1). There is a
huge body of literature on Lq spectra of homogeneous self-similar measures
(for example, see [6] and the references therein). In the broad sense of in-
vestigating dimensions of invariant measures, the inhomogeneous case was
considered, i.a., by Horbacz et al. (see [5], [9] and [10], for instance). The
work of Olsen and Snigireva [15] is devoted to estimates of the Lq spectra
and the Rényi dimensions of inhomogeneous self-similar measures under the
assumption that the sets (S1K, . . . , SNK,C) are pairwise disjoint. In this
case, non-trivial lower and upper bounds for the above-mentioned dimen-
sions were obtained.

When examining the Lq spectra of inhomogeneous self-similar measures,
the assumption that the sets (S1K, . . . , SNK,C) are pairwise disjoint is
clearly unsatisfactory, as already stated by the authors of [15], who asked (see
[15, Question 2.7]) whether the results obtained in [15, Section 2] are true
when only the Finite Weak Inhomogeneous Open Set Condition (FWIOSC),
a version of the standard Open Set Condition, is assumed. Namely, the
FWIOSC is satisfied if there exists a non-empty and bounded open set U
such that the following conditions are satisfied:
(FW1) Si(U) ⊆ U, i ∈ {1, . . . , N}, C ⊆ U,
(FW2) Si(U) ∩ Sj(U) = ∅, i 6= j, i, j ∈ {1, . . . , N},
(FW3) Si(U) ∩ C = ∅, i ∈ {1, . . . , N}.
In the present paper, we will consider the FWIOSC and provide a partial
answer to this question. More precisely, we will prove [15, Theorem 2.1] as-



Inhomogeneous self-similar measures 77

suming the FWIOSC, and we will also obtain much more accurate estimates.
Moreover, our main theorem extends these results to the case of a countable
number of contracting similarities.

For a more complete treatment of other problems relating to infinite
iterated function systems, we refer the reader to Mauldin and Urbański’s
book [14].

2. Preliminaries. Let Si : Rd → Rd, i = 1, 2, . . . , be contracting simi-
larities and let ri denote the contraction ratio of Si. We assume that

‖r‖ :=

∞∑
i=1

ri <∞.

Let B(x, r) denote the closed ball with centre x ∈ Rd and radius r; by intA
we denote the interior of any set A ⊂ Rd; A or clA stands for the closure
of A. Finally, BX denotes the σ-algebra of Borel subsets of X.

Let N ≥ 2 and let C ⊂ Rd be a fixed, non-empty, compact set. It is well
known that there exists a unique homogeneous self-similar set K∅ (see [7, 8])
and a unique inhomogeneous self-similar set K such that

K∅ =

N⋃
i=1

Si(K∅),

and

(2.1) K =

N⋃
i=1

Si(K) ∪ C

with respect to the contracting similarities (S1, . . . , SN ). Both K∅ and K are
non-empty and compact.

Our considerations are carried out under the assumption of the Infinite
Weak Inhomogeneous Open Set Condition, briefly IWIOSC, which is as fol-
lows: there exists a non-empty and bounded open set U such that:

(IW1) Si(U) ⊆ U, i ∈ N, C ⊆ U,
(IW2) Si(U) ∩ Sj(U) = ∅, i 6= j, i, j ∈ N,
(IW3) Si(U) ∩ C = ∅, i ∈ N.

Note that the above condition differs from those in the introduction, due to
countably many contracting similarities.

3. An inhomogeneous self-similar set. The main purpose of this
section is to prove the existence, uniqueness and some properties of a non-
empty, compact set satisfying the countable version of (2.1). We start with
the following theorem.
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Theorem 3.1. Let (Si)
∞
i=1 be contracting similarities and let ri be the

contraction ratios of Si. Assume that the IWIOSC is satisfied and supi∈N ri
< 1. Then there exists a unique, non-empty, compact set K∞ ⊆ U such that

(3.1) K∞ = cl
∞⋃
i=1

Si(K∞) ∪ C.

Proof. The proof is analogous to the proof of [16, Lemma 4.1] and there-
fore could be omitted. However, there are a few small differences, so we
give a brief sketch. Consider the space (K(Rd)|U , D), where K(Rd)|U is the
family of all compact subsets of Rd intersected with U , and D denotes the
Hausdorff metric. This space is complete as a closed subspace of a complete
space. In addition, we consider the mapping T : K(Rd)|U → K(Rd)|U de-
fined by T (A) = cl

⋃∞
i=1 Si(A) ∪ C, which, by assumption, is a contraction

with respect to D. Finally, the assertion follows from Banach’s fixed point
theorem.

Define

F := cl
∞⋃
N=2

KN = cl
∞⋃
N=2

N⋃
i=1

Si(KN ) ∪ C,

where, for each N ≥ 2, the set KN is the unique, non-empty, compact set
satisfying (2.1). We will now show some properties of F .

Lemma 3.1. Assume that the IWIOSC is satisfied. Then the set F is
compact and F ⊆ U .

Proof. The proof is similar to the proof of Theorem 3.1 but, for the sake
of clarity, we will provide a complete argument. Let K(Rd) be the family
of all compact subsets of Rd, equipped with the Hausdorff metric D. For
each N ≥ 2, define TN : K(Rd)→ K(Rd) by TN (A) =

⋃N
i=1 Si(A) ∪ C. The

space (K(Rd), D) is complete and each TN is a contraction mapping; thus,
if A is compact, then, by Banach’s fixed point theorem, TnN (A) → KN as
n→∞ with respect to the Hausdorff metric. In particular, for each N ≥ 2,
we have TnN (U) → KN as n → ∞. From condition (IW1), we deduce that
U ⊇ TN (U) ⊇ (TN )2(U) ⊇ · · · , whence KN = limn (TN )n(U) ⊆ U for each
N ≥ 2. Hence,

N⋃
i=1

Si(KN ) ∪ C = KN ⊆ U

and so

F = cl

∞⋃
N=2

N⋃
i=1

Si(KN ) ∪ C = cl
∞⋃
N=2

KN ⊆ U.
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We have shown above that F ⊆ U , which means that F is bounded. The
fact that F is also closed completes the proof.

The next theorem gives a connection between self-similar sets.

Theorem 3.2. For each N ≥ 2, let KN be a homogeneous or inhomo-
geneous self-similar set. Assume that the IWIOSC is satisfied and that U =
cl
⋃∞
N=2KN . Then

K∞ = cl

∞⋃
N=2

KN .

Proof. It suffices to check that

cl

∞⋃
N=2

KN = cl

∞⋃
i=1

Si

(
cl

∞⋃
N=2

KN

)
∪ C.

To do so, observe that

cl
∞⋃
i=1

Si

(
cl
∞⋃
N=2

KN

)
∪ C = cl

∞⋃
i=1

∞⋃
N=2

Si(KN ) ∪ C

= cl
∞⋃
N=2

( N⋃
i=1

Si(KN ) ∪ C ∪
∞⋃

i=N+1

Si(KN )
)

= cl

∞⋃
N=2

KN ∪ cl

∞⋃
N=2

∞⋃
i=N+1

Si(KN ) = cl

∞⋃
N=2

KN ,

as, by assumption, cl
⋃∞
N=2

⋃∞
i=N+1 Si(KN ) ⊆ U = cl

⋃∞
N=2KN . Because

it was shown that cl
⋃∞
N=2KN also satisfies (3.1), this result proves the

theorem.

We finish this section by introducing the notation

K∞|n :=

n⋃
i=1

Si(K∞) ∪ C, n ∈ N,

which will be used later in Theorem 5.4.

4. An inhomogeneous self-similar measure. We begin by show-
ing, for completeness, the existence and uniqueness of an inhomogeneous
self-similar measure in the case of a countable number of contracting sim-
ilarities and probabilities. Then, we will touch upon a question regarding
this measure’s interpretation that is connected with infinite iterated func-
tion systems.

Denote byM(Rd) the family of all Borel signed measures on Rd and let
M1(Rd) stand for the subspace of M(Rd) that consists of all probability
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measures. It is well known that the following formula defines a norm, called
the total variation norm, inM(Rd):

‖µ‖TV = µ+(Rd) + µ−(Rd),
where µ = µ+−µ− is the Jordan decomposition of µ. Moreover,M(Rd) is a
Banach space for this norm. When µ1, µ2 ∈ M1(Rd), the distance between
them in the total variation norm can be expressed as

‖µ1 − µ2‖TV = 2 sup{|µ1(A)− µ2(A)| : A ∈ BRd}.
Let M : M1(Rd) → M1(Rd) be a Markov operator. A measure µ is

called invariant if Mµ = µ. We say that M is strongly asymptotically stable
if there exists an invariant measure µ such that for every measure η, the
sequence Mnη converges to µ in the total variation norm.

The following theorem strengthens the well known result on weak asymp-
totic stability. In particular, we obtain the existence and uniqueness of an
inhomogeneous self-similar measure in the case of countably many contract-
ing similarities.

Theorem 4.1. Let ν be a Borel probability measure with compact support
C ⊂ Rd, let (p1, p2, . . . , p) be a probability vector with positive constant prob-
ability p and let Si : Rd → Rd be contracting similarities. Then the Markov
operator M :M1(Rd)→M1(Rd) defined by

Mµ(A) =

∞∑
i=1

piµ ◦ S−1i (A) + pν(A)

is strongly asymptotically stable. In particular, there exists a unique proba-
bility measure µ that satisfies

(4.1) µ(A) =

∞∑
i=1

piµ ◦ S−1i (A) + pν(A).

Proof. It is enough to observe thatM is contractive in the total variation
norm with a ratio 1− p.

From now on, the unique probability measure satisfying (4.1) will be
denoted by µ∞. It should be clear that µ∞ is an arbitrary inhomogeneous
self-similar measure that consists of a countable number of contracting sim-
ilarities and probabilities. The subscript “∞” is added to indicate this fact.

Because the support of every finite measure is a closed set (see [13, Re-
mark 1.55]), the following theorem can be proved in much the same way as
[15, Proposition 1.2].

Theorem 4.2. Let µ∞ be the unique inhomogeneous self-similar measure
given by (4.1) and let K∞ be the unique, non-empty, compact set satisfying
(3.1). Then suppµ∞ = K∞.
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Proof. The proof is analogous to the proof of [15, Proposition 1.2]; there-
fore, it is omitted.

As mentioned at the beginning of this section, it is important to recall a
dynamical interpretation of inhomogeneous self-similar measures. This inter-
pretation is connected with iterated function systems. For a fuller treatment,
we refer the reader to [13] or, for even more details, to [5], [11].

Consider a probability space (Ω,Σ, P ). Denote by MK∞
1 the family of

all Borel probability measures µ on Rd such that µ(K∞) = 1. Let Si :=
Si|K∞ : K∞ → K∞ be the restrictions of contracting similarities to the
set K∞ and let (p1, p2, . . . , p) be a probability vector. Define the operator
M :MK∞

1 →MK∞
1 by the formula

(4.2) Mµ(A) =

∞∑
i=1

piµ ◦ S−1i (A) + pν(A).

Let (kn)n∈N be a sequence of identically distributed random variables with
values in N0. Moreover, let x0, ξ be random elements that assume values in
K∞ and have distributions

µ0(A) = P (x0 ∈ A), ν(A) = P (ξ ∈ A) for A ∈ BK∞ .

If x0, ξ, kn are independent, then M is the transition operator for a random
sequence xn : Ω→ K∞ where

xn+1 =

{
Skn(xn) if kn ∈ N,
ξ if kn = 0,

where

P (kn = i) = pi and P (kn = 0) = p for n ∈ N0, i ∈ N.

Whereas pi denotes the probability of the choice of Si, p denotes the prob-
ability that no Si was chosen, which means that xn+1 ∈ C. For each set
A ⊆ Rd such that A ∩K∞ 6= ∅, we have

P (xn+1 ∈ A) = Mµn(A).

Because the random sequence takes values in K∞ and Si(K∞) = Si(K∞),
and moreover, because of conditions (IW2) and (IW3), it follows that

P (xn+1 ∈ intSiK∞) = Mµn(intSiK∞) = piµn(intK∞),

P (xn+1 ∈ intC) = Mµn(intC) = pν(intC).

At this point, it becomes natural to assume that the probabilities pi and p
are proportional to the sizes of the sets SiK∞ and C, respectively. It is also
worth noting that K∞ does not depend on the probabilities (p1, p2, . . . , p).
However, due to the above interpretation, these probabilities should depend
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on K∞; thus, changing K∞ should result in appropriate probabilities being
found.

It would be of interest to ask how to construct the probabilities to be in
accord with their interpretation. This leads to the following example.

Example 4.1. Define the constants

ci =

 ri when ‖r‖ < 1,
ri

‖r‖+ 1
when ‖r‖ ≥ 1.

Let g : Rd → R be an arbitrary continuous function such that g > 0. Let
f := g|K∞ and define

pi(x) =
cif(x)

supx∈K∞ f(x)
, p(x) = 1−

∞∑
i=1

pi(x).

Note that
∞∑
i=1

pi(x) =
∞∑
i=1

cif(x)

supx∈K∞ f(x)
≤
∞∑
i=1

ci ∈ (0, 1), x ∈ K∞,

and
∞∑
i=1

pi(x) + p(x) = 1, x ∈ K∞.

Let

η(A) :=
ld(A ∩K∞)

ld(K∞)
,

where ld denotes the Lebesgue measure on Rd and put

ρi =
�

K∞

pi(x) dη(x), ρ =
�

K∞

p(x) dη(x).

Then ρi, ρ are proportional to the sizes of the sets SiK∞, C. Moreover,
∞∑
i=1

ρi + ρ = 1.

Remark 4.1. In practice, we can replace K∞ by U in the definitions of
ρi, ρ in Example 4.1. Furthermore, ρi, ρ can be calculated as

ρi =

	
U pi(x) dld(x)

ld(U)
, ρ =

	
U p(x) dld(x)

ld(U)

and in formula (4.2), we can also use Si := Si|U : U → U .
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Thus, by substituting ρi and ρ from Example 4.1 in (4.2), i.e., by setting
pi = ρi, p = ρ, we obtain the following form of the operator M :

Mµ(A) =

∞∑
i=1

ρiµ ◦ S−1i (A) + ρν(A),

where the probabilities, and consequently M , are constructed in order for
them to be in accord with their interpretation.

Furthermore, the existence and uniqueness of the following measure can
be shown in a way that is analogous to the proof of Theorem 4.1:

µ(A) =
∞∑
i=1

ρiµ ◦ S−1i (A) + ρν(A).

The measure µ is invariant for the operator M and µ can be interpreted as
an invariant distribution of the above-mentioned Markov chain that takes
values in the set K∞. Moreover, µ is strongly asymptotically stable.

We will now extend a function related to Lq spectra so that it is well
defined in the case of a countable number of contracting similarities. This
extension is necessary to provide our estimation results in the next section.
For this purpose, we will additionally assume that for some constant α > 0,
the probabilities satisfy the following inequalities:

(4.3) αri ≤ pi ≤ ri, i ∈ N.
The necessity of this assumption will be discussed later in this section. For
q ∈ R, define the functions ψq(t) :=

∑∞
i=1 p

q
i r
t
i , φq(t) :=

∑∞
i=1 r

q+t
i . By

assumption (4.3),

αqφq(t) ≤ ψq(t) ≤ φq(t) for q ≥ 0,
αqφq(t) ≥ ψq(t) ≥ φq(t) for q < 0.

Since φq(t) is continuous with limt→−q+ φq(t) = ∞, limt→∞ φq(t) = 0, and
since ‖r‖ < ∞, we deduce from the above inequalities that ψq(t) 6= ∞.
Observe that ψq(t) is strictly decreasing. Moreover, limt→−q+ ψq(t) = ∞
and limt→∞ ψq(t) = 0.

As a consequence, there exists a finite β∞(q) such that

ψq(β∞(q)) =

∞∑
i=1

pqi r
β∞(q)
i = 1.

We are now in a position to emphasize the necessity of assumption (4.3).
The following example shows that, without it, the function ψq(t) may not
be well defined for q < 0.

Example 4.2. Let q < 0, and let

pi =
1

3i
and ri =

5

π2
1

i2
.
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Then pi ≤ ri for infinitely many i and, for each t ≥ 0,

lim
i→∞

pqi r
t
i =

(
5

π2

)t
lim
i→∞

3−iq
1

i2t
=∞.

Thus, for each t ≥ 0, the series
∑∞

i=1 p
q
i r
t
i is divergent, hence ψq(t) = ∞.

The same holds for all t < 0, so ψq(t) ≡ ∞.

From the above considerations, it follows that assumption (4.3) asserts
the existence of finite β∞(q) for all q ∈ R. Moreover,

lim
n→∞

βn(q) = β∞(q),

where, for all n ∈ N, the numbers βn(q) are such that
n∑
i=1

pqi r
βn(q)
i = 1.

For a deeper discussion of the function βn we refer the reader to [15].

5. The Lq spectra of µ∞. This section is devoted to providing esti-
mates for the Lq spectra of the measure µ∞, which is the main result of the
paper.

Let us recall the following notation, introduced in [15]: for l,m ∈M1(Rd),
q ∈ R and A ⊆ supp m, write

Im(q, r) =
�

suppm

m(B(x, r))q−1 dm(x),

Im|A(q, r) =
�

suppm∩A
m(B(x, r))q−1 dm(x),

Il,m,A(q, r) =
�

A

l(B(x, r))q−1 dm(x).

From this point forwards, we fix an inhomogeneous self-similar measure µ∞
satisfying (4.1).

Lemma 5.1. Assume that the IWIOSC is satisfied. Then, for all q ∈ R
and r > 0, we have

Iµ∞(q, r) =

∞∑
i=1

piIµ∞,µ∞◦S−1
i ,SiK∞

(q, r) + pIµ∞,ν,C(q, r).

Proof. Fix any q ∈ R and r > 0. From (4.1), it follows that

Iµ∞(q, r) =

∞∑
i=1

piIµ∞,µ∞◦S−1
i ,K∞

(q, r) + pIµ∞,ν,K∞(q, r).
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Let l,m ∈M1(Rd) be such that supp l = K∞ and suppm ⊆ K∞. Then
�

K∞

l(B(x, r))q−1 dm(x) =
�

K∞∩suppm
l(B(x, r))q−1 dm(x).

By using the above formula for the couples

(l = µ∞, m = µ∞ ◦ S−1i ), (l = µ∞, m = ν)

together with the relations

suppµ∞ ◦ S−1i = SiK∞ ⊆ K∞, supp ν = C ⊆ K∞,

we immediately conclude that

Iµ∞(q, r) =
∞∑
i=1

piIµ∞,µ∞◦S−1
i ,K∞

(q, r) + pIµ∞,ν,K∞(q, r)

=
∞∑
i=1

piIµ∞,µ∞◦S−1
i ,SiK∞

(q, r) + pIµ∞,ν,C(q, r).

The following notation will be needed in our further considerations. Intro-
ducing it also allows us to record some crucial observations in Theorem 5.1.

For l,m ∈M1(Rd), A ⊆ suppm and x ∈ A, write

Ji,m,A(x, r) =
∑
j 6=i

pjm
(
S−1j (B(x, r) ∩ Sj(suppm))

)
+ pν(B(x, r) ∩ C),

JC,m,A(x, r) =

∞∑
i=1

pim
(
S−1i (B(x, r) ∩ Si(suppm))

)
,

Fi,l,m,A(q, r) =
�

A

(
l(B(x, r/ri)) + Ji,l,A(Six, r)/pi

)q−1
dm(x).

We will simply write Ji(x, r) ifm = µ∞ and A = K∞; JC(x, r) whenm = µ∞
and A = C; and Fi(q, r) if l = m = µ∞ and A = K∞.

It is easily observed from (4.1) that, under the assumption of the
IWIOSC, for all q ∈ R, r > 0 and x ∈ SiK∞, we have

µ∞(B(x, r))q−1 =
(
piµ∞(S−1i (B(x, r) ∩ SiK∞)) + Ji(x, r)

)q−1
=
(
piµ∞(B(S−1i x, r/ri)) + Ji(x, r)

)q−1
,

where

Ji(x, r) =
∑
j 6=i

pjµ∞(S−1j (B(x, r) ∩ SjK∞)) + pν(B(x, r) ∩ C).

Analogously,

µ∞(B(x, r))q−1 =
(
pν(B(x, r) ∩ C) + JC(x, r)

)q−1
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for x ∈ C, where in this case

JC(x, r) =
∞∑
i=1

piµ∞(S−1i (B(x, r) ∩ SiK∞)).

Let us also introduce the following notation:

FC,ν,m,A(q, r) =
�

A

(
ν(B(x, r)) + JC,µ∞,A(x, r)/p

)q−1
dm(x).

When m = ν and A = C, we simply write

FC(q, r) =
�

C

(
ν(B(x, r)) + JC(x, r)/p

)q−1
dν(x).

We are now in a position to formulate the following theorem, which refers
to Lemma 5.1 but goes a step further.

Theorem 5.1. Assume that the IWIOSC is satisfied. Then, for all q ∈ R
and r > 0, we have

Iµ∞(q, r) =
∞∑
i=1

pqiFi(q, r) + pqFC(q, r).

Proof. Fix q ∈ R and let r > 0. Recall that

µ∞(B(x, r))q−1 =

{ (
piµ∞(B(S−1i x, r/ri)) + Ji(x, r)

)q−1 for x ∈ SiK∞,(
pν(B(x, r)) + JC(x, r)

)q−1 for x ∈ C.
It follows that

Iµ∞,µ∞◦S−1
i ,SiK∞

(q, r)

=
�

SiK∞

(
piµ∞(B(S−1i x, r/ri)) + Ji(x, r)

)q−1
d(µ∞ ◦ S−1i )(x)

=
�

K∞

(
piµ∞(B(x, r/ri)) + Ji(Six, r)

)q−1
dµ∞(x)

= pq−1i

�

K∞

(
µ∞(B(x, r/ri)) + Ji(Six, r)/pi

)q−1
dµ∞(x) = pq−1i Fi(q, r)

and similarly

Iµ∞,ν,C(q, r) = pq−1FC(q, r).

Finally, from Lemma 5.1 and from what has already been proved, we have

Iµ∞(q, r) =

∞∑
i=1

piIµ∞,µ∞◦S−1
i ,SiK∞

(q, r) + pIµ∞,ν,C(q, r)

=

∞∑
i=1

pqiFi(q, r) + pqFC(q, r).
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To define the Lq spectra for l,m ∈ M1(Rd), A ⊆ suppm and q ∈ R we
set

τm|A(q) := lim sup
r→0

log
	
Am(B(x, r))q−1 dm(x)

− log r
,

τm|A(q) := lim inf
r→0

log
	
Am(B(x, r))q−1 dm(x)

− log r
,

τ l,m,A(q) := lim sup
r→0

log
	
A l(B(x, r))q−1 dm(x)

− log r
,

τ l,m,A(q) := lim inf
r→0

log
	
A l(B(x, r))q−1 dm(x)

− log r
.

In particular, for l = m = µ∞ and A = K∞, we obtain the upper and lower
Lq spectrum of the measure µ∞:

τµ∞(q) := lim sup
r→0

log
	
K∞

µ∞(B(x, r))q−1 dµ∞(x)

− log r
,

τµ∞(q) := lim inf
r→0

log
	
K∞

µ∞(B(x, r))q−1 dµ∞(x)

− log r
.

Theorem 5.2 below plays a crucial role in establishing the inequality “≥”
of our main result. The following lemma will simplify the theorem’s proof.

Lemma 5.2. Let G : (0,∞) → R be a real-valued function, let µ be a
Borel probability measure and let A ⊆ suppµ. Assume that

Iµ|A(q, r) ≥
n∑
i=1

pqi Iµ|A(q, r/ri) and
n∑
i=1

pqiG(r/ri) ≥ G(r)

for all r > 0. If

Iµ|A(q, r) ≥ G(r) for all r ∈ [rmin, 1],

then
Iµ|A(q, r) ≥ G(r) for all 0 < r ≤ 1.

Proof. For the method of proving such lemmas, we refer the reader to
[11] and [12]. The proof in a more general case can also be found in [15,
Lemma 3.1], so we omit it here.

Theorem 5.2. Let q ∈ R and n ∈ N, and let µ be a probability measure.
Let A ⊆ suppµ and assume that

Iµ|A(q, r) ≥
n∑
i=1

pqi Iµ|A(q, r/ri) for all r > 0.

In addition, let t be such that βn(q) > t. Then:
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(1) There exists a constant c0 > 0 such that the function G : (0,∞)→ R
defined by the formula G(r) = c0r

−t satisfies
n∑
i=1

pqiG(r/ri) ≥ G(r) for all r > 0

and Iµ|A(q, r) ≥ G(r) for all r ∈ [rmin, 1].
(2) τµ|A(q) ≥ βn(q).

Proof. The proof is similar to the proofs in [15, Section 4]. However, the
proof of this particular result is omitted there, so we will provide it for the
sake of completeness.

(1) Because βn(q) > t, we conclude that
n∑
i=1

pqi r
t
i > 1.

Let c0 > 0 be such that

min
(
Iµ|A(q, rmin), Iµ|A(q, 1)

)
max(1, (rmin)−t)

≥ c0,

where rmin = min{r1, . . . , rn}. By the above inequalities, it follows that∑n
i=1 p

q
iG(r/ri) ≥ c0r−t = G(r) for all r > 0, and

Iµ|A(q, r) ≥ min
(
Iµ|A(q, rmin), Iµ|A(q, 1)

)
≥

min
(
Iµ|A(q, rmin), Iµ|A(q, 1)

)
max(1, (rmin)−t)

· r−t ≥ c0r−t = G(r)

for all r ∈ [rmin, 1].
(2) From Lemma 5.2, it follows that

Iµ|A(q, r) ≥ G(r) = c0r
−t for all 0 < r ≤ 1,

whence τµ|A(q) ≥ t. Because t in the inequality βn(q) > t was arbitrary, we
conclude that τµ|A(q) ≥ βn(q).

The key to showing the opposite inequality is the next theorem, which
also enables us to formulate our main result. The reader is invited to compare
it with [15, Proposition 4.2].

Theorem 5.3. Let µ and ν be probability measures, and let (µm)m∈N
and (νm)m∈N be sequences of probability measures. Let Km and Cm denote
the supports of µm, νm, respectively, and let q ∈ R, n ∈ N. Assume that, for
each m ∈ N,

Iµ,µm,Km(q, r) ≤
n∑
i=1

pqi Iµ,µm,Km(q, r/ri) + pqIν,νm,Cm(q, r).
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Then
τµ,µm,Km(q) ≤ max(βn(q), τν,νm,Cm(q)), m ∈ N.

Proof. The proof is the same as the proof of [15, Proposition 4.2], applied
for each m ∈ N.

We are now in a position to state the main theorem of this paper, which
presents satisfactory estimates for the lower and upper bounds of the Lq
spectra of the measure µ∞. It provides a much more accurate result under
the assumption of the IWIOSC for all q ∈ R than does [15, Theorem 2.1]
and extends it to the case of countably many contracting similarities.

Theorem 5.4. Assume that the IWIOSC is satisfied. Then, for all q ∈ R,
we have

τµ∞(q) = max(β∞(q), τν(q)), max(β∞(q), τν(q)) ≤ τµ∞(q).

Proof. Fix any q ∈ R and n ∈ N. Let (Tm, tm)∞m=1 : Rd → Rd be a
sequence of contracting similarities such that limm→∞ tm = 1 and

Tm(SiK∞) ⊂ intSiK∞, Tm(C) ⊂ intC.

Define

(5.1) Km :=
n⋃
i=1

Tm(Si(K∞)) ∪ Tm(C).

We start by showing the inequality “≥”. To do this, first observe that
Theorem 5.1 implies that

Iµ∞(q, r) =
∞∑
i=1

pqiFi(q, r) + pqFC(q, r) ≥
n∑
i=1

pqiFi(q, r).

Hence,

Iµ∞|Km
(q, r) ≥

n∑
i=1

pqiFi,µ∞,Km(q, r).

From conditions (IW2) and (IW3) of the IWIOSC, we conclude that, for
every m ∈ N, the sets (S1Km, . . . , SnKm, C) are pairwise disjoint. Let

rm = min
{

min
i∈{1,...,n}

inf
j 6=i

dist(SiKm, SjK∞), min
i∈{1,...,n}

dist(SiKm, C)
}
.

Then, for all 0 < r < rm,

Iµ∞|Km
(q, r) ≥

n∑
i=1

pqi Iµ∞|Km
(q, r/ri)

because Ji,µ∞,Km(Six, r) = 0 for 0 < r < rm. Hence, from Theorem 5.2,

τµ∞|Km
(q) ≥ βn(q).
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Because (τµ∞|Km
(q))m∈N is monotonic and tends to τµ∞|K∞|n(q), we have

τµ∞|K∞|n(q) ≥ βn(q), n ∈ N.

Furthermore, (τµ∞|K∞|n(q))n∈N is monotonic and tends to τµ∞(q), so

τµ∞(q) ≥ τµ∞(q) = lim
n→∞

τµ∞|K∞|n(q) ≥ lim
n→∞

βn(q) = β∞(q).

To show that τµ∞(q) ≥ τν(q) and τµ∞(q) ≥ τν(q), from Theorem 5.1,
observe that

Iµ∞(q, r) ≥ pqFC(q, r).

Define Cm := Tm(C). By the above,

Iµ∞(q, r) ≥ pqFC,ν,Cm(q, r).

From condition (IW3), for everym ∈ N, we have rm = infi∈N dist(SiK∞, Cm)
> 0. Thus, for all 0 < r < rm,

Iµ∞(q, r) ≥ pqIν |Cm
(q, r),

as JC,µ∞,Cm(x, r) = 0 for 0 < r < rm. Hence,

τµ∞(q) ≥ τν |Cm
(q), τµ∞(q) ≥ τν |Cm

(q).

The sequences (τν|Cm
(q))m∈N, (τν|Cm

(q))m∈N are monotonic and converge,
respectively, to τν(q), τν(q), so

τµ∞(q) ≥ τν(q), τµ∞(q) ≥ τν(q).

The proof of the inequality “≥” is now finished.
To establish the opposite inequality, let Km denote the set (5.1). Define

the sequences of finite measures

µm(A) := µ∞(A ∩Km), νm(A) := ν(A ∩ Cm)

and
µ∞|n(A) := µ∞(A ∩K∞|n).

Then, from the IWIOSC and (4.1), we deduce that

µm(A) =

n∑
i=1

piµm ◦ S−1i (A) + pνm(A).

Note that suppµm = Km. From the proofs of Lemma 5.1 and Theorem 5.1,

Iµ∞,µm,Km(q, r) ≤
n∑
i=1

pqiFi,µ∞,µm,Km(q, r) + pqFC,ν,νm,Cm(q, r).

By (IW2) and (IW3), for every m ∈ N, the sets (S1Km, . . . , SnKm, C) are
pairwise disjoint. Let rm be the minimum of{

min
i∈{1,...,n}

inf
j 6=i

dist(SiKm, SjK∞), min
i∈{1,...,n}

dist(SiKm, C), inf
i∈N

dist(SiK∞, Cm)
}
.
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Then, for all 0 < r < rm,

Iµ∞,µm,Km(q, r) ≤
n∑
i=1

pqi Iµ∞,µm,Km(q, r/ri) + pqIν,νm,Cm(q, r),

as Ji,µ∞,Km(Six, r) = JC,µ∞,Cm(x, r) = 0 for 0 < r < rm. Hence Theorem 5.3
implies that

τµ∞,µm,Km(q) ≤ max(βn(q), τν,νm,Cm(q)).

Because the sequences (τµ∞,µm,Km(q))m∈N and (τν,νm,Cm(q))m∈N are mono-
tonic and converge, respectively, to τµ∞,µ∞|n,K∞|n(q) and τν(q), we have

τµ∞,µ∞|n,K∞|n(q) ≤ max(βn(q), τν(q)), n ∈ N.
Furthermore, the sequence (τµ∞,µ∞|n,K∞|n(q))n∈N is also monotonic and con-
verges to τµ∞(q). Hence,

τµ∞(q) ≤ max(β∞(q), τν(q)).

From the proof of Theorem 5.4, we immediately obtain the two corollaries
below. In particular, Corollary 5.1, which is related to [15, Theorem 2.1],
gives a partial answer to [15, Question 2.7]. Furthermore, in both corollaries,
for all q ∈ R, the estimates are much more accurate compared to those in [15,
Theorem 2.1]. In a result that is similar to our main theorem, we even obtain
an exact value for the upper Lq spectrum of an inhomogeneous self-similar
measure.

Corollary 5.1. Let µ be the inhomogeneous self-similar measure asso-
ciated with (S1, . . . , SN , p1, . . . , pN , p, ν). Assume that the FWIOSC is satis-
fied. Then, for all q ∈ R, we have

τµ(q) = max(β(q), τν(q)), max(β(q), τν(q)) ≤ τµ(q).

Corollary 5.2. Let µ be the inhomogeneous self-similar measure asso-
ciated with (S1, . . . , SN , p1, . . . , pN , p, ν) and let K be the unique nonempty
compact set satisfying K =

⋃N
i=1 Si(K)∪C. Assume that the sets (S1K, . . . ,

SNK,C) are pairwise disjoint. Then, for all q ∈ R, we have
τµ(q) = max(β(q), τν(q)), max(β(q), τν(q)) ≤ τµ(q).

References

[1] M. F. Barnsley, Fractals Everywhere, 2nd ed., Academic Press, Boston, 1993.
[2] M. F. Barnsley, Existence and uniqueness of orbital measures, preprint, 2005.
[3] M. F. Barnsley, Superfractals, Cambridge Univ. Press, Cambridge, 2006.
[4] M. F. Barnsley and S. Demko, Iterated function systems and the global construction

of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243–275.
[5] T. Bielaczyc and K. Horbacz, The Hausdorff dimension of invariant measures for

random dynamical systems, J. Math. Anal. Appl. 391 (2012), 298–311.
[6] K. J. Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997.

http://dx.doi.org/10.1098/rspa.1985.0057
http://dx.doi.org/10.1016/j.jmaa.2012.02.003


92 P. Liszka

[7] K. J. Falconer, Fractal Geometry—Mathematical Foundations and Applications, Wi-
ley, 1990.

[8] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981),
713–747.

[9] K. Horbacz, J. Myjak and T. Szarek, On stability of some general random dynamical
system, J. Statist. Phys. 119 (2005), 35–60.

[10] K. Horbacz, Pointwise and Rényi dimensions of an invariant measures of random
dynamical systems with jumps, J. Statist. Phys. 122 (2006), 1041–1059.

[11] A. Lasota, A variational principle for fractal dimensions, Nonlinear Anal. 64 (2006),
618–628.

[12] A. Lasota and J. Myjak, On dimension of measures, Bull. Polish Acad. Sci. Math.
50 (2002), 221–235.

[13] A. Lasota, Dynamical Systems on Measures, Silesian Univ. Press, 2008 (in Polish).
[14] D. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dy-

namics of Limit Sets, Cambridge Univ. Press, 2003.
[15] L. Olsen and N. Snigireva, Lq spectra and Rényi dimensions of in-homogeneous

self-similar measures, Nonlinearity 20 (2007), 151–175.
[16] L. Olsen and N. Snigireva, Multifractal spectra of in-homogeneous self-similar mea-

sures, Indiana Univ. Math. J. 57 (2008), 1789–1844.

Przemysław Liszka
Institute of Mathematics
University of Silesia
40-007 Katowice, Poland
E-mail: pliszka@us.edu.pl

Received 17.4.2012
and in final form 21.9.2012 (2757)

http://dx.doi.org/10.1512/iumj.1981.30.30055
http://dx.doi.org/10.1007/s10955-004-2045-6
http://dx.doi.org/10.1007/s10955-005-9017-3
http://dx.doi.org/10.1016/j.na.2005.06.026
http://dx.doi.org/10.1088/0951-7715/20/1/010
http://dx.doi.org/10.1512/iumj.2008.57.3622

	1 Introduction
	2 Preliminaries
	3 An inhomogeneous self-similar set
	4 An inhomogeneous self-similar measure
	5 The Lq spectra of 
	References

