The pluricomplex Green function on some regular pseudoconvex domains

by Gregor Herbort (Wuppertal)

Abstract

Let D be a smooth bounded pseudoconvex domain in \mathbb{C}^{n} of finite type. We prove an estimate on the pluricomplex Green function $\mathscr{G}_{D}(z, w)$ of D that gives quantitative information on how fast the Green function vanishes if the pole w approaches the boundary. Also the Hölder continuity of the Green function is discussed.

1. Introduction. Let D be a bounded pseudoconvex domain in \mathbb{C}^{n} with a smooth boundary. We will investigate the behavior of the pluricomplex Green function $\mathscr{G}_{D}(\cdot, w), w \in D$, of D when w tends to the boundary.

This function is defined by

$$
\mathscr{G}_{D}(\cdot, w):=\sup \{u(z) \mid u \in P(w ; D)\}
$$

where $P(w ; D)$ denotes the class of all negative plurisubharmonic functions on D such that $u-\log |\cdot-w|$ is bounded from above near w. It has been introduced by Klimek [Kli1], and later in hyperconvex domains in general complex manifolds by Demailly Dem. In both papers fundamental properties of \mathscr{G}_{D} were proved (in particular its relationship to the Monge-Ampère operator was clarified in [Dem].

The fact that \mathscr{G}_{D} has a logarithmic pole at w makes it an important tool in applications of real methods in complex analysis, in particular those that are based upon the L^{2}-theory for the $\bar{\partial}$-operator with plurisubharmonic weight functions (see [Hör], OhTa]). We need to know, however, how $\mathscr{G}_{D}(\cdot, w)$ behaves when w tends to the boundary. First results in this context were obtained in CCW$], \mathrm{He}$, and $[\mathrm{DiHe}]$ (for quantitative results in special cases see [Car], Che].

For a domain $D \subsetneq \mathbb{C}^{n}$ we denote by δ_{D} the boundary-distance function. Our main result is

[^0]TheOrem 1.1. Let $D \subset \subset \mathbb{C}^{n}$ be a smooth bounded domain, and let $w_{0} \in \partial D$. Assume that there exist an open neighborhood $U_{1} \ni w_{0}$, constants $C>0$ and $0<\varepsilon \leq 1 / 2$, and a \mathscr{C}^{2}-smooth plurisubharmonic function Φ : $D \cap U_{1} \rightarrow(-1,0)$ such that:
(a) The function $z \mapsto \Phi(z)-C^{-1}|z|^{2}$ is plurisubharmonic.
(b) One has $\Phi(z) \geq-C \delta_{D}(z)^{2 \varepsilon}$ for all $z \in D \cap U_{1}$.

Then there exists a constant $C>0$, and a neighborhood $U_{2} \subset \subset U_{1}$ of w_{0}, such that

$$
\begin{equation*}
\left|\mathscr{G}_{D}(z, w)\right| \leq C M(z, w)^{1-1 / n} \log \left(1+C\left(\frac{\delta_{D}(w)^{\varepsilon}}{|z-w|}\right)^{1 / n}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathscr{G}_{D}(z, w)\right| \leq C M(z, w)^{1-1 / n} \log \left(1+C\left(\frac{\delta_{D}(z)^{\varepsilon} \delta_{D}(w)^{\varepsilon}}{|z-w|^{2}}\right)^{1 / n}\right) \tag{1.2}
\end{equation*}
$$

where

$$
M(z, w):=\left|\log \log \left(1+C \frac{\delta_{D}(w)^{\varepsilon}}{|z-w|}\right)\right|+1+C \log \frac{R_{D}}{|z-w|}
$$

for all $z, w \in D \cap U_{2}$. Here we denote by R_{D} the diameter of D.
In Car the case of strongly pseudoconvex domains was treated, where one can find a plurisubharmonic function ψ with properties (a) and (b) for $\varepsilon=1 / 2$. For a convex domain of finite type an estimate for \mathscr{G}_{D} was established in Che that implies (1.2) without the factor $M(z, w)$.

The methods from [Car, Che do not carry over to our case since the Green function is not symmetric in general; whether or not holomorphic peak functions are available under the above comparatively weak hypotheses is also an open question.

As a corollary we obtain from Theorem 1.1:
THEOREM 1.2. Let $D \subset \subset \mathbb{C}^{n}$ be a smooth bounded domain, and let $w_{0} \in \partial D$ be such that there exist an open neighborhood $U_{1} \ni w_{0}$, constants $C>0$ and $0<\varepsilon \leq 1 / 2$, and a \mathscr{C}^{2}-smooth plurisubharmonic function Φ : $D \cap U_{1} \rightarrow(-1,0)$ with properties (a) and (b). Then we can choose an open neighborhood $U_{2} \subset \subset U_{1}$ of w_{0} such that for any $w \in D \cap U_{2}$ the sublevel set $\left\{\mathscr{G}_{D}(\cdot, w)<-1\right\}$ is contained in a ball about w of radius \leq $C^{\prime} \delta_{D}(w)^{\varepsilon} \log ^{n} \frac{1}{\delta_{D}(w)}$. In particular, the Bergman metric B_{D} of D grows at least like

$$
B_{D}(w ; X) \geq C_{2} \frac{|X|}{\delta_{D}(w)^{\varepsilon} \log ^{n} \frac{1}{\delta_{D}(w)}}
$$

for all $w \in D \cap U_{2}$ and $X \in \mathbb{C}^{n}$.

The first assertion is clear. The second, concerning the growth order of the Bergman metric, follows from Proposition 4.1 from DiHe.

This improves the estimate of Theorem 1.13 from [DiHe] insofar as the points w are not restricted to nontangential approach to the boundary point w^{0} and the growth is up to a log-term exactly of order ε and not only $\varepsilon-t$ (with arbitrary $0<t \ll 1$).

In [Bło2] and NPT] the question of Hölder continuity of the Green function was treated for a special class of domains. With the methods applied in those papers we will show (1.1).

As a by-product we further obtain
Theorem 1.3. Suppose D is as in Theorem 1.1. Then there is a constant $C>0$ such that

$$
\left|\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)-\mathscr{G}_{D}\left(z^{\prime}, w\right)\right| \leq C \frac{\left|z^{\prime}-z^{\prime \prime}\right|^{\varepsilon^{2} / 3 n}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)^{(1+\varepsilon) / n}} \log \frac{R_{D}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)}
$$

for any $z^{\prime}, z^{\prime \prime} \in D \backslash\{w\}$, where

$$
M\left(z^{\prime}, z^{\prime \prime}, w\right)=\min \left\{\left|z^{\prime}-w\right|,\left|z^{\prime \prime}-w\right|\right\}
$$

Later we will consider pseudoconvex domains that are uniformly extendable in a pseudoconvex way of some finite order $N \geq 2$. They belong to the class of pseudoconvex domains to which the above results apply.

The notion of pseudoconvex extendability is explained in the following
Definition 1.4 (cf. [DiHe, Def. 1.10]). Let $D \subset \subset \mathbb{C}^{n}$ be pseudoconvex and smoothly bounded. We call D uniformly extendable of order N in a pseudoconvex way near a point $w^{0} \in \partial D$ if there exist an open neighborhood $U^{\prime} \ni w^{0}$, a constant $C_{1}>0$ and a \mathscr{C}^{2}-smooth function $\psi: U^{\prime} \times U^{\prime} \rightarrow \mathbb{R}$ such that:
(i) The open set $\{\psi(q, \cdot)<0\} \cap U^{\prime}$ is pseudoconvex and the surface $\{\psi(q, \cdot)=0\} \cap U^{\prime}$ is smooth and passes through q when $q \in \partial D \cap U^{\prime}$.
(ii) For $x \in U^{\prime}, q \in U^{\prime} \cap \partial D$ we have the estimate

$$
C_{1}(r(x)-|x-q|) \leq \psi(q, x) \leq r(x)-\frac{1}{C_{1}}|x-q|^{N}
$$

In DiFo it was shown that real-analytically bounded pseudoconvex domains have this property. This result was extended later in Cho to the larger class of smooth bounded pseudoconvex domains that are of finite type in the sense of [DA]. We will prove

LEmma 1.5. Assume that the domain $D \subset \subset \mathbb{C}^{n}$ is uniformly extendable of order N in a pseudoconvex way near a point $w^{0} \in \partial D$. Then there exist an open neighborhood U_{1} of w^{0}, a continuous plurisubharmonic function Φ : $D \cap U_{1} \rightarrow \mathbb{R}$ and constants $C_{1}, c_{1}>0$ such that:
(i) On $D \cap U_{1}$ we have $-C_{1} \delta_{D}^{2 / N} \leq \Phi<0$.
(ii) The function $z \mapsto \Phi(z)-c_{1}|z|^{2}$ is plurisubharmonic on $D \cap U_{1}$.

Hence Theorems 1.1 and 1.2 apply with $\varepsilon=1 / N$.
In conjunction with a result of Cho one obtains the following:
Lemma 1.6. Let $D \subset \subset \mathbb{C}^{n}$ be a smooth bounded domain and $w_{0} \in \partial D$ a point such that there exist an open neighborhood $U_{1} \ni w_{0}$, constants $C>0$ and $0<\varepsilon \leq 1 / 2$, and a family $\left(\lambda_{\delta}\right)_{0<\delta<\delta_{0}}$ of plurisubharmonic functions on U_{1} satisfying:
(a) For all $\delta \in\left(0, \delta_{0}\right)$ one has $0 \leq \lambda_{\delta} \leq 1$.
(b) On the strip $S_{\delta}:=\left\{z \in D \cap U_{1} \mid \delta_{D}(z)<\delta\right\}$ the function $z \mapsto$ $\lambda_{\delta}(z)-\delta^{-2 \varepsilon}|z|^{2}$ is still plurisubharmonic.
(c) For any derivative $D \lambda_{\delta}$ of λ_{δ} of order $k \leq 2$ one has $\left|D \lambda_{\delta}\right| \leq C \delta^{-k}$. Then D is uniformly extendable of order $1 / \varepsilon$ near w_{0}. In particular Theorems 1.1 and 1.2 apply.
2. Estimating the Green function in terms of the boundary distance of its first argument. Our plan is to estimate the Green function $\mathscr{G}_{D}(P, Q)$ in terms of $\delta_{D}(P)$ and $|P-Q|$, and then to compare $\mathscr{G}_{D}(P, Q)$ with $\mathscr{G}_{D}(Q, P)$.

Proposition 2.1. Let $D \subset \subset \mathbb{C}^{n}$ satisfy the hypotheses of Theorem 1.1 near $w^{0} \in \partial D$. Then there exist a constant $C_{5}>0$ and a radius $R_{1}>0$ such that for any $P \in D \cap B\left(w^{0}, R_{1}\right)$ and $Q \in D$ one has

$$
\begin{equation*}
\left|\mathscr{G}_{D}(P, Q)\right| \leq \frac{1}{2} \log \left(1+C_{5} \frac{\delta_{D}(P)^{2 \varepsilon}}{|P-Q|^{2}}\right) . \tag{2.1}
\end{equation*}
$$

Proof. Let us take radii $R_{1}<\widetilde{R}_{1}<R_{2}$ such that $B\left(w_{0}, 2 R_{2}\right) \subset U_{1}$ and $R_{2} \geq 5 \widetilde{R}_{1}$. Furthermore, we may assume that each $x \in B\left(w^{0}, 3 R_{2} / 2\right)$ has an orthogonal projection $x^{*} \in \partial D \cap B\left(w^{0}, 3 R_{2}\right)$. We may certainly suppose that $\delta_{D}(P)<R_{1} / 2$. Let us consider two cases:

CASE I: $\left|Q-w^{0}\right|<3 R_{1}$. On U_{1} the function

$$
\Phi_{1}(z):=\Phi(z)-c_{1}|z-Q|^{2}-c_{1}\left|z-P^{*}\right|^{2},
$$

where $c_{1}<\frac{1}{2 C}$, is negative and plurisubharmonic. Also we have

$$
\frac{-\Phi_{1}(z)}{c_{1}|z-Q|^{2}} \geq 1+\frac{\left|z-P^{*}\right|^{2}}{|z-Q|^{2}}
$$

But for $z \in \partial B\left(w^{0}, R_{2}\right)$ we have, for $P \in B\left(w^{0}, R_{1}\right)$,

$$
\left|z-P^{*}\right| \geq\left|z-w^{0}\right|-\left|w^{0}-P\right|-\left|P-P^{*}\right| \geq R_{2}-\frac{3}{2} R_{1} \geq \frac{7}{10} R_{2}
$$

and

$$
|z-Q| \leq\left|z-w^{0}\right|+\left|w^{0}-Q\right| \leq R_{2}+3 R_{1} \leq \frac{8}{5} R_{2} .
$$

Therefore,

$$
\frac{-\Phi_{1}(z)}{c_{1}|z-Q|^{2}} \geq 1+\left(\frac{7}{16}\right)^{2}
$$

and hence

$$
\frac{1}{2} \log \frac{c_{1}|z-Q|^{2}}{-\Phi_{1}(z)} \leq-c_{3}:=-\frac{1}{2} \log \left(1+\left(\frac{7}{16}\right)^{2}\right)
$$

The function

$$
\Phi_{2}(z):= \begin{cases}\max \left\{\frac{1}{2} \log \frac{c_{1}|z-Q|^{2}}{-\Phi_{1}(z)},-c_{3}\right\} & \text { if } z \in B\left(w^{0}, R_{2}\right) \cap D \\ -c_{3} & \text { if } z \in D \backslash\left(B\left(w^{0}, R_{2}\right) \cap D\right)\end{cases}
$$

now becomes plurisubharmonic on D and thus it is a good candidate for $\mathscr{G}_{D}(P, Q)$. Since $\left|P-w^{0}\right|<R_{1}<R_{2}$, we obtain

$$
\begin{aligned}
\left|\mathscr{G}_{D}(P, Q)\right| & \leq-\Phi_{2}(P) \leq \frac{1}{2} \log \frac{-\Phi_{1}(P)}{c_{1}|P-Q|^{2}} \\
& =\frac{1}{2} \log \frac{-\Phi(P)+c_{1}|P-Q|^{2}+c_{1}\left|P-P^{*}\right|^{2}}{c_{1}|P-Q|^{2}} \\
& \leq \frac{1}{2} \log \left(1+c_{2} \frac{\delta_{D}(P)^{2 \varepsilon}}{|P-Q|^{2}}\right)
\end{aligned}
$$

with some positive constant c_{2}, as desired.
CASE II: $\left|Q-w^{0}\right| \geq 3 R_{1}$. Now we put

$$
\Phi_{3}(z):=\Phi(z)-c_{1}\left|z-P^{*}\right|^{2}
$$

in $D \cap U_{1}$. This function is plurisubharmonic and if $\left|z-P^{*}\right|=R_{1} / 2$ we obtain $\Phi_{3}(z) \leq-c_{1} R_{1}^{2} / 4$. Thus the function

$$
\Phi_{4}(z)= \begin{cases}\max \left\{\Phi_{3}(z),-c_{1} R_{1}^{2} / 4\right\} & \text { if } z \in B\left(P^{*}, R_{1} / 2\right) \cap D \\ -c_{1} R_{1}^{2} / 4 & \text { if } z \in D \backslash\left(B\left(P^{*}, R_{1} / 2\right) \cap D\right)\end{cases}
$$

becomes well-defined and plurisubharmonic on D. Next we define an appropriate candidate for $\mathscr{G}_{D}(\cdot, Q)$. Let

$$
\Phi_{5}(z)= \begin{cases}\max \left\{C_{7} \Phi_{4}(z), \log \frac{|z-Q|}{R_{D}}\right\} & \text { if } z \in D \backslash\left(B\left(Q, R_{1} / 2\right) \cap D\right) \\ \log \frac{|z-Q|}{R_{D}} & \text { if } z \in B\left(Q, R_{1} / 2\right) \cap D\end{cases}
$$

where $C_{7}>0$ is chosen so large that

$$
C_{7} \Phi_{4}(z) \leq \log \frac{R_{1}}{2 R_{D}} \quad \text { for } z \in D \cap \partial B\left(Q, R_{1} / 2\right)
$$

Note that this is possible, since for such points z one has

$$
\begin{aligned}
\left|z-P^{*}\right| & \geq\left|Q-P^{*}\right|-|z-Q| \geq\left|Q-w^{0}\right|-\left|w^{0}-P^{*}\right|-|z-Q| \\
& \geq\left|Q-w^{0}\right|-\left|w^{0}-P\right|-\delta_{D}(P)-|z-Q| \geq R_{1}
\end{aligned}
$$

hence $\Phi_{4}(z)=-c_{1} R_{1}^{2} / 4$.
We find that

$$
\begin{aligned}
\left|\mathscr{G}_{D}(P, Q)\right| & \leq-\Phi_{5}(P) \leq-C_{7} \Phi_{4}(P)=-C_{7} \Phi(P)+c_{1} C_{7}\left|P-P^{*}\right|^{2} \\
& \leq C_{8} \delta_{D}(P)^{2 \varepsilon}
\end{aligned}
$$

because in our situation we have

$$
|P-Q| \geq\left|Q-w_{0}\right|-\left|P-w_{0}\right| \geq 2 R_{1}
$$

This implies also $\frac{\delta_{D}(P)^{\varepsilon}}{|P-Q|} \leq \frac{R_{D}^{\varepsilon}}{2 R_{1}}$.
The function $V(t):=\frac{1}{t} \log (1+t)$ is decreasing on $(0, \infty)$. This yields, if we choose C_{5} so large that

$$
\frac{2 R_{1}^{2}}{R_{D}^{2+2 \varepsilon}} \log \left(1+C_{5}^{2} \frac{R_{D}^{2 \varepsilon}}{4 R_{1}^{2}}\right) \geq C_{8}
$$

the estimate

$$
\begin{aligned}
\frac{1}{2} \log \left(1+C_{5}^{2} \frac{\delta_{D}(P)^{2 \varepsilon}}{|P-Q|^{2}}\right) & =\frac{1}{2} C_{5}^{2} \frac{\delta_{D}(P)^{2 \varepsilon}}{|P-Q|^{2}} V\left(C_{5}^{2} \frac{\delta_{D}(P)^{2 \varepsilon}}{|P-Q|^{2}}\right) \\
& \geq \frac{1}{2} C_{5}^{2} \frac{\delta_{D}(P)^{2 \varepsilon}}{|P-Q|^{2}} V\left(C_{5}^{2} \frac{R_{D}^{2 \varepsilon}}{4 R_{1}^{2}}\right) \\
& \geq \frac{1}{2 R_{D}^{2}} C_{5}^{2} V\left(C_{5}^{2} \frac{R_{D}^{2 \varepsilon}}{4 R_{1}^{2}}\right) \delta_{D}(P)^{2 \varepsilon} \\
& =\frac{2 R_{1}^{2}}{R_{D}^{2+2 \varepsilon}} \log \left(1+C_{5}^{2} \frac{R_{D}^{2 \varepsilon}}{4 R_{1}^{2}}\right) \delta_{D}(P)^{2 \varepsilon} \\
& \geq C_{8} \delta_{D}(P)^{2 \varepsilon} \geq\left|\mathscr{G}_{D}(P, Q)\right|
\end{aligned}
$$

The proposition is proved.
3. A first Hölder estimate for the Green function. We adopt the methods from [Bło2] and NPT]. Let D be a bounded hyperconvex domain in \mathbb{C}^{n}. Let $w \in D$ be fixed and $r=\frac{2}{3} \delta_{D}(w)$. We consider for $r>\eta>0$ the family

$$
\mathscr{P}_{\eta}:=\{v \mid v \text { plurisubharmonic on } D, v \leq 0 \text { on } D, v \leq \log (\eta / r) \text { on } \bar{B}(w, \eta)\}
$$ and its upper envelope

$$
u^{\eta}(z)=\sup \left\{v(z) \mid v \in \mathscr{P}_{\eta}\right\} .
$$

Then (for details see [Kli2, Sec. 4.5]) we have:
(a) u^{η} is continuous, and $u^{\eta}(z) \rightarrow 0$ as z tends to a boundary point of D.
(b) The function u^{η} is maximal plurisubharmonic outside $\bar{B}(w, \eta)$.
(c) We have $u^{\eta}=\log (\eta / r)$ on $\bar{B}(w, \eta)$ and $u^{\eta}(z) \leq \log (\max \{|z-w|, \eta\} / r)$ on D.
(d) For $\eta_{1} \leq \eta_{2}$ we have $u^{\eta_{1}} \leq u^{\eta_{2}}$. Further $\lim _{\eta \searrow 0} u^{\eta}(z)=\mathscr{G}_{D}(z, w)$ on D.

We recall from NPT] the following construction, associated with two given different points $P, w \in D$. Let \mathbb{D} denote the unit disc in the plane. We choose a holomorphic function $F_{P, w}$ on D with values in \mathbb{D} such that $F_{P, w}(w)=0$ and $\operatorname{artgh}\left|F_{P, w}(P)\right|$ is equal to the Carathéodory distance $c_{D}(P, w)$ between P and w. Then we put, for $h \in \mathbb{C}^{n}, z \in D$,

$$
H_{P, w, h}(z):=z+\frac{F_{P, w}(z)}{F_{P, w}(P)} h .
$$

Since $\operatorname{tgh} c_{D}(P, Q) \geq|P-Q| / R_{D}$ for $P, Q \in D$, we obtain

$$
\begin{equation*}
\left|H_{P, w, h}(z)-z\right| \leq R_{D}\left|F_{P, w}(z)\right| \frac{|h|}{|P-w|} \tag{3.1}
\end{equation*}
$$

for $z \in D$. If $|z-w|<\delta_{D}(w)$, then we get

$$
\left|F_{P, w}(z)\right| \leq \operatorname{tgh} c_{D}(z, w) \leq \frac{|z-w|}{\delta_{D}(w)}
$$

and from (3.1) we see that

$$
\begin{equation*}
\left|H_{P, w, h}(z)-z\right| \leq R_{D} \frac{|z-w|}{|P-w|} \frac{|h|}{\delta_{D}(w)} \tag{3.2}
\end{equation*}
$$

We will make use of this later.
Lemma 3.1. Let D be a pseudoconvex domain as in Theorem 1.1. Then, with some constant $C_{1}>0$, for $z^{\prime}, z^{\prime \prime} \in D \backslash\{w\}$ we have

$$
\left|\mathscr{G}_{D}\left(z^{\prime}, w\right)-\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)\right| \leq \log \left(1+C_{1} \frac{R_{D}^{\varepsilon}}{\delta_{D}(w)} \frac{\left|z^{\prime}-z^{\prime \prime}\right|^{\varepsilon}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)^{\varepsilon}}\right)
$$

provided that

$$
\begin{equation*}
\left|z^{\prime}-z^{\prime \prime}\right| \leq \frac{\delta_{D}(w)}{8 R_{D}} M\left(z^{\prime}, z^{\prime \prime}, w\right) \tag{3.3}
\end{equation*}
$$

where we write $M\left(z^{\prime}, z^{\prime \prime}, w\right)=\min \left\{\left|z^{\prime}-w\right|,\left|z^{\prime \prime}-w\right|\right\}$.
Proof. We follow an idea from [NPT]. Let $h:=z^{\prime \prime}-z^{\prime}$, and consider the domain

$$
D_{1}:=\left\{z \in D \mid H_{z^{\prime}, w, h}(z) \in D\right\}
$$

Then $\bar{B}(w, \eta) \subset D_{1}$ for small enough η, since $w \in D_{1}$.

If $z \in D$ and $H_{z^{\prime}, w, h}(z) \in \partial D$, we have

$$
\begin{equation*}
\delta_{D}(z) \leq\left|H_{z^{\prime}, w, h}(z)-z\right| \leq \frac{R_{D}}{\left|z^{\prime}-w\right|}|h| \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
|z-w| & \geq\left|H_{z^{\prime}, w, h}(z)-w\right|-\left|H_{z^{\prime}, w, h}(z)-z\right| \tag{3.5}\\
& \geq \delta_{D}(w)-\frac{R_{D}}{\left|z^{\prime}-w\right|}|h| \geq \frac{1}{2} \delta_{D}(w)
\end{align*}
$$

using (3.3). This implies (together with Prop. 2.1)

$$
\begin{aligned}
u^{\eta}(z) & \geq \mathscr{G}_{D}(z, w) \geq-\log \left(1+C_{5} \frac{\delta_{D}(z)^{\varepsilon}}{|z-w|}\right) \\
& \geq-\log \left(1+C_{5} \frac{R_{D}^{\varepsilon}}{|z-w|} \frac{|h|^{\varepsilon}}{\left|z^{\prime}-w\right|^{\varepsilon}}\right) \quad \text { by } 3.4 \\
& \geq-\log \left(1+2 C_{5} \frac{R_{D}^{\varepsilon}}{\delta_{D}(w)} \frac{|h|^{\varepsilon}}{\left|z^{\prime}-w\right|^{\varepsilon}}\right) \quad \text { by } 3.5 .
\end{aligned}
$$

For $z \in \partial D$ we even have $u^{\eta}(z)=0$. In each case we see that the last displayed estimate holds for any $z \in \partial D_{1}$. In particular,

$$
u^{\eta}\left(H_{z^{\prime}, w, h}(z)\right) \leq 0 \leq u^{\eta}(z)+\log \left(1+2 C_{5} \frac{R_{D}^{\varepsilon}}{\delta_{D}(w)} \frac{|h|^{\varepsilon}}{\left|z^{\prime}-w\right|^{\varepsilon}}\right)
$$

on ∂D_{1}. We want to prove this estimate also for $z \in \partial B(w, \eta)$.
For this purpose we take an arbitrary $z \in D$ with $|z-w|=\eta$. Then, by 3.2 ,

$$
\begin{aligned}
\left|H_{z^{\prime}, w, h}(z)-w\right| & \leq|z-w|+\frac{R_{D}}{\delta_{D}(w)} \frac{|z-w|}{\left|z^{\prime}-w\right|}|h| \\
& =\left(1+\frac{R_{D}}{\delta_{D}(w)} \frac{|h|}{\left|z^{\prime}-w\right|}\right) \eta .
\end{aligned}
$$

This gives

$$
\begin{aligned}
u^{\eta}\left(H_{z^{\prime}, w, h}(z)\right) & \leq \log \frac{\max \left\{\left|H_{z^{\prime}, w, h}(z)-w\right|, \eta\right\}}{r} \\
& \leq \log (\eta / r)+\log \left(1+\frac{R_{D}}{\delta_{D}(w)} \frac{|h|}{\left|z^{\prime}-w\right|}\right) \\
& \left.\leq u^{\eta}(z)+\log \left(1+2 C_{5} \frac{R_{D}^{\varepsilon}}{\delta_{D}(w)} \frac{|h|^{\varepsilon}}{\left|z^{\prime}-w\right|^{\varepsilon}}\right), \quad \text { by } 3.3\right) .
\end{aligned}
$$

Since u^{η} is maximal on $D_{1} \backslash \bar{B}(w, \eta)$, the above estimate holds even on $D_{1} \backslash \bar{B}(w, \eta)$, since it holds on $\partial\left(D_{1} \backslash \bar{B}(w, \eta)\right)$. We choose $z=z^{\prime}$ and get, because $H_{z^{\prime}, w, h}\left(z^{\prime}\right)=z^{\prime \prime}$,

$$
u^{\eta}\left(z^{\prime \prime}\right) \leq u^{\eta}\left(z^{\prime}\right)+\log \left(1+2 C_{5} \frac{R_{D}^{\varepsilon}}{\delta_{D}(w)} \frac{|h|^{\varepsilon}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)^{\varepsilon}}\right)
$$

Letting η tend to zero and recalling the definition of h, we obtain the desired estimate

$$
\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)-\mathscr{G}_{D}\left(z^{\prime}, w\right) \leq \log \left(1+2 C_{5} \frac{R_{D}^{\varepsilon}}{\delta_{D}(w)} \frac{\left|z^{\prime}-z^{\prime \prime}\right|^{\varepsilon}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)^{\varepsilon}}\right)
$$

Interchanging the roles of z^{\prime} and $z^{\prime \prime}$ we can complete the proof.

4. Proof of Theorem 1.1

4.1. Proof of estimate $(\mathbf{1 . 1})$. We must consider two cases.

Case 1: $\delta_{D}(w)^{\varepsilon} \leq|z-w|$. The starting point is the following estimate that was obtained in [He] (based upon an inequality of [Bło1]):

$$
\begin{equation*}
\int_{D}\left|\mathscr{G}_{D}(\cdot, w)\right| d \mu_{z, \eta} \leq(2 \pi)^{n}(n!)^{1 / n} \eta^{(n-1) / n}\left|\mathscr{G}_{D}(w, z)\right|^{1 / n} \tag{4.6}
\end{equation*}
$$

where $d \mu_{z, \eta}$ denotes for any $\eta>0$ the measure

$$
d \mu_{z, \eta}:=\left(d d^{c} \max \left\{\mathscr{G}_{D}(\cdot, z),-\eta\right\}\right)^{n} .
$$

This measure is supported on the set $\left\{\mathscr{G}_{D}(\cdot, z)=-\eta\right\} \subset B\left(z, R_{D} e^{-\eta}\right)$, and its total mass is $(2 \pi)^{n}$ (see [He]).

We want to apply Lemma 3.1 for $z^{\prime}=z$. For this we must choose $\eta>1$ such that

$$
\begin{equation*}
R_{D} e^{-\eta} \leq \frac{\delta_{D}(w)}{8 R_{D}} \min \left\{|z-w|,\left|z^{\prime \prime}-w\right|\right\} \tag{4.7}
\end{equation*}
$$

for $\left|z^{\prime \prime}-z\right|<R_{D} e^{-\eta}$. Now we note that

$$
\left|z^{\prime \prime}-w\right| \geq|z-w|-\left|z^{\prime \prime}-z\right| \geq|z-w|-R_{D} e^{-\eta} \geq \frac{1}{2}|z-w|
$$

if only $\eta \geq \log \frac{2 R_{D}}{|z-w|}$. We must choose

$$
\begin{equation*}
\eta \geq \log \frac{16 R_{D}}{|z-w| \delta_{D}(w)} \tag{4.8}
\end{equation*}
$$

in order to arrange for (4.7). Lemma 3.1 and (4.6) yield

$$
\begin{align*}
& (n!)^{1 / n} \eta^{(n-1) / n}\left|\mathscr{G}_{D}(w, z)\right|^{1 / n} \tag{4.9}\\
& \begin{aligned}
& \geq(2 \pi)^{-n} \int_{D}\left|\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)\right| d \mu_{z, \eta}\left(z^{\prime \prime}\right) \geq(2 \pi)^{-n} \int_{D}\left|\mathscr{G}_{D}(z, w)\right| d \mu_{z, \eta}\left(z^{\prime \prime}\right) \\
& \quad-(2 \pi)^{-n} \int_{D}\left|\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)-\mathscr{G}_{D}(z, w)\right| d \mu_{z, \eta}\left(z^{\prime \prime}\right) \\
& \quad=\left|\mathscr{G}_{D}(z, w)\right|-(2 \pi)^{-n} \int_{D}\left|\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)-\mathscr{G}_{D}(z, w)\right| d \mu_{z, \eta}\left(z^{\prime \prime}\right) \\
& \quad \geq\left|\mathscr{G}_{D}(z, w)\right|-(2 \pi)^{-n} \int_{D} \log \left(1+2 C_{5} \frac{R_{D}^{2 \varepsilon}}{\delta_{D}(w)} \frac{e^{-\varepsilon \eta}}{|z-w|^{\varepsilon}}\right) d \mu_{z, \eta}\left(z^{\prime \prime}\right) \\
& \quad=\left|\mathscr{G}_{D}(z, w)\right|-\log \left(1+M_{\eta} e^{-\varepsilon \eta}\right)
\end{aligned}
\end{align*}
$$

with the abbreviation

$$
M_{\eta}:=\left(2 C_{5}\right)^{\varepsilon} \frac{R_{D}^{\varepsilon^{2}+1}}{\delta_{D}(w)|z-w|^{\varepsilon}}
$$

We now choose

$$
\begin{equation*}
\eta:=\left(\frac{1}{n}+\frac{1}{\varepsilon}\right) \frac{1}{\varepsilon} \log \frac{1}{\left|\mathscr{G}_{D}(w, z)\right|}+\frac{1+\varepsilon^{2}}{\varepsilon^{2}} \log \frac{2 C_{5}}{R_{D}^{1-\varepsilon}}+\frac{1+\varepsilon^{2}}{\varepsilon^{2}} \log \frac{R_{D}}{|z-w|} \tag{4.10}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
\eta>\frac{1}{\varepsilon} \log M_{\eta}+\frac{1}{n \varepsilon} \log \frac{1}{\left|\mathscr{G}_{D}(w, z)\right|} \tag{4.11}
\end{equation*}
$$

By Proposition 2.1 we have

$$
\left|\mathscr{G}_{D}(w, z)\right| \leq C_{5} \frac{\delta_{D}(w)^{\varepsilon}}{|z-w|}
$$

This leads to

$$
\begin{aligned}
\eta- & \frac{1}{\varepsilon} \log M_{\eta}-\frac{1}{n \varepsilon} \log \frac{1}{\left|\mathscr{G}_{D}(w, z)\right|} \\
= & \frac{1}{\varepsilon^{2}} \log \frac{1}{\left|\mathscr{G}_{D}(w, z)\right|}+\frac{1+\varepsilon^{2}}{\varepsilon^{2}} \log \frac{R_{D}}{|z-w|}+\frac{1+\varepsilon^{2}}{\varepsilon^{2}} \log \frac{2 C_{5}}{R_{D}^{1-\varepsilon}} \\
& -\log \left(2 C_{5}\right)-\frac{1+\varepsilon^{2}}{\varepsilon} \log R_{D}+\frac{1}{\varepsilon} \log \delta_{D}(w)+\log |z-w| \\
\geq & -\frac{1}{\varepsilon^{2}} \log C_{5}-\frac{1}{\varepsilon} \log \delta_{D}(w)+\frac{1}{\varepsilon^{2}} \log |z-w|+\frac{1+\varepsilon^{2}}{\varepsilon^{2}} \log \frac{R_{D}}{|z-w|} \\
& +\frac{1+\varepsilon^{2}}{\varepsilon^{2}} \log \frac{2 C_{5}}{R_{D}^{1-\varepsilon}}-\log \left(2 C_{5}\right)-\frac{1+\varepsilon^{2}}{\varepsilon} \log R_{D}+\frac{1}{\varepsilon} \log \delta_{D}(w)+\log |z-w| \\
= & \frac{1}{\varepsilon^{2}} \log 2>0,
\end{aligned}
$$

which yields (4.11). Further we get (4.8) from

$$
\begin{aligned}
& \eta-\log \frac{16 R_{D}}{|z-w| \delta_{D}(w)} \\
& \quad \geq \frac{1}{\varepsilon} \log M_{\eta}-\frac{1}{n \varepsilon} \log C_{5}-\log \left(16 R_{D}\right)+\log \delta_{D}(w)+\log |z-w| \\
& \quad \geq-\log \left(8 R_{D}^{1-\varepsilon-1 / \varepsilon} C_{5}^{1 / n \varepsilon-1}\right)+\left(\frac{1}{\varepsilon}-1\right) \log \frac{1}{\delta_{D}(w)}>0
\end{aligned}
$$

using 4.11) and $\left|\mathscr{G}_{D}(w, z)\right| \leq C_{5} \delta_{D}(w)^{\varepsilon} /|z-w| \leq C_{5}$ (recall that we suppose $\left.\delta_{D}(w)^{\varepsilon} /|z-w| \leq 1\right)$.

Finally,

$$
\begin{aligned}
\log & \frac{M_{\eta}}{\exp \left(\eta^{1-1 / n}\left|\mathscr{G}_{D}(w, z)\right|^{1 / n}\right)-1} \\
& \leq \log \frac{M_{\eta}}{\eta^{1-1 / n}\left|\mathscr{G}_{D}(w, z)\right|^{1 / n}}=\log M_{\eta}-\left(1-\frac{1}{n}\right) \log \eta+\frac{1}{n} \log \frac{1}{\left|\mathscr{G}_{D}(w, z)\right|} \\
& \leq \varepsilon \eta-\left(1-\frac{1}{n}\right) \log \eta \leq \varepsilon \eta, \quad \text { by (4.11), }
\end{aligned}
$$

hence

$$
e^{-\varepsilon \eta} \leq \frac{1}{M_{\eta}}\left(\exp \left(\eta^{1-1 / n}\left|\mathscr{G}_{D}(w, z)\right|^{1 / n}\right)-1\right)
$$

and

$$
\log \left(1+M_{\eta} e^{-\varepsilon \eta}\right) \leq \eta^{1-1 / n}\left|\mathscr{G}_{D}(w, z)\right|^{1 / n}
$$

Plugging these into 4.9 we find by means of 2.1 , applied to $\left|\mathscr{G}_{D}(w, z)\right|$,

$$
\begin{aligned}
\left|\mathscr{G}_{D}(z, w)\right| & \leq\left(1+(n!)^{1 / n}\right) \eta^{(n-1) / n}\left|\mathscr{G}_{D}(w, z)\right|^{1 / n} \\
& \leq \frac{2}{\varepsilon^{2}}\left(1+(n!)^{1 / n}\right) M(z, w)\left|\mathscr{G}_{D}(w, z)\right|^{1 / n}
\end{aligned}
$$

from which the claim follows.
CASE 2: $\delta_{D}(w)^{\varepsilon}>|z-w|$. With a constant $\widehat{M}_{\eta}>1$ to be chosen later, we consider the function

$$
v(x):=\widehat{M}_{\eta} \log \left(\frac{1}{2} \frac{|x-w|}{\delta_{D}(w)^{\varepsilon}}\right)
$$

on the domain

$$
\Omega_{r}:=D \cap B\left(w, \delta_{D}(w)^{\varepsilon}\right) \backslash B(w, r)
$$

where the radius $r>0$ is less than $|z-w|$ and satisfies

$$
\widehat{M}_{\eta} \log \frac{r}{\delta_{D}(w)^{\varepsilon}} \leq \log \frac{r}{R_{D}}
$$

which is equivalent to

$$
\log r<\frac{\varepsilon \widehat{M}_{\eta} \log \delta_{D}(w)-\log R_{D}}{\widehat{M}_{\eta}-1}
$$

Then $z \in \Omega_{r}$, and $w \notin \Omega_{r}$.
On Ω_{r} we have $v \leq-\widehat{M}_{\eta} \log 2<0$.
Next let us consider v on $\partial \Omega_{r}$. For $x \in D \cap \partial B(w, r)$ we can estimate

$$
v(x)=\widehat{M}_{\eta} \log \frac{r}{\delta_{D}(w)^{\varepsilon}} \leq \log \frac{r}{R_{D}}<\mathscr{G}_{D}(x, w)
$$

For $x \in \partial D$ we obtain

$$
v(x) \leq-\widehat{M}_{\eta} \log 2<0=\mathscr{G}_{D}(x, w)
$$

Finally, let $x \in D \cap \partial B\left(w, \delta_{D}(w)^{\varepsilon}\right)$. Then, by Case 1 , because $|x-w|=$ $\delta_{D}(w)^{\varepsilon}$,

$$
\left|\mathscr{G}_{D}(x, w)\right| \leq 2 \varepsilon^{-2}\left(1+(n!)^{1 / n}\right) M(x, w)^{1-1 / n}\left|\mathscr{G}_{D}(w, x)\right|^{1 / n}
$$

But

$$
\left|\mathscr{G}_{D}(w, x)\right| \log ^{n-1} \frac{1}{\left|\mathscr{G}_{D}(w, x)\right|} \leq C_{6}
$$

and

$$
\log \frac{R_{D}}{|x-w|}=\log \frac{R_{D}}{\delta_{D}(w)^{\varepsilon}} \leq \log \frac{R_{D}}{|z-w|}
$$

(We are considering the case $\delta_{D}(w)^{\varepsilon}>|z-w|$.) This proves

$$
\left|\mathscr{G}_{D}(x, w)\right| \leq C_{7}+C_{8}\left(\log \frac{R_{D}}{|z-w|}\right)^{1-1 / n}
$$

and, since $v(x)=-\widehat{M}_{\eta} \log 2$, we get

$$
\left|\mathscr{G}_{D}(x, w)\right| \leq \frac{1}{\widehat{M}_{\eta}}\left(C_{7}^{\prime}+C_{8}^{\prime}\left(\log \frac{R_{D}}{|z-w|}\right)^{1-1 / n}\right)|v(x)|
$$

Let

$$
\widehat{M}_{\eta}:=C_{9} M(z, w)^{1-1 / n}
$$

where the constant C_{9} can be chosen independently of z, w in such a way that $\left|\mathscr{G}_{D}(x, w)\right| \leq|v(x)|$. Hence, by the maximality of $\mathscr{G}_{D}(\cdot, w)$ we get $v \leq$ $\mathscr{G}_{D}(\cdot, w)$ on Ω_{r}. This implies

$$
\left|\mathscr{G}_{D}(z, w)\right| \leq|v(z)| \leq \widehat{M}_{\eta} \log \left(2 \frac{\delta_{D}(w)^{\varepsilon}}{|z-w|}\right) \leq n \widehat{M}_{\eta} \log \left(1+2\left(\frac{\delta_{D}(w)^{\varepsilon}}{|z-w|}\right)^{1 / n}\right)
$$

from which the desired estimate on $\mathscr{G}_{D}(z, w)$ will follow.
4.2. Proof of estimate (1.2). Our aim is the proof of

$$
\left|\mathscr{G}_{D}(z, w)\right| \leq C M(z, w)^{1-1 / n} \log \left(1+C\left(\frac{\delta_{D}(z)^{\varepsilon} \delta_{D}(w)^{\varepsilon}}{|z-w|^{2}}\right)^{1 / n}\right)
$$

We fix distinct $z, w \in D \cap U_{1}$. Without loss of generality we may assume that they are close to the boundary so that the orthogonal projections z^{*}, w^{*} to the boundary are well-defined.

Let $c>0$ denote a small constant such that

$$
4 c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}<1
$$

If $\delta_{D}(z)^{\varepsilon} \geq c|z-w|$, then (1.1) yields

$$
\begin{aligned}
\left|\mathscr{G}_{D}(z, w)\right| & \leq n C M(z, w)^{1-1 / n} \log \left(1+C\left(\frac{\delta_{D}(w)^{\varepsilon}}{|z-w|}\right)^{1 / n}\right) \\
& \leq n C M(z, w)^{1-1 / n} \log \left(1+C c^{-1 / n}\left(\frac{\delta_{D}(z)^{\varepsilon} \delta_{D}(w)^{\varepsilon}}{|z-w|^{2}}\right)^{1 / n}\right)
\end{aligned}
$$

So we suppose that $\delta_{D}(z)^{\varepsilon} \leq c|z-w|$. Now we define

$$
V:=D \cap B\left(z^{*}, 2 c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}|z-w|\right)
$$

and note that

$$
\left|z-z^{*}\right|=\delta_{D}(z) \leq(c|z-w|)^{1 / \varepsilon} \leq c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}|z-w|
$$

hence $z \in V$. At the same time we have

$$
\begin{aligned}
\left|w-z^{*}\right| & \geq|z-w|-\left|z-z^{*}\right|=|z-w|-\delta_{D}(z) \geq|z-w|-(c|z-w|)^{1 / \varepsilon} \\
& >2 c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}|z-w|
\end{aligned}
$$

by the choice of c. Hence $w \notin V$, and $\mathscr{G}_{D}(\cdot, w)$ is a maximal plurisubharmonic function on V. We define on V a plurisubharmonic comparison function v_{2}. For this we use

$$
\psi(x):=\Phi(x)-\gamma\left|x-z^{*}\right|^{2}
$$

which is negative and for small enough $\gamma>0$ also plurisubharmonic. Then, for any $x \in V$,

$$
\begin{aligned}
|x-w| & \geq|z-w|-|x-z| \geq|z-w|-\delta_{D}(z)-\left|x-z^{*}\right| \\
& \geq\left(1-3 c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}\right)|z-w| \geq \frac{1}{4}|z-w|
\end{aligned}
$$

By (1.1) we have the estimate

$$
\begin{aligned}
\mathscr{G}_{D}(x, w) & \geq-C M(x, w)^{1-1 / n} \log \left(1+\widetilde{C}\left(\frac{\delta_{D}(w)^{\varepsilon}}{|x-w|}\right)^{1 / n}\right) \\
& \geq-C^{\prime} M(z, w)^{1-1 / n} \log \left(1+C M_{1}^{1 / n}\right) \\
& \geq-C^{\prime} M(z, w)^{1-1 / n} \log \left(1+C M_{1}^{1 / n}\left(\frac{-\psi(x)}{\gamma\left|x-z^{*}\right|^{2}}\right)^{1 / 2 n}\right)
\end{aligned}
$$

with some constant C^{\prime} and $M_{1}:=4 \delta_{D}(w)^{\varepsilon} /|z-w|$. Our plurisubharmonic comparison function v_{2} is now defined by

$$
v_{2}(x):=-C^{\prime} M(z, w)^{1-1 / n} \log \left(1+C\left(\frac{\delta_{D}(w)^{\varepsilon}}{\gamma_{1}|z-w|^{2}}\right)^{1 / n}(-\psi(x))^{1 / 2 n}\right)
$$

with a constant γ_{1} that will be chosen in a moment.
It is easily verified that v_{2} is plurisubharmonic on V. We compare v_{2} and $\mathscr{G}_{D}(\cdot, w)$ on ∂V. On $V \cap \partial D$ certainly $v_{2} \leq 0=\mathscr{G}_{D}(\cdot, w)$.

For $x \in D \cap \partial B\left(z^{*}, 2 c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}|z-w|\right)$ we have

$$
\gamma_{1}|z-w|=\gamma_{1} \frac{\left|x-z^{*}\right|}{2 c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}}=\frac{1}{4} \sqrt{\gamma}\left|x-z^{*}\right|
$$

for $\gamma_{1}=\frac{\sqrt{\gamma}}{2} c^{1 / \varepsilon} R_{D}^{1 / \varepsilon-1}$, and therefore

$$
\begin{aligned}
v_{2}(x) & =-C^{\prime} M(z, w)^{1-1 / n} \log \left(1+C M_{1}^{1 / n}(-\psi(x))^{1 / 2 n}\right) \\
& \leq-C^{\prime} M(z, w)^{1-1 / n} \log \left(1+C M_{1}^{1 / n}\left(\frac{-\psi(x)}{\gamma\left|x-z^{*}\right|^{2}}\right)^{1 / 2 n}\right) \leq \mathscr{G}_{D}(x, w)
\end{aligned}
$$

Hence $v_{2} \leq \mathscr{G}_{D}(\cdot, w)$ on ∂V and, by the comparison principle, $v_{2} \leq \mathscr{G}_{D}(\cdot, w)$ on V. But this gives

$$
\begin{aligned}
\left|\mathscr{G}_{D}(z, w)\right| & \leq\left|v_{2}(z)\right| \\
& =C^{\prime} M(z, w)^{1-1 / n} \log \left(1+C\left(\frac{\delta_{D}(w)^{\varepsilon}}{\gamma_{1}|z-w|^{2}}\right)^{1 / n}(-\psi(z))^{1 / 2 n}\right) \\
& \leq C^{\prime} M(z, w)^{1-1 / n} \log \left(1+\widehat{C}\left(\frac{\delta_{D}(z)^{\varepsilon} \delta_{D}(w)^{\varepsilon}}{|z-w|^{2}}\right)^{1 / n}\right)
\end{aligned}
$$

with some new constant \widehat{C}. Note that

$$
|\psi(z)|=|\Phi(z)|+\delta_{D}(z) \leq(C+1) \delta_{D}(z)^{2 \varepsilon}
$$

This finishes the proof of Theorem 1.1.
4.3. Proof of Theorem 1.3. We let $h:=z^{\prime}-z^{\prime \prime}$ and consider two cases.

CASE 1: $|h|^{2 \varepsilon / 3} \leq \delta_{D}(w)$ and $|h| \leq\left(\delta_{D}(w) / 8 R_{D}\right) M\left(z^{\prime}, z^{\prime \prime}, w\right)$. Then, by Lemma 3.1 we have

$$
\begin{aligned}
\left|\mathscr{G}_{D}\left(z^{\prime}, w\right)-\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)\right| & \leq \log \left(1+C^{\prime} \frac{|h|^{\varepsilon}}{\delta_{D}(w) M\left(z^{\prime}, z^{\prime \prime}, w\right)^{\varepsilon}}\right) \\
& \leq \log \left(1+C^{\prime} \frac{|h|^{\varepsilon / 3}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)^{\varepsilon}}\right)
\end{aligned}
$$

which proves the claimed estimate.
CASE 2: $|h|^{2 \varepsilon / 3} \geq \delta_{D}(w)$ or $|h| \geq\left(\delta_{D}(w) / 8 R_{D}\right) M\left(z^{\prime}, z^{\prime \prime}, w\right)$. Now we simply estimate

$$
\left|\mathscr{G}_{D}\left(z^{\prime}, w\right)-\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)\right| \leq\left|\mathscr{G}_{D}\left(z^{\prime}, w\right)\right|+\left|\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)\right|
$$

and want to apply (1.1) to the right-hand side. For this we note that

$$
\begin{aligned}
M\left(z^{\prime}, w\right) & \leq\left|\log \log \left(1+C \frac{\delta_{D}(w)^{\varepsilon}}{\left|z^{\prime}-w\right|}\right)\right|+\log \frac{R_{D}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)} \\
& \leq C^{\prime} \log \frac{R_{D}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)},
\end{aligned}
$$

and $M\left(z^{\prime \prime}, w\right) \leq C^{\prime} \log \frac{R_{D}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)}$. This results in

$$
\begin{aligned}
\left|\mathscr{G}_{D}\left(z^{\prime}, w\right)\right| & \leq \widehat{C} M\left(z^{\prime}, w\right)^{1-1 / n} \log \left(1+C\left(\frac{\delta_{D}(w)^{\varepsilon}}{\left|z^{\prime}-w\right|}\right)^{1 / n}\right) \\
& \leq \widehat{C} M\left(z^{\prime}, w\right)^{1-1 / n} \log \left(1+\widehat{C} \frac{|h|^{2 \varepsilon^{2} / n}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)^{1+\varepsilon / n}}\right)
\end{aligned}
$$

and

$$
\left|\mathscr{G}_{D}\left(z^{\prime \prime}, w\right)\right| \leq \widehat{C} M\left(z^{\prime \prime}, w\right)^{1-1 / n} \log \left(1+\widehat{C} \frac{|h|^{2 \varepsilon^{2} / n}}{M\left(z^{\prime}, z^{\prime \prime}, w\right)^{1+\varepsilon / n}}\right)
$$

which in conjunction with the estimates on $M\left(z^{\prime}, w\right)$ and $M\left(z^{\prime \prime}, w\right)$ gives the desired Hölder estimate for $\left|\mathscr{G}_{D}\left(z^{\prime}, w\right)\right|$.

5. The case of pseudoconvex extendable domains. Proofs of Lemmas 1.5 and 1.6

5.1. Proof of Lemma 1.5. We assume that $N>2$, otherwise the assertion is well-known. As in the definition of pseudoconvex extendability, let $\psi \in \mathscr{C}^{2}\left(U^{\prime} \times U^{\prime}\right)$ be an extending function of order N, defined on a neighborhood U^{\prime} of w^{0}. Then there exists a constant $C_{2}>0$ such that its Levi form $\mathscr{L}_{\psi(q, \cdot)}$ satisfies (for all $q \in \partial D \cap U^{\prime}$)

$$
\mathscr{L}_{\psi(q, \cdot)}(z ; X) \geq-C_{2}\left(|\psi(q, z)||X|^{2}+|\langle\partial \psi(q, \cdot), X\rangle||X|\right) .
$$

For any constant $A>0$ and any $q \in \partial D \cap U^{\prime}$, the function

$$
\begin{equation*}
\sigma(q, z):=\psi(q, z) e^{-A|z-q|^{2}} \tag{5.1}
\end{equation*}
$$

also extends in a pseudoconvex way on ∂D near w^{0}, more explicitly

$$
\begin{equation*}
-C_{3}(-r(z)+|z-q|) \leq \sigma(q, z) \leq e^{-A R^{\prime 2}} r(z)-c_{2}|z-q|^{N}, \tag{5.2}
\end{equation*}
$$

where R^{\prime} is the diameter of U^{\prime} and $c_{2}>0$ is a small constant.
We choose open neighborhoods $U_{1} \subset \subset U_{2} \subset \subset U^{\prime}$ of w^{0} such that, given $z \in U_{1}$, its orthogonal projection z^{*} onto ∂D lies inside U_{2}. By making A very large and then shrinking U_{1} we can arrange that for any $q \in \partial D \cap U_{2}$, the function $-(-\sigma(q, z))^{2 / N}$ is plurisubharmonic on $D \cap U_{1}$. Now we put, for $z \in D \cap U_{1}$,

$$
\Phi^{\prime}(z):=\sup _{q \in \partial D \cap U_{2}}\left(-(-\sigma(q, z))^{2 / N}+\frac{1}{4} c_{2}^{2 / N}|z-q|^{2}\right) .
$$

Our claim is that Φ^{\prime} satisfies the estimate

$$
-C_{1}^{\prime} \delta_{D}^{2 / N} \leq \Phi^{\prime} \leq-C_{2}^{\prime} \delta_{D}^{2 / N}
$$

with suitable constants $C_{1}^{\prime}, C_{2}^{\prime}>0$.
For this we observe that for any $t, s \geq 0$,

$$
\left(t^{2 / N}+s^{2 / N}\right)^{N / 2} \leq 2^{N}(t+s)
$$

This implies

$$
\begin{aligned}
\left(\left(-e^{-A R^{\prime 2}} r(z)\right)^{2 / N}+c_{2}^{2 / N}|z-q|^{2}\right)^{N / 2} & \leq 2^{N}\left(-e^{-A R^{\prime 2}} r(z)+c_{2}|z-q|^{N}\right) \\
& \leq-2^{N} \sigma(q, z)
\end{aligned}
$$

by (5.2), or

$$
\left(-e^{-A R^{\prime 2}} r(z)\right)^{2 / N}+c_{2}^{2 / N}|z-q|^{2} \leq 4(-\sigma(q, z))^{2 / N} .
$$

This gives

$$
\Phi^{\prime}(z) \leq-\frac{1}{4} e^{-2 A R^{\prime 2} / N}(-r(z))^{2 / N} .
$$

The lower estimate is easier to show. Let $z \in D \cap U_{1}$; then $z^{*} \in \partial D \cap U_{2}$, and we find that

$$
\begin{aligned}
\Phi^{\prime}(z) & \geq-\left(-\sigma\left(z^{*}, z\right)\right)^{2 / N}+\frac{1}{4} c_{2}^{2 / N}\left|z-z^{*}\right|^{2} \\
& \geq-\left(C_{3}\left(-r(z)+\left|z-z^{*}\right|\right)\right)^{2 / N} \geq-C_{4} \delta_{D}(z)^{2 / N}
\end{aligned}
$$

The upper semicontinuous regularization Φ of Φ^{\prime} is plurisubharmonic and satisfies property (i). But also property (ii) holds, since the function $\Phi^{\prime \prime}(z):=$ $\Phi^{\prime}(z)-\frac{1}{5} c_{2}^{2 / N}|z|^{2}$ is the supremum of a family of plurisubharmonic functions, and furthermore $z \mapsto \Phi(z)-\frac{1}{5} c_{2}^{2 / N}|z|^{2}$ equals the upper semicontinuous regularization of $\Phi^{\prime \prime}$ and hence is also plurisubharmonic.
5.2. Proof of Lemma 1.6. We only need to recall Cho's proof. We give a sketch of this proof and then state where to modify it.

Let $\phi \in \mathscr{C}_{0}^{\infty}(B(0,2) \backslash B(0,1 / 4))$ be a function such that $\phi(z)=1$ for $1 / 2<|z|<1$. Also let $\psi \in \mathscr{C}^{\infty}\left(\mathbb{C}^{n}\right)$ be a smooth function such that $\psi(z)=1$ for $|z| \geq 2$, and $\psi(z)=0$ if $|z|<1$.

For some large integer \mathscr{N} we put $\phi_{\mathscr{N}}(z)=\psi\left(2^{\mathscr{N} \varepsilon} z\right)$ and $\phi_{k}(z)=\phi\left(2^{k \varepsilon} z\right)$ for $k>\mathscr{N}$. Let $\zeta \in \partial D$. Then we consider, with a suitable small number $a>0$, the function

$$
E_{\zeta}(z):=\sum_{k=\mathscr{N}}^{\infty} 2^{-2 k} \phi_{k}(z-\zeta)\left(\lambda_{2^{-k} a}(z)-2\right) .
$$

The only difference between this definition for E_{ζ} and that of Cho's proof is the factor $2^{-2 k}$ in front of $\phi_{k}(z-\zeta)\left(\lambda_{2-k}(z)-2\right)$. In Cho's proof the factor was $2^{-4 k}$.

There exists $L \in \mathbb{N}$ such that for any ζ and z there are at most L integers k such that $z \in \operatorname{supp} \phi_{k}(\cdot-\zeta)$. Again we have

$$
\left|D E_{\zeta}(z)\right| \leq L a^{-\ell} 2^{\ell-2} k
$$

for any ℓ th order derivative $D E_{\zeta}$ of E_{ζ} and $z \in \operatorname{supp} \phi_{k}(\cdot-\zeta)$. This shows that E_{ζ} is of class \mathscr{C}^{2}. The rest of the proof of the pseudoconvexity of the surface $\left\{E_{\zeta}=0\right\}$ is completely analogous to that in Cho. Because of the factor $2^{-2 k}$ instead of $2^{-4 k}$, now the function E_{ζ} extends in a pseudoconvex way to order $\leq 1 / \varepsilon$ instead of $2 / \varepsilon$.

References

[Bło1] Z. Błocki, Estimates for the complex Monge-Ampère operator, Bull. Polish Acad. Sci. Math. 41 (1993), 151-157.
[Bło2] Z. Błocki, The $C^{1,1}$-regularity of the pluricomplex Green function, Michigan Math. J. 47 (2000), 211-215.
[Car] M. Carlehed, Comparison of the pluricomplex and the classical Green functions, Michigan Math. J. 45 (1998), 399-407.
[CCW] M. Carlehed, U. Cegrell, and F. Wikström, Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function, Ann. Polon. Math. 71 (1999), 87-103.
[Che] B. Y. Chen, Comparison of the pluricomplex and the classical Green functions on convex domains of finite type, Michigan Math. J. 50 (2002), 27-36.
[Cho] S. H. Cho, A lower bound on the Kobayashi metric near a point of finite type in \mathbb{C}^{n}, J. Geom. Anal. 2 (1992), 317-325.
[DA] J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615-637.
[Dem] J.-P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564.
[DiFo] K. Diederich and J. E. Fornæss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. 110 (1979), 575-592.
[DiHe] K. Diederich and G. Herbort, Quantitative estimates for the Green function and an application to the Bergman metric, Ann. Inst. Fourier (Grenoble) 50 (2000), 1205-1228.
[He] G. Herbort, The pluricomplex Green function on pseudoconvex domains with a smooth boundary, Int. J. Math. 11 (2000), 509-522.
[Hör] L. Hörmander, L^{2} estimates and existence theorems for the $\bar{\partial}$-operator, Acta Math. 113 (1965), 89-152.
[Kli1] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240.
[Kli2] M. Klimek, Pluripotential Theory, London Math. Soc. Monogr. (N.S.) 6, Clarendon Press, Oxford, 1991.
[NPT] N. Nikolov, P. Pflug, and P. J. Thomas, Lipschitzness of the Lempert and Green functions, Proc. Amer. Math. Soc. 137 (2009), 2027-2036.
[OhTa] T. Ohsawa and K. Takegoshi, On the extension of L^{2} holomorphic functions, Math. Z. 195 (1987), 197-204.

Gregor Herbort
Fachbereich Mathematik und Naturwissenschaften
Bergische Universität Wuppertal
D-42097 Wuppertal, Germany
E-mail: gregor@math.uni-wuppertal.de

Received 20.3.2013
and in final form 28.8.2013

[^0]: 2010 Mathematics Subject Classification: Primary 32U35; Secondary 32T25, 32T45. Key words and phrases: pluricomplex Green function, finite type, Bergman metric.

