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The pluricomplex Green function
on some regular pseudoconvex domains

by GREGOR HERBORT (Wuppertal)

Abstract. Let D be a smooth bounded pseudoconvex domain in C™ of finite type.
We prove an estimate on the pluricomplex Green function ¢p(z,w) of D that gives quan-
titative information on how fast the Green function vanishes if the pole w approaches the
boundary. Also the Holder continuity of the Green function is discussed.

1. Introduction. Let D be a bounded pseudoconvex domain in C"™ with
a smooth boundary. We will investigate the behavior of the pluricomplex
Green function ¥p(-,w), w € D, of D when w tends to the boundary.

This function is defined by
(-, w) = suplu(z) | u € P(w; D)},

where P(w; D) denotes the class of all negative plurisubharmonic functions
on D such that u —log| - —w| is bounded from above near w. It has been
introduced by Klimek [KIil], and later in hyperconvex domains in general
complex manifolds by Demailly [Deml|. In both papers fundamental proper-
ties of ¥p were proved (in particular its relationship to the Monge—-Ampére
operator was clarified in [Dem]).

The fact that ¥p has a logarithmic pole at w makes it an important tool in
applications of real methods in complex analysis, in particular those that are
based upon the L2-theory for the J-operator with plurisubharmonic weight
functions (see [Hor|, [OhTa]). We need to know, however, how ¥p(-, w) be-
haves when w tends to the boundary. First results in this context were ob-
tained in [CCW]|, [He], and |[DiHe| (for quantitative results in special cases
see [Car|, [Che]).

For a domain D C C™ we denote by dp the boundary-distance function.
Our main result is
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THEOREM 1.1. Let D CcC C" be a smooth bounded domain, and let
wo € 0D. Assume that there exist an open neighborhood Uy 3 wy, constants
C >0 and 0 < e < 1/2, and a €*-smooth plurisubharmonic function ® :
DNU; — (—1,0) such that:

(a) The function z — ®(z) — C~Yz|? is plurisubharmonic.
(b) One has ®(z) > —Cép(2)* for all z € DN U;.

Then there exists a constant C > 0, and a neighborhood Uy CC Uy of wy,
such that

1) (2, w)| < CM (2, w)~1/" 10g<1 + C<5D(w)5>1/">

|z — wl
and
€ e\ 1/n
(1.2) % (z, w)| < CM(z,w) /" log(l + C(W) >,
z—w
where
1>
M (z,w) := |loglog| 1 + C(;D(w) + 1+ Clog
|z — wl |z — wl

for all z,w € DN Us,. Here we denote by Rp the diameter of D.

In |Car| the case of strongly pseudoconvex domains was treated, where
one can find a plurisubharmonic function ¢ with properties (a) and (b)
for ¢ = 1/2. For a convex domain of finite type an estimate for ¥p was
established in [Che| that implies without the factor M (z, w).

The methods from [Car], [Che] do not carry over to our case since the
Green function is not symmetric in general; whether or not holomorphic peak
functions are available under the above comparatively weak hypotheses is
also an open question.

As a corollary we obtain from Theorem

THEOREM 1.2. Let D CcC C" be a smooth bounded domain, and let
wg € D be such that there exist an open neighborhood Uy > wy, constants
C >0and0 < e < 1/2, and a €?-smooth plurisubharmonic function ® :
D NU; — (—1,0) with properties (a) and (b). Then we can choose an
open neighborhood Us CC Uy of wg such that for any w € D N Us the
sublevel set {9p(-,w) < —1} is contained in a ball about w of radius <
C'op(w)©log™ dD}w)‘ In particular, the Bergman metric Bp of D grows at
least like

RS

dp(w)® log™ #(w)

Bp(w; X) > Cy

for allw e DNU;y and X € C".
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The first assertion is clear. The second, concerning the growth order of
the Bergman metric, follows from Proposition 4.1 from [DiHe].

This improves the estimate of Theorem 1.13 from [DiHe| insofar as the
points w are not restricted to nontangential approach to the boundary point
w® and the growth is up to a log-term exactly of order £ and not only € — ¢
(with arbitrary 0 < ¢t < 1).

In [Blo2| and [NPT] the question of Holder continuity of the Green func-
tion was treated for a special class of domains. With the methods applied in
those papers we will show .

As a by-product we further obtain

THEOREM 1.3. Suppose D is as in Theorem[L.1l Then there is a constant
C > 0 such that
’Z/ _ Z//|e2/3n Rp

" /
|9p (2", w) —9p(z',w)| < CM(Z’,Z’/,M)(1+E)/TL log M2, 2" w)

for any 2/, 2" € D\ {w}, where
M(Z, 2" w) = min{|2’ —w|,|z" — wl|}.

Later we will consider pseudoconvex domains that are uniformly extend-
able in a pseudoconvex way of some finite order N > 2. They belong to the
class of pseudoconvex domains to which the above results apply.

The notion of pseudoconvex extendability is explained in the following

DEFINITION 1.4 (cf. [DiHe, Def. 1.10]). Let D CcC C™ be pseudoconvex
and smoothly bounded. We call D uniformly extendable of order N in a
pseudoconvex way near a point w® € 9D if there exist an open neighborhood
U’ 5w, a constant C; > 0 and a €?-smooth function v : U’ x U’ — R such
that:

(i) The open set {¢(q,-) < 0} N U’ is pseudoconvex and the surface
{¢(q,-) =0} NU’ is smooth and passes through ¢ when ¢ € 9D NU".
(ii) For x € U’, ¢ € U' N 0D we have the estimate

Crlr(x) ~ o = al) < wla.2) < (o) = ol — gl

In [DiFo| it was shown that real-analytically bounded pseudoconvex do-
mains have this property. This result was extended later in [Cho] to the larger
class of smooth bounded pseudoconvex domains that are of finite type in the
sense of [DA]. We will prove

LEMMA 1.5. Assume that the domain D CC C" is uniformly extendable
of order N in a pseudoconver way near a point w® € dD. Then there evist
an open neighborhood Uy of w®, a continuous plurisubharmonic function &
DNU; — R and constants C1,c1 > 0 such that:
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(i) On DNU; we have —ClégN <P <0.

(ii) The function z — ®(2) — c1|2|? is plurisubharmonic on D N U .
Hence Theorems and apply with e = 1/N.

In conjunction with a result of [Cho| one obtains the following:

LEMMA 1.6. Let D CcC C™ be a smooth bounded domain and wy € 0D a
point such that there exist an open neighborhood Uy 3 wq, constants C > 0
and 0 < e <1/2, and a family (Xs)o<s<s, of plurisubharmonic functions on
Uy satisfying:

(a) For all 6 € (0,60) one has 0 < A\s < 1.

(b) On the strip S5 == {z € DNUi|ép(z) < 0} the function z

Ns(2) — 672 |2|? is still plurisubharmonic.
(c) For any derivative DAs of \s of order k <2 one has |D\s| < Co~F.

Then D is uniformly extendable of order 1/e near wqy. In particular Theo-

rems and apply.

2. Estimating the Green function in terms of the boundary dis-

tance of its first argument. Our plan is to estimate the Green function
9p(P,Q) in terms of dp(P) and |P — Q|, and then to compare ¥p(P,Q)
with ¥p(Q, P).

PROPOSITION 2.1. Let D CC C™ satisfy the hypotheses of Theorem [L.]]
near w® € OD. Then there ezist a constant Cs > 0 and a radius Ry > 0 such
that for any P € DN B(w°, Ry) and Q € D one has

5D (P)Qe
P — QP)'

Pmo:]f. Let us take radii By < Ry < Ry such that B(wp,2R2) C Uy and
Ry > 5R;. Furthermore, we may assume that each z € B(w’, 3R2/2) has

an orthogonal projection z* € 9D N B(w®, 3Rz). We may certainly suppose
that 0p(P) < R1/2. Let us consider two cases:

CAsE I: |Q — w°| < 3R;. On U; the function
®1(2) = D(2) — c1]z — Q> — 1]z — P*|,
where ¢; < %, is negative and plurisubharmonic. Also we have
—0e) L, PP
cilz - QP? 2 —QJ?
But for z € B(w’, Ry) we have, for P € B(w®, Ry),
2= P*| >z —uw| = [w’ —P|— |P—P*|> Ry — 3Ry > Ry

(2.1) Ip(P.Q)| < ilog(l e

and
2= Q| < |z —w’| + [0 — Q| < Ry + 3Ry < §Ry.
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Therefore,
_p 2
%) >14 X8
cilz — QP2 16

1. cilz— QP 1 7\?
Slog METEE o g1 (L) ).
2 gz — T el T\ 16

The function

and hence

1 cl\z— QP . 0
Bo(2) = max{2 log —5.(2) ,—cgp if z€ B(w”,Ry)N D,

—c3 if z€ D\ (B(w’, Ry) N D),

now becomes plurisubharmonic on D and thus it is a good candidate for
4 (P, Q). Since |P — w’| < R; < Ry, we obtain
1 —d1(P)
P < —Po(P) < —log——————
‘gD( 7Q)’— 2( )—2 Ogcllp_Q‘Q

L1, —B(P) +erlP QP+ a|P— P
0% alP — QP2

5D(P)2a )
P —QJ?

with some positive constant cg, as desired.

IN

1
3 10g<1 + ¢

Case II: |Q — w®| > 3Ry. Now we put
B3(z2) == B(2) — c1]z — P*|?
in D N U;. This function is plurisubharmonic and if |z — P*| = R;/2 we
obtain @3(z) < —c1R?/4. Thus the function
max{®3(z), —c1R?/4} if z € B(P*,R1/2)N D,
)= {—clR%/zl if 2 € D\ (B(P*,R1/2) N D),

becomes well-defined and plurisubharmonic on D. Next we define an appro-
priate candidate for ¥p(-, Q). Let

maX{C7(l54(z),log |Z}€ @l
®5(2) = P

log 2= @ if = € B(Q, R1/2) N D,
Rp

where C7 > 0 is chosen so large that

Dy(z

} if € D\ (B(Q,R:/2) N D),

Ry
C-d <1
7®4(z) < log SR

for z € DNOB(Q, R1/2).
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Note that this is possible, since for such points z one has
2= P 21Q — P*| — |2 = Q| 2 |Q — w’| = [’ — P*| - |z = Q|
>|Q —w’| = [w’ — P| = dp(P) — |z — Q| = Ri,
hence @4(z2) = —c1 R} /4.
We find that
9p (P, Q)| < —P5(P) < —C7P4(P) = —C7P(P) + ¢,C;| P — P*|?
< Csdp(P)*,
because in our situation we have
[P = Q| >|Q —wo| — [P —wo| > 2R;.
N Sp(P) _ RS
This implies also |1L;—Q| < 35
The function V (t) := +log(1 +¢) is decreasing on (0, 0c). This yields, if
we choose Cs so large that

2R? ( o, R% >
log( 1+ Cj > Cs,
R AR}

the estimate

| , 0p(P) L Op(PYE (o op(P)E
210g( QT Q|2> 25 QP Q|2V<C5\P—Ql2>

5 Op(P)* ( 2R%)E>
> fc vi{c
PIP-QP2 "\ P4R?
RQ& 5
= 232 cs V<C5 4RQ>5D(P) )
2R? < RE
= log( 1+ 02D>6D(P)25
R2+25 54R%

> Cs6p(P)* > |9p(P,Q)|.

The proposition is proved. =

3. A first Holder estimate for the Green function. We adopt the
methods from [Blo2] and [NPT]. Let D be a bounded hyperconvex domain
in C". Let w € D be fixed and r = %5D(w). We consider for r > 1 > 0 the
family

2, :={v | v plurisubharmonic on D, v < 0 on D, v < log(n/r) on B(w,n)}
and its upper envelope

u'(z) = sup{v(z) | v € Z,}.
Then (for details see [KIi2l, Sec. 4.5]) we have:
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(a) u" is continuous, and u"(z) — 0 as z tends to a boundary point of D.

(b) The function 4" is maximal plurisubharmonic outside B(w,n).

(c) We have u" = log(n/r) on B(w,n) and u"(z) < log(max{|z—w|,n}/r)
on D.

(d) For m1 < m2 we have u™ < u™. Further lim,»\ou"(2) = 9p(z,w)
on D.

We recall from |[NPT] the following construction, associated with two
given different points P,w € D. Let D denote the unit disc in the plane.
We choose a holomorphic function Fp,, on D with values in DD such that
Fpy(w) = 0 and artgh|Fp,(P)| is equal to the Carathéodory distance
¢p(P,w) between P and w. Then we put, for h € C", z € D,

Fpy(2)
H = ———=h.
Puwn(z) =2+ FP,w(P>h
Since tghcp (P, Q) > |P — Q|/Rp for P,Q € D, we obtain
||
1 H —z| < Fpy(2)|—=—"—
(3.1) Hrnnl) =2 < RplFrulo)l o
for z € D. If |z — w| < dp(w), then we get
|2 — wl
Fpu(z)| < tgh sw) < ;
Frul)] < teheplzu) <
and from (3.1)) we see that
|z —w| _|h]
2 Hp,, —z| < .
(3.2) [Hpwn(z) — 2| < RD|P7 wl op ()

We will make use of this later.

LEMMA 3.1. Let D be a pseudoconvex domain as in Theorem[L.1]. Then,
with some constant Cy > 0, for 2/, 2" € D\ {w} we have

Do) — D (2" w)| <log(1+ y o 12 =21
D\%, D\Z, = log 15D(w) M(Z/,Z”,w)a

provided that
op(w)
/ "
. — <
(3.3) |z = 2" < SBp

where we write M (2', 2", w) = min{|z" — w|, |2" — w|}.

M2, 2" w),

Proof. We follow an idea from [NPT]. Let h := 2" — 2/, and consider the
domain

D = {Z eD ’ Hzf,w,h(z) < D}
Then B(w,n) C D; for small enough 7, since w € D;.
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If z€ D and H, (%) € 0D, we have

Rp
(3.4) 6p(2) < |Hyapp(z) — 2| < ¥ —w|‘h|
and
(3.5) |z —w| > |H 5 (2) —w| — |[Hy n(2) — 2]
Rp 1
>4 - hl > =0
> o) — {h] 2 Jn),

using (3.3)). This implies (together with Prop.

u(z) > 9p(z,w) > —10g<1 e 5D(z)a>

|2 — wl

RS hl|®
> —log( 14 C5—2 ,‘ | by (3.4)
|z —w| |2/ —w|

> —log| 1+ 2C5 fth [l by (3.5)).
- op(w) |2 —wl*

For z € 0D we even have u"(z) = 0. In each case we see that the last
displayed estimate holds for any z € 0D;. In particular,

) ) R, |
WiHrwn(2)) < 0 < w(z) o\ U+ 2055 5 7 e

on 0D;. We want to prove this estimate also for z € 0B(w,n).
For this purpose we take an arbitrary z € D with |z — w| = 1. Then,
by (3.2),
Rp |z —w|

H. — < — _—
| z 7w,h(z) w‘ = |Z w| + 5D(w) |ZI —U}’

Rp |h]
=11 .
< T o) |z'—w|>”
max{’Hz’,w,h(z) - w|777}

.
Rp  |h|
dp(w) |2 — wl

n Rp |hF
< u"(z) + log 1+2055D(w) 7 —wF )’ by (3.3).

|l

This gives

' (Hy 1(2)) < log

<log(n/r) + log<1 +

Since u' is maximal on D; \ B(w,7), the above estimate holds even on
Dy \ B(w,n), since it holds on 9(D; \ B(w,n)). We choose z = 2’ and get,
because H, , p(2") = 2",

e 0 R, |h|¢
U (z )Su (z)+log 1+2055D(w) M(Z’ o w)a ’
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Letting n tend to zero and recalling the definition of h, we obtain the desired

estimate
13

G (2", w) —9p(2,w) <log( 1+ 2Cs R |2 F .
) ) = 5D(w) M(Z/, Z”,’U))‘E

Interchanging the roles of 2z’ and 2” we can complete the proof. m

4. Proof of Theorem [1.1]

4.1. Proof of estimate ([1.1). We must consider two cases.

CASE 1: 0p(w)® < |z — w|. The starting point is the following estimate
that was obtained in [He] (based upon an inequality of [Bloll):
(4.6) V 19D(w)l ey < (2m)" () DG (w, 2) VT,
D
where dji. , denotes for any 1 > 0 the measure

Aty = (dd° max{Dp (-, 2), )"
This measure is supported on the set {¥p(-,2) = —n} C B(z, Rpe™ "), and
its total mass is (27)" (see [Hel).

We want to apply Lemma for 2/ = z. For this we must choose n > 1
such that

(4.7) Rpe= < 20 Lintle — wl, 12" — w])
RRp

for |2 — z| < Rpe™". Now we note that
12" —w| > |z —w|— |2 — 2| > |z —w| — Rpe™" > [z — w),

if only n > log ‘zljg‘. We must choose

16Rp
|z —wlép(w)
in order to arrange for (4.7)). Lemma and (4.6 yield
(4.9)  (n)/ry DGy (w, )M

> (2m) 7" [ 19D (" w)| dpz g (=) = (2m) " | |9 (2, w)]| dptz g (2")

(4.8) 1 > log

D D
= @2m) 7" [ 19 (2" w) = G (z,w)| dppz (")
D
= [Fp(z,w)| = (2m) " | [Gp (", w) — Fp(z,w)| dpz (")
D

Y (2 1 2C! RZE e d "
> _ -n -
otz ™ D 0g< " op( (w) ’Z—w!5> pen()

=|9p(z,w)| — log(1 + M,e~")
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with the abbreviation
2+1
Ry

Mn = (205) m

We now choose

1 1\1 1 1+e? 205  14¢? Rp
4.10 = —+—]-1 1 1 .
(4.10) <n+5) : 8 |9p(w, z)| * 2 % Ry + 2 %8 |z —w|

Next we show that

1 1 1
4.11 10 M, —l— 10 —_—
(4.11) g 8 G 2]
By Proposition 2.1 we have
5 &€
I (w,2)] < ;2200
|z — w|
This leads to
1 1 1
—flo M, — —log ———F—
ST e P p(w,2)]
1 1+¢? Rp  1+&* 20
l 1 1
I P =
g2 1
—log(2C5) — log Rp + —log dp(w) + log |z — w|
5
1 1 1 1+¢2 R
> ——logCs — —logdp(w) + — log |z —w| + ° log —2
g2 £ g2 g2 |z — w|

1+¢? 20 1+¢? 1
+7210g1775£_:—10g(205)— log Rp + —log dp(w) + log |z — w|
€ Ry €
1
= o) lOg2 > 0,
£
which yields (4.11)). Further we get (4.8]) from
16Rp
n —log

|2 — wl|dp(w)
1 1

> —log M, — — log C5 —1og(16Rp) + log dp(w) + log |z — w]
5

_ 1 1
> —log(8RY <~ 1/501/"5 b4 <1> 1o >0
> —log(8 ) 6 géD( )

using (4.11)) and |9p(w, z)| < Csdp(w)*/|z — w| < C5 (recall that we sup-
pose dp(w)¢/|z —w| < 1).



The pluricomplex Green function 219

Finally,
log 1—1 MT) 1
exp(n'=1/"|9p(w, z)|V/") — 1
M, 1 1 1
<lo 1 zloM—<1—>10 +—log
gnlfl/”lgp(w,z)ll/” & & n) 81T 08 “p(w, )|

1
ésn—<1—>logn§6n, by (4.11)),
n

hence
1

N <
(&
_Mn

(exp(n'™"%p (w, 2)['/") — 1)
and
log(1 + M,e™") < n'=Y/™|gp (w, 2)[V/™.
Plugging these into (4.9) we find by means of , applied to |¥p(w, z)],
% (z,w)| < (14 ()" Gp (w, 2)[ "
2 n n
< S (14 ()M (2, w) [ (w, 2)| V",
from which the claim follows.

CASE 2: dp(w)® > |z — w|. With a constant ]/\4\,] > 1 to be chosen later,
we consider the function

0= 3 )

2, := DN B(w,dp(w)?) \ B(w,r),

where the radius 7 > 0 is less than |z — w| and satisfies

on the domain

= r r
M, log ——— < log —
n 0og 5D(w)5 > log RD7

which is equivalent to

log r < eM, log 6/,2(10) —log RD'
M, —1

Then z € 2,, and w ¢ Q.
On §2, we have v < —M, log2 < 0.
Next let us consider v on 92,. For x € D N dB(w,r) we can estimate

—~ r r
= M, log ——— <log — .
’U(l’) n og 5D(w)6 > 1og RD < gD(:L” ’IU)

For x € 9D we obtain
v(z) < —]\/i7 log2 < 0=9Yp(z,w).
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Finally, let « € D N dB(w,dp(w)?). Then, by Case 1, because |z — w| =
6D(w)5,

% (z, w)| < 2e672(1 4 ()™M (2, w) =" |Gp (w, )|/

But
1
¢, log"7! —~— <
and
Rp Rp Rp
log —=— =log ————— < log ————.
e —wl ~ % opwr = Bl

(We are considering the case dp(w)® > |z — w|.) This proves

Rp 1-1/n
|9p (z,w)| < C7r + Cs| log
|z — wl

and, since v(x) = 7]\//_777 log 2, we get

1-1/n
%WWMS%<@+%Q%&)> )wwL

|z — wl
7
Let
]\//.777 = C’gM(z,w)l_l/”,

where the constant Cg can be chosen independently of z,w in such a way
that |9p(z,w)| < |v(x)|. Hence, by the maximality of ¥p(-, w) we get v <
9p(-,w) on §2,. This implies

9p (2, w)| < |v(z)| < M, log<26D(w)E> < nM, log(l + 2<5D(w)8>1/n>,

|z — w] |z — w]

from which the desired estimate on ¥p(z,w) will follow. m

4.2. Proof of estimate ([1.2). Our aim is the proof of

% (z,w)| < CM(z,w)~1/" log<1 + c(‘ww> Un).

|z —w]?

We fix distinct z,w € DNU;. Without loss of generality we may assume that
they are close to the boundary so that the orthogonal projections z*, w* to
the boundary are well-defined.

Let ¢ > 0 denote a small constant such that

401/€RE/€_1 < 1.
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If 6p(2)® > c|z — w|, then (1.1]) yields

e\ 1/n
z— W

£ g 1/n
< nCM(z,w) =" log<1 +Ccn ((513(,2)(5[)(u1)> >

|2 — w|?

So we suppose that dp(z)¢ < ¢|z — w|. Now we define
1/e—1
V:i=Dn B(;:*,ch/ERD/E |z — w))
and note that
K . 1/e 1/e pl/e=1,_
2= 27 = 6p(2) < (el — w]) = < M RY 2 — wl,
hence z € V. At the same time we have
W= 2| > 2 —wl — |2 — 27 = |z — w] = 6p(2) > |z — w| — (c] — w])1/°

> QCI/ER}D/EA]Z — w|

by the choice of ¢. Hence w ¢ V', and ¥p (-, w) is a maximal plurisubharmonic
function on V. We define on V' a plurisubharmonic comparison function wvs.
For this we use

V(@) = D(x) —lr — 2,
which is negative and for small enough « > 0 also plurisubharmonic. Then,
for any x € V,

e —w| > |z—w|—|z—z2| >|z—w|—dp(z) — |x — 27|
> (1= 3¢Y*RYT) |z —w| > 1|z — w)|.
By (|L.1)) we have the estimate
/5 e\ 1/n
G, w) > —CM(z, w)=Yn 1og<1 +o( p(w) ) )

|z — wl

> —C'M(z,w)" " log(1 + CM™)
. 1/2n
> —C'M(z,w) /" log<1 + CMll/" (Wci 2) )
vz — 2|

with some constant C’ and M := 40p(w)®/|z — w|. Our plurisubharmonic
comparison function vy is now defined by

va(x) i= —C'M (2, w)" /" log (1 + c(‘W) l/n(ﬂ/}(x))“ 2”)

Tz — w[?
with a constant v; that will be chosen in a moment.

It is easily verified that vy is plurisubharmonic on V. We compare vy and
9p(-,w) on V. On V NID certainly vy <0 = Yp(-,w).
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For z € DN OB(z*, 201/€R}7/671|z — w|) we have

|z — 27|

')/1|Z—'LU| :,71 1/571
2¢' /¢ R}

1 *
= Vilz =

for v = @cl/aRggfl, and therefore
va() = —C'M(z,w)' =M og (1 + OMY" (—p(a) /")

1 —(x) e
< —C'M(z,w) 7" 10g<1 +CM, /n () ) < ¥9p(z,w).

YN =2+

Hence vy < 9p(-,w) on 9V and, by the comparison principle, vy < ¥p(-, w)
on V. But this gives

9D (2, w)| < Jva(2)]

= crarte, Vg (10 (2N T )

Mz — w]?

B O e AR

|z — w?
with some new constant C. Note that
[¥(2)| = [®(2)| + dp(2) < (C +1)dp(2)*.
This finishes the proof of Theorem "

4.3. Proof of Theorem We let h := 2/ — 2" and consider two

cases.

CASE 1: |h|%/3 < §p(w) and |h| < (6p(w)/8Rp)M (%', 2", w). Then, by
Lemma [3.3] we have

hl|¢
/ _ " < / ‘
|gD(Z 7w) gD(Z 7w)’ > 10g<1 +C 5D(w)M(z’, z”,w)€>

h|€/3
) |
=~ 10g<1 +C M(Z/, z”,w)‘f)’

which proves the claimed estimate.

CasE 2: |h|*/3 > 6p(w) or |h| > (Op(w)/SRp)M (%', 2", w). Now we
simply estimate

9p(2,w) = Fp (", w)| < [9p(2, w)| + |[Fp (2", w)|



The pluricomplex Green function 223

and want to apply (1.1]) to the right-hand side. For this we note that
dp(w)® Rp
loglog( 1+ C log ——————
oeton(1+ O )| + w3y
lo L
& M2, 2" w)’

and M (2", w) < C'log m. This results in

M2, w) <

<

N e\ 1/n
(', w)| < CM (s, w) '/ 1og(1 +c<5D<w> ) )

2" — wl

< CM(Z,w) Y log(1+C Ll
> ) M(2, Z//7w)1+s/n

and

2¢2/n
" ~ " 1-1/n ~ |h’
|9p (2", w)| < CM (2", w) log(l + CM(z’,z”,w)HE/”)’

which in conjunction with the estimates on M (2’,w) and M (2", w) gives the
desired Holder estimate for |9p (2, w)|. m

5. The case of pseudoconvex extendable domains. Proofs of

Lemmas [1.5] and [1.6]

5.1. Proof of Lemma We assume that N > 2, otherwise the
assertion is well-known. As in the definition of pseudoconvex extendability,
let v € €U’ x U') be an extending function of order N, defined on a
neighborhood U’ of w®. Then there exists a constant Cy > 0 such that its
Levi form %, ) satisfies (for all ¢ € 0D NU’)

Ly(a.) (7 X) = =Ca([1h(g, 2)| 1 X1 + [{8(q, ), X)]1X]).
For any constant A > 0 and any g € 9D N U’, the function
(5.1) 0(g,2) = (g, z)e =
also extends in a pseudoconvex way on 0D near w
_ /2

(5.2) —Cs(=r(2) + |2 —q|) <o(g, 2) < e AFr(2) — o)z — ¢V,
where R’ is the diameter of U’ and ¢ > 0 is a small constant.

We choose open neighborhoods Uy CC Us CC U’ of w” such that, given
z € Uy, its orthogonal projection z* onto 0D lies inside Us. By making A
very large and then shrinking U; we can arrange that for any ¢ € 9D N Us,
the function —(—o(gq, z))¥" is plurisubharmonic on DNU;. Now we put, for
ze DNUy,

P'(z) .= sup (—(—U(Q,z))z/N + %cg/N\z — q[2).
qedDNU2

O more explicitly
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Our claim is that @’ satisfies the estimate
O8N <& <~y

with suitable constants C7,Cy > 0.
For this we observe that for any ¢,s > 0,

2/N

This implies
((—eiAR/QT‘(Z))Q/N 4 Cg/N|Z . q|2)N/2 < 2N(_€7AR/2T(Z) + CQ|Z — q|N)
—2No(q, 2)
by , or
(—e~ 470 (2)*N + Nz - g < A(~0(g.2) PV,

This gives
'(2) < —je PN (—r(2))V.

The lower estimate is easier to show. Let z € D N Uy; then z* € 9D N Us,
and we find that

O (2) > —(~o(z*,2)2N + 1Nz — 2P
—(Ca(=r(2) + |z = 2*[)2N > —Cudp(2)*V.

The upper semicontinuous regularization @ of ¢’ is plurisubharmonic and
satisfies property (i). But also property (ii) holds, since the function ¢”(z) :=
P (z)— écg/ M|2|2 is the supremum of a family of plurisubharmonic functions,
and furthermore z — ®(z) — i, 2/ N|z|2 equals the upper semicontinuous
regularization of @” and hence is also plurisubharmonic. =

5.2. Proof of Lemma [1.6] We only need to recall Cho’s proof. We give
a sketch of this proof and then state where to modify it.

Let ¢ € 65°(B(0,2) \ B(0,1/4)) be a function such that ¢(z) = 1 for
1/2 < |z| < 1. Also let ¢ € €>°(C™) be a smooth function such that ¢(z) =
for |z| > 2, and ¢ (z) = 0if |z| < 1.

For some large integer 4 we put ¢ 4 (2) = ¥(277¢2) and ¢p(2) = ¢(2¥2)
for k > A". Let ( € 0D. Then we consider, with a suitable small number
a > 0, the function

=Y 2%z = O(Agralz) - 2).
k=N

The only difference between this definition for E; and that of Cho’s proof is
the factor 272 in front of ¢5(z — ¢)(Ag—r,(2) —2). In Cho’s proof the factor
was 274,
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There exists L € N such that for any ¢ and z there are at most L integers
k such that z € supp ¢ (- — ¢). Again we have

|DE¢(2)| < La=*2" %k

for any ¢th order derivative DE; of E; and z € supp ¢ (- — ¢). This shows
that E is of class €?. The rest of the proof of the pseudoconvexity of the
surface {E¢ = 0} is completely analogous to that in [Cho]. Because of the
factor 272 instead of 2=**, now the function E¢ extends in a pseudoconvex
way to order < 1/e instead of 2/c. m
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