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Existence and nonexistence of solutions for a singular elliptic
problem with a nonlinear boundary condition

by Zonghu Xiu (Nanjing and Qingdao) and Caisheng Chen (Nanjing)

Abstract. We consider the existence and nonexistence of solutions for the following
singular quasi-linear elliptic problem with concave and convex nonlinearities:{

−div(|x|−ap|∇u|p−2∇u) + h(x)|u|p−2u = g(x)|u|r−2u, x ∈ Ω,
|x|−ap|∇u|p−2 ∂u

∂ν
= λf(x)|u|q−2u, x ∈ ∂Ω,

where Ω is an exterior domain in RN , that is, Ω = RN \D, where D is a bounded domain
in RN with smooth boundary ∂D (= ∂Ω), and 0 ∈ Ω. Here λ > 0, 0 ≤ a < (N − p)/p,
1 < p < N , ∂/∂ν is the outward normal derivative on ∂Ω. By the variational method, we
prove the existence of multiple solutions. By the test function method, we give a sufficient
condition under which the problem has no nontrivial nonnegative solutions.

1. Introduction and main results. In this paper, we consider the
existence of infinitely many solutions and the nonexistence of solutions for
the quasi-linear elliptic problem

(1.1)

− div(|x|−ap|∇u|p−2∇u) + h(x)|u|p−2u = g(x)|u|r−2u, x ∈ Ω,

|x|−ap|∇u|p−2∂u
∂ν

= λf(x)|u|q−2u on ∂Ω,

where Ω is an exterior domain in RN , that is, Ω = RN \ D, where D is
a bounded domain in RN with smooth boundary ∂D (= ∂Ω), and 0 ∈ Ω.
Here λ > 0, 0 ≤ a < (N − p)/p, 1 < p < N , and 0 ≤ a < (N − p)/p,
and ∂/∂ν is the outward normal derivative on ∂Ω. Problem (1.1) arises in
many diverse contexts like differential geometry (e.g., the scalar curvature
problem and the Yamabe problem) [K], non-Newtonian fluid mechanics [D],
glaciology [PR], mathematical biology [AW], and elsewhere.

In recent years, multiplicity of solutions for elliptic equations with the
p-Laplacian operator has been widely studied (see [CCD, AlCM, WT, KM,
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AB, BR, Am, P, XCH]). When a = 0, Averna et al. [AB] considered the
Neumann problem

(1.2)

{
−div(|∇u|p−2∇u) + b(x)|u|p−2u = λf(x, u), x ∈ Ω,
∂u/∂ν = 0, x ∈ ∂Ω,

on a bounded domain Ω. By a critical points theorem, they proved that
problem (1.2) has at least three solutions for each λ in a certain open interval.
Pflüger [P] considered the following p-Laplacian equation with a nonlinear
boundary condition:

(1.3)

−div(a(x)|∇u|p−2∇u) = λf(x, u), x ∈ Ω,

a(x)|∇u|p−2∂u
∂ν

+ b(x)|u|p−2 = g(x, u), x ∈ ∂Ω,

where Ω ⊂ RN is an unbounded domain, 0 < a0 < a(x) ∈ L∞(Ω) and
c/(1 + x)p−1 ≤ b(x) ≤ C/(1 + x)p−1 for some c, C > 0. By the variational
approach, he proved the existence of three solutions.

Many authors focus on the existence of infinitely many solutions (see
[FIV, Aou, AsCM, Y]). For a = g(x) = 0, h(x) = −1, Bonder and Rossi
[BR] considered a similar problem and obtained infinitely many solutions
in the subcritical case via variational and topological arguments. For a =
g(x) = 0, h(x) = 1, Faraci et al. [FIV] studied a more general p-Laplacian
equation and proved the existence of infinitely many bounded solutions.

However, to the best of our knowledge, little seems to be known about
the existence of infinitely many solutions for problem (1.1) on an unbounded
domain Ω with a 6= 0. Motivated by [AB, P, BR, Aou, FIV], we consider the
existence of infinitely many solutions of (1.1) by the variational method. We
give two sufficient conditions under which the problem (1.1) has infinitely
many solutions. Since Ω ⊂ RN is an unbounded domain, the loss of com-
pactness of the Sobolev embedding renders the variational technique more
delicate.

For the nonexistence of solutions for elliptic equations with p-Laplacian
we refer to [CG, AP, PS, YL]. In the present paper, we will also consider the
nonexistence for problem (1.1). Our method is based on the test function
method, introduced by Mitidieri and Pohozaev [MP2]. We give a sufficient
condition for problem (1.1) to have no nontrivial nonnegative solutions.

In Sections 2 and 3, we use the following assumptions:

(A1) 0 < a < pN/(N−p), a ≤ b < a+1, d = a+1−b, p∗ = pN/(N − pd),
λ > 0;

(A2) h(x) ≥ 0, g ∈ L∞(Ω)∩Lµ(Ω,ω) with ω(x) = |x|brµ, µ = p∗/(p∗−r),
g±(x) = max{±g(x), 0} 6≡ 0;

(A3) f ∈ L∞(∂Ω) and f+(x) = max{f(x), 0} 6≡ 0 for x ∈ ∂Ω.
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We now introduce some weighted spaces. When 1 < p < N and −∞ <
a < (N − p)/p, we define W 1,p(Ω, |x|−ap) to be the completion of C∞0 (Ω)
with the norm

‖u‖
W 1,p
a

=
( �
Ω

|x|−ap|∇u|p dx
)1/p

.

The natural function space to study problem (1.1) is the completion X of
the space of restrictions to Ω of C∞0 (RN ) functions with the norm

(1.4) ‖u‖X =
( �
Ω

(|x|−ap|∇u|p + h(x)|u|p) dx
)1/p

.

For α ∈ R and r ≥ 1, let Lr(Ω, |x|−α) be the set of Lebesgue measurable
functions u : Ω → R satisfying

‖u‖r,α = ‖u‖Lr(Ω,|x|−α) =
( �
Ω

|x|−α|u|r dx
)1/r

<∞.

The following weighted Sobolev–Hardy inequality is called the Caffarelli–
Kohn–Nirenberg inequality [CKN]. There is a constant Ca,b > 0 such that

(1.5)
( �

RN
|x|−bp∗ |u|p∗ dx

)1/p∗
≤ Ca,b

( �

RN
|x|−ap|∇u|p dx

)1/p
for all u ∈ C∞0 (RN ), where −∞ < a < (N−p)/p, a ≤ b < a+1, d = a+1−b,
and p∗ = pN/(N − pd).

As a version of (1.5), for an exterior domain Ω ⊂ RN with smooth
boundary, one has

(1.6)
( �
Ω

|x|−bp∗ |u|p∗ dx
)1/p∗

≤ S0
( �
Ω

|x|−ap|∇u|p dx
)1/p

with some S0 > 0 (see [B-U, GR]).

Definition 1.1. A function u ∈ X is said to be a weak solution of
problem (1.1) if for any ψ ∈ X,

(1.7)
�

Ω

(|x|−ap|∇u|p−2∇u∇ψ + h|u|p−2uψ) dx

−
�

Ω

g|u|r−2uψ dx− λ
�

∂Ω

f |u|q−2uψ dσ = 0.

Our main results are listed below.

Theorem 1.2. Assume (A1)–(A3). If p < r < q < p∗ = p(N−1)/(N−p),
then problem (1.1) has infinitely many solutions uk in X and

Jλ(uk)→∞ as k →∞.
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Theorem 1.3. Assume (A1)–(A3). If q < p and r < p, then problem
(1.1) has infinitely many solutions uk in X such that Jλ(uk) < 0 and

Jλ(uk)→ 0 as k →∞.
In Section 4, we assume that

(A4) h(x) ≤ 0, f(x) ≥ 0, g(x) ≥ g0 > 0;

(A5)
Nr

(a+ 1)(r + 1) +N
< p < r, λ > 0.

Theorem 1.4. Assume (A4)–(A5). Then problem (1.1) has no nontrivial
nonnegative solutions.

This paper is organized as follows. In Section 2, we give some basic def-
initions and lemmas. In Section 3, we consider the existence of multiple
solutions for problem (1.1), and prove that (1.1) has infinitely many solu-
tions. By the test function method, in Section 4, we prove that problem (1.1)
has no nontrivial nonnegative weak solutions under appropriate conditions.

2. Preliminaries. In this section, we give some basic definitions and
prove several important lemmas.

It is clear that problem (1.1) has a variational structure. Let Jλ : X → R1

be the corresponding Euler functional, defined by

Jλ(u) =
1

p
‖u‖pX −

1

r

�

Ω

g(x)|u|r dx− 1

q

�

∂Ω

λf(x)|u|q dσ.(2.1)

We see that Jλ ∈ C1(X,R1) and for all ψ ∈ X,

〈J ′λ(u), ψ〉 =
�

Ω

(|x|−ap|∇u|p−2∇u∇ψ + h(x)|u|p−2uψ) dx(2.2)

−
�

Ω

g(x)|u|r−2uψ dx−
�

∂Ω

λf(x)|u|q−2uψ dσ.

In particular, it follows from (2.2) that

〈J ′λ(u), u〉 = ‖u‖pX −
�

Ω

g(x)|u|r dx−
�

∂Ω

λf(x)|u|q dσ,(2.3)

where ‖u‖X is defined in (1.4). It is well known that the weak solutions of
problem (1.1) are precisely the critical points of Jλ(u). Thus, to prove the
existence of weak solutions for problem (1.1), it is sufficient to show that
Jλ(u) admits a sequence of critical points.

The following embedding theorem is an extension of the classical Rellich–
Kondrashov compactness theorem (see [X]).

Lemma 2.1. Assume Ω ⊂ RN is an open bounded domain with C1

boundary and 0 ∈ Ω, N ≥ 3, −∞ < a < pN/(N − p). Then the embed-
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ding W 1,p(Ω, |x|−ap) ↪→ Lr(Ω, |x|−α) is continuous if 1 < r ≤ Np/(N − p)
and 0 ≤ α ≤ (1 + a)r+N(1− r/p), and is compact if 1 ≤ r < Np/(N − p)
and 0 ≤ α < (1 + a)r +N(1− r/p).

Now, we give a compact embedding theorem.

Lemma 2.2. Assume 1 < r < p∗. Then the embedding X ↪→ Lr(Ω, g) is
compact.

Proof. Let u ∈ X. By (1.6) and the Hölder inequality we have

‖u‖rLr(Ω,g) =
�

Ω

g|u|r dx ≤
( �

Ω

|u|p∗ |x|−bp∗ dx
)r/p∗( �

Ω

ωgµ dx
)1/µ

(2.4)

≤ Sr0‖u‖rX‖g‖Lµ(Ω,ω)
where ω(x) = |x|brµ and µ = p∗/(p∗ − r). Inequality (2.4) implies that the
embedding X ↪→ Lr(Ω, g) is continuous. In the following we prove that the
embedding is compact.

Recall that Ω = RN \D, where D is a bounded domain in RN . We can
choose R > 0 so large that D ⊂ BR = BR(0). Then ΩR = RN \ BR =
Ω \BR ⊂ Ω. For O ⊂ Ω, we define

(2.5) X(O) = {u|O : u ∈ X}, Y (O) = {u|O : u ∈ Y },

where Y = Lr(Ω, g). We divide our proof into two steps.

(i) The embedding X(BR \D) ↪→ Y (BR \D) is compact.

Assume {un} is a bounded sequence in X(BR \ D). Letting α = 0 in
Lemma 2.1, we see that there exist u ∈ Y (BR \ D) and a subsequence of
{un}, still denoted by {un}, such that ‖un − u‖Lr(BR\D) → 0 as n → ∞.
Since g ∈ L∞(Ω), there exists M > 0 such that |g| < M a.e. in Ω. Thus,

(2.6)
�

BR\D

g(x)|un − u|r dx ≤M
�

BR\D

|un − u|r dx,

which implies that un → u in Y (BR \D) = Lr(BR \D, g).

(ii) If {un} is a bounded sequence in X, then for any ε > 0, there exists
Rε > 0 large enough such that ‖un‖Y (ΩRε )

< ε, n = 1, 2, . . . .

We claim that

(2.7) lim
R→∞

sup
u∈X\{0}

‖u‖Y (ΩR)

‖u‖X
= 0.

In fact, it follows from (2.4) that

(2.8) ‖u‖rLr(ΩR,g) =
�

ΩR

g|u|r dx ≤ Sr0‖u‖rX‖g‖Lµ(ΩR,ω).
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Since g ∈ Lµ(Ω,ω) one has

lim
R→∞

‖g‖Lµ(ΩR,ω) = 0.(2.9)

Thus, we deduce from (2.8)–(2.9) that

‖u‖Y (ΩR)

‖u‖X
≤ S0‖g‖1/rLµ(Ω,ω) → 0 as R→∞,(2.10)

which implies that (2.7) holds.

Since X is a reflexive Banach space and {un} is bounded in X, there
exists a subsequence, still denoted by {un}, such that un ⇀ u in X and
‖un‖X < C0 for some constant C0 > 0. Thus, we deduce from (2.7) that for
any ε > 0 there exists Rε > 0 large enough such that

(2.11) ‖un‖Y (ΩRε )
≤ ε for n = 1, 2, . . . .

Since the embedding X(BRε \D) ↪→ Y (BRε \D) is compact by (i), there
exists N1 > 0 such that for n > N1,

(2.12) ‖un − u‖Y (BRε\D) < ε.

Consequently, (2.11)–(2.12) yield

(2.13) ‖un−u‖Y ≤ ‖un‖Y (Ω\BRε ) +‖u‖Y (Ω\BRε ) +‖un−u‖Y (BRε\D) ≤ 3ε,

which implies that {un} is convergent in Y . Therefore, the embedding X ↪→
Lr(Ω, g) is compact.

Lemma 2.3. Assume (A1)–(A3). If p < r < q < p∗ = p(N − 1)/(N − p),
then Jλ(u) satisfies the (PS)c condition in X for any c > 0.

Proof. Let c > 0 and let {un} be a (PS) sequence such that

(2.14) Jλ(un)→ c, J ′λ(un)→ 0 in X∗ as n→∞.

Then we can deduce from (2.14) that

c+ ‖un‖X + 1 ≥ Jλ(un)− 1

r
〈J ′λ(un), un〉(2.15)

=

(
1

p
− 1

r

)
‖un‖pX +

(
1

r
− 1

q

)
λ‖un‖qLq(∂Ω,f)

≥
(

1

p
− 1

r

)
‖un‖pX ,

which implies that {un} is bounded in X. Furthermore, since X is a reflexive
Banach space, there exists u ∈ X such that un ⇀ u.
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In view of (2.2), a direct computation implies that

(2.16)
�

Ω

|x|−ap(|∇un|p−2∇un − |∇um|p−2∇um) · ∇(un − um) dx

+
�

Ω

h(x)(|un|p−2un − |um|p−2um)(un − um) dx

=
�

∂Ω

f(x)(|un|q−2un − |um|q−2um)(un − um) dσ

+
�

Ω

g(x)(|un|r−2un − |um|r−2um)(un − um) dx

+ 〈J ′λ(un)− J ′λ(um), un − um〉.

By the inequalities

(2.17) 〈|ξ|p−2ξ − |ζ|p−2ζ, ξ − ζ〉 ≥

{
c|ξ − ζ|p for p ≥ 2,

c|ξ − ζ|2(|ξ|+ |ζ|)p−2 for 1 < p < 2,

which are a modification of the inequalities in [D], we get

(2.18) Amn ≥


c1

�

Ω

|x|−ap|∇(un − um)|p dx for p ≥ 2,

c1

( �
Ω

|x|−ap|∇(un − um)|p dx
)2/p

for 1 < p < 2,

with some constant c1 > 0, independent of n and m, and

(2.19) Amn ,
�

Ω

|x|−ap(|∇un|p−2∇un − |∇um|p−2∇um) · ∇(un − um) dx.

In the following, we will prove that {un} has a subsequence that con-
verges to u strongly in X. We only give the proof for 1 < p < 2, as the
argument for p ≥ 2 is similar but simpler. In fact, when 1 < p < 2, it follows
from (2.17) that

(2.20) 〈|∇un|p−2∇un − |∇um|p−2∇um,∇(un − um)〉

≥ c|∇(un − um)|2(|∇un|+ |∇um|)p−2.

Hence

|∇(un − um)|p ≤ c〈|∇un|p−2∇un − |∇um|p−2∇um,∇(un − um)〉p/2(2.21)

× (|∇un|+ |∇um|)p(2−p)/2.
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Multiply (2.21) by |x|−ap, integrate, and use the Hölder inequality to obtain
�

Ω

|x|−ap|∇(un − um)|p dx

≤ c
�

Ω

|x|−ap〈|∇un|p−2∇un − |∇um|p−2∇um,∇(un − um)〉p/2

× (|∇un|+ |∇um|)p(2−p)/2 dx

≤ c
( �
Ω

|x|−ap〈|∇un|p−2∇un − |∇um|p−2∇um,∇(un − um)〉 dx
)p/2

×
( �
Ω

|x|−ap(|∇un|+ |∇um|)p dx
)(2−p)/2

,

which implies that there exists some constant c1 > 0 such that
�

Ω

|x|−ap(|∇un|p−2∇un − |∇um|p−2∇um) · ∇(un − um) dx

≥ c1
( �
Ω

|x|−ap|∇(un − um)|p dx
)2/p

.

Similar to the proof of (2.18), we have

(2.22)
�

Ω

h(x)(|un|p−2un − |um|p−2um)(un − um) dx

≥


c2

�

Ω

h(x)|un − um|p dx for p ≥ 2,

c2

( �
Ω

h(x)|un − um|p dx
)2/p

for 1 < p < 2,

for some constant c2 > 0, independent of n and m.

Since 0 6∈ ∂Ω, the compact trace embedding X ↪→ Lq(∂Ω, f) (q < p∗)
[F] and Hölder’s inequality yield

(2.23)
�

∂Ω

f(x)(|un|q−2un − |um|q−2um)(un − um) dσ → 0 as n,m→∞.

Lemma 2.2 and the Hölder inequality imply that

(2.24)
�

Ω

g(x)(|un|r−2un − |um|r−2um)(un − um) dx→ 0 as n,m→∞.

It follows from (2.14) that

(2.25) 〈J ′λ(un)− J ′λ(um), un − um〉
≤ (‖J ′λ(un)‖X∗ + ‖J ′λ(um)‖X∗)‖un − um‖X → 0
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as n,m→∞. Therefore, it follows from (2.16), (2.18) and (2.22)–(2.25) that

(2.26) ‖un − um‖X → 0 as n,m→∞,
so {un} is a Cauchy sequence in X. Thus, there exists u ∈ X such that
un → u in X.

Now, we introduce the Fountain Theorem, which will be used to prove
multiplicity results for problem (1.1).

Let X be a reflexive and separable Banach space. It is well known that
there exist ej ∈ X and e∗j ∈ X∗ (j = 1, 2, . . .) such that

• 〈ei, e∗j 〉 = δij , where δij = 1 for i = j and δij = 0 for i 6= j;

• X = span{e1, e2, . . .}, X∗ = span{e∗1, e∗2, . . .}.

We write

Xj = span{ej}, Yk =
k⊕
j=1

Xj , Zk =

∞⊕
j=k

Xj , j, k = 1, 2, . . . .(2.27)

Lemma 2.4 (Fountain Theorem, [B]). Assume Jλ ∈ C1(X,R), Jλ(u) =
Jλ(−u). Suppose that for every k ∈ N, there exist ρk > γk > 0 such that

(A1) ak = infu∈Zk, ‖u‖X=γk Jλ(u)→∞ as k →∞,
(A2) bk = supu∈Yk, ‖u‖X=ρk

Jλ(u) ≤ 0,

(A3) Jλ(u) satisfies the (PS)c condition for every c > 0.

Then Jλ has a sequence {uk} of critical points such that Jλ(uk) → ∞ as
k →∞.

3. Existence of solutions. In this section, we prove the existence of
multiple solutions for problem (1.1). The argument is based on the Fountain
Theorem of Lemma 2.4.

Proof of Theorem 1.1. Our purpose is to verify the assumptions (A1)–(A3)
in Lemma 2.4. Let

βk = sup
u∈Zk, u 6=0

‖u‖Lr(Ω,g)
‖u‖X

= sup
u∈Zk, ‖u‖X=1

‖u‖Lr(Ω,g),(3.1)

σk = sup
u∈Zk, u 6=0

‖u‖Lq(∂Ω,f)
‖u‖X

= sup
u∈Zk, ‖u‖X=1

‖u‖Lq(∂Ω,f).(3.2)

Then

(3.3) ‖u‖Lr(Ω,g) ≤ βk‖u‖X , ‖u‖Lq(∂Ω,f) ≤ σk, ∀u ∈ Zk.
Furthermore, we claim that

βk → 0, σk → 0 as k →∞.
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In fact, it is easy to check that 0 < βk+1 ≤ βk. Hence there exists β0 ≥ 0
such that βk → β0 as k →∞. In the following, we prove that β0 = 0.

Indeed, the definition of βk means that there exists uk ∈ Zk with ‖uk‖X
= 1 such that −1/k ≤ βk − ‖uk‖Lr(Ω,g) ≤ 1/k for all k ≥ 1. Then there
exists a subsequence, still denoted by {uk}, such that uk ⇀ u in X, and
limk→∞〈uk, e∗j 〉 = 0 for all j ≥ 1. Thus, u = 0 and uk ⇀ 0. It follows from
Lemma 2.2 that uk → 0 in Lr(Ω, g) as k →∞, so β0 = 0.

Similarly, we find that σk → 0 as k →∞.
It follows from (2.1) and (3.3) that

Jλ(u) =
1

p
‖u‖pX −

λ

q
‖u‖qLq(∂Ω,f) −

1

r
‖u‖rLr(Ω,g)

(3.4)

≥ 1

p
‖u‖pX −

λ

q
σqk‖u‖

q
X −

1

r
βrk‖u‖rX

=
1

2p
‖u‖pX +

(
1

4p
‖u‖pX −

λ

q
σqk‖u‖

q
X

)
+

(
1

4p
‖u‖pX −

1

r
βrk‖u‖rX

)
.

Let

(3.5) γk = min

{(
q

4pλσqk

)1/(q−p)
,

(
r

4pβrk

)1/(r−p)}
.

Since βk → 0 and σk → 0 as k →∞, we have

(3.6) γk →∞ as k →∞.
Therefore, taking ‖u‖X = γk, we deduce from (3.4) and (3.6) that

(3.7) Jλ(u) ≥ 1

2p
‖u‖pX =

1

2p
γpk →∞ as k →∞,

which implies that (A1) holds.
Since all norms are equivalent on the finite-dimensional space Yk, we

easily infer from the assumption p < r < q that (A2) holds for large ρk > 0
with ‖u‖X = ρk. It is obvious that (A3) holds by Lemma 2.3. Thus, the
proof of Theorem 1.1 is complete.

To prove Theorem 1.2, we introduce the following lemma (see [W]).

Lemma 3.1. Let Jλ ∈ C1(X,R), where X is a Banach space. Assume
Jλ satisfies the (PS)c condition for every c > 0, Jλ(−u) = Jλ(u), Jλ(0) = 0,
and Jλ is bounded from below on X. If for any k ∈ N, there exists a k-
dimensional subspace Yk and ρk > 0 such that

sup
u∈Yk, ‖u‖X=ρk

Jλ(u) < 0,

then Jλ(u) has a sequence of critical values ck < 0 satisfying ck → 0 as
k →∞.
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Proof of Theorem 1.2. The trace embedding X ↪→ Lq(∂Ω, f) and Lemma
2.2 mean that there exist constants c3, c4 > 0 such that

Jλ(u) =
1

p
‖u‖pX −

λ

q
‖u‖qLq(∂Ω,f) −

1

r
‖u‖rLr(Ω,g)(3.8)

≥ 1

p
‖u‖pX −

λ

q
c3‖u‖qX −

1

r
c4‖u‖rX .

Let

h(t) =
1

p
tp − λ

q
c3t

q − 1

r
c4t

r, t ≥ 0.

It is not difficult to check that

h(t)→ 0 as t→ 0+ and h(t)→∞ as t→∞.

This together with the assumption q < p, r < p implies that h(t) attains its
global minimum at some point t0 > 0, and h(t0) < 0. Thus, Jλ is bounded
below. Similar to the proof of Lemma 2.3, we can prove that Jλ satisfies the
(PS)c condition for every c > 0.

Let Yk be defined as in (2.27). Since r < p and q < p, and all norms
on the finite-dimensional space Yk are equivalent, we can choose ρk small
enough such that

sup
u∈Yk, ‖u‖X=ρk

Jλ(u) < 0.

Thus, Lemma 3.1 shows that problem (1.1) has a sequence of solutions uk.
Moreover, Jλ(uk)→ 0 as k →∞.

4. Nonexistence of solutions. In this section, we prove the nonex-
istence of nontrivial nonnegative solutions for problem (1.1) by the test
function method of Mitidieri and Pohozaev [MP2]. The approach is essen-
tially based on a priori estimates by a careful choice of test functions without
using comparison or maximum principle arguments.

For other references on this method, see [OT, LT, MP1] and the refer-
ences therein.

Proof of Theorem 1.3. Define

(4.1) ϕ0(s) =


1 for 0 ≤ s ≤ 1,

(n− k)−1(n(2− s)k − k(2− s)n) for 1 ≤ s ≤ 2,

0 for s ≥ 2,

where n > k > 2. From (4.1) we deduce by a direct computation that

(4.2) 0 ≤ ϕ0(s) ≤ 1, 0 ≤ |ϕ′0(s)| ≤ β0ϕ
1−1/k
0 (s), β0 = k

(
n

n− k

)1/k

.
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Let ϕ(x) = ϕ0(|x|/R). Take δ < 0 with |δ| small enough, multiply (1.1) by
uδϕ and integrate to obtain

(4.3)
�

Ω

g(x)ur+δ−1ϕdx =
�

Ω

|x|−ap|∇u|p−2∇u∇(uδϕ) dx

+
�

Ω

h(x)up+δ−1ϕdx− λ
�

∂Ω

f(x)uq+δ−1ϕdσ

=
�

Ω

|x|−ap|∇u|p−1∇ϕuδ dx+ δ
�

Ω

|x|−ap|∇u|puδ−1ϕdx

+
�

Ω

h(x)up+δ−1ϕdx− λ
�

∂Ω

f(x)uq+δ−1ϕdσ.

Since δ < 0, f(x) > 0 and h(x) < 0, (4.3) implies that

(4.4)
�

Ω

g(x)ur+δ−1ϕdx+ |δ|
�

Ω

|x|−ap|∇u|puδ−1ϕdx

≤
�

Ω

|x|−ap|∇u|p−1∇ϕuδ dx.

By the Young inequality, we have�

Ω

|x|−ap|∇u|p−1∇ϕuδ dx ≤ ε
�

Ω

|x|−ap|∇u|pϕuδ−1 dx(4.5)

+ c(ε)
�

Ω

|x|−apup+δ−1|∇ϕ|pϕ−(p−1) dx.

Using the Young inequality again, we see that for any η > 0,

(4.6)
�

Ω

|x|−apup+δ−1|∇ϕ|pϕ−(p−1) dx ≤ c(η)B + η
�

Ω

g(x)ur+δ−1ϕdx,

where

(4.7) B =
�

Ω

|x|
−ap(r+δ−1)

r−p g
− p+δ−1

r−p
0 |∇ϕ|

p(r+δ−1)
r−p ϕ

r−pr−pδ
r−p dx

and g0 is given in (A4). Let ε, η > 0 be small enough such that ηc(ε) < 1/2
and ε < |δ|/2. Then it follows from (4.4)–(4.6) that

(4.8)
1

2

�

Ω

g(x)ur+δ−1ϕdx+
|δ|
2

�

Ω

|x|−ap|∇u|puδ−1ϕdx ≤ c(ε)c(η)B.

Let x = Rξ. Noting that ϕ(x) = ϕ0(|x|/R), we obtain

(4.9)
∂ϕ

∂xj
= ϕ′0(|ξ|) ·

1

R
· xj
|x|
, |∇ϕ| ≤ N

R
|ϕ′0(|ξ|)| ≤

N

R
ϕ
1−1/k
0 (|ξ|)β0,

where β0 is defined in (4.2). Since r > p > 1 and δ < 0, we can choose k
large enough such that kr − kp − pr > 0. Therefore, it follows from (4.2)
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and (4.9) that

c(ε)c(η)B ≤ c5
�

1≤|ξ|≤2

R
N− p(a+1)(r+δ−1)

r−p |ξ|
−ap(r+δ−1)

r−p ϕ
kr−kp−pr−pδ+p

k(r−p)
0 (|ξ|) dξ(4.10)

≤ c6RN−
p(a+1)(r+δ−1)

r−p

for some constants c5, c6 > 0, with B defined in (4.7). Then (4.8) and (4.10)
yield

�

Ω

g(x)ur+δ−1ϕdx ≤ c6RN−
p(a+1)(r+δ−1)

r−p .(4.11)

On the other hand, the assumption Nr
(a+1)(r+1)+N < p implies that there

exists δ < 0 with |δ| small such that

N − p(a+ 1)(r + δ − 1)

r − p
< 0.

Therefore, by virtue of (4.11), we have

lim
R→∞

�

Ω

g(x)ur+δ−1 = 0,

that is, u = 0 a.e. in Ω.
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