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The pluricomplex Green function
on some regular pseudoconvex domains

by Gregor Herbort (Wuppertal)

Abstract. Let D be a smooth bounded pseudoconvex domain in Cn of finite type.
We prove an estimate on the pluricomplex Green function GD(z, w) of D that gives quan-
titative information on how fast the Green function vanishes if the pole w approaches the
boundary. Also the Hölder continuity of the Green function is discussed.

1. Introduction. Let D be a bounded pseudoconvex domain in Cn with
a smooth boundary. We will investigate the behavior of the pluricomplex
Green function GD(·, w), w ∈ D, of D when w tends to the boundary.

This function is defined by

GD(·, w) := sup{u(z) | u ∈ P (w;D)},

where P (w;D) denotes the class of all negative plurisubharmonic functions
on D such that u − log | · −w| is bounded from above near w. It has been
introduced by Klimek [Kli1], and later in hyperconvex domains in general
complex manifolds by Demailly [Dem]. In both papers fundamental proper-
ties of GD were proved (in particular its relationship to the Monge–Ampère
operator was clarified in [Dem]).

The fact that GD has a logarithmic pole at wmakes it an important tool in
applications of real methods in complex analysis, in particular those that are
based upon the L2-theory for the ∂̄-operator with plurisubharmonic weight
functions (see [Hör], [OhTa]). We need to know, however, how GD(·, w) be-
haves when w tends to the boundary. First results in this context were ob-
tained in [CCW], [He], and [DiHe] (for quantitative results in special cases
see [Car], [Che]).

For a domain D ( Cn we denote by δD the boundary-distance function.
Our main result is
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Theorem 1.1. Let D ⊂⊂ Cn be a smooth bounded domain, and let
w0 ∈ ∂D. Assume that there exist an open neighborhood U1 3 w0, constants
C > 0 and 0 < ε ≤ 1/2, and a C 2-smooth plurisubharmonic function Φ :
D ∩ U1 → (−1, 0) such that:

(a) The function z 7→ Φ(z)− C−1|z|2 is plurisubharmonic.
(b) One has Φ(z) ≥ −CδD(z)2ε for all z ∈ D ∩ U1.

Then there exists a constant C > 0, and a neighborhood U2 ⊂⊂ U1 of w0,
such that

(1.1) |GD(z, w)| ≤ CM(z, w)1−1/n log

(
1 + C

(
δD(w)ε

|z − w|

)1/n)
and

(1.2) |GD(z, w)| ≤ CM(z, w)1−1/n log

(
1 + C

(
δD(z)εδD(w)ε

|z − w|2

)1/n)
,

where

M(z, w) :=

∣∣∣∣log log

(
1 + C

δD(w)ε

|z − w|

)∣∣∣∣+ 1 + C log
RD
|z − w|

for all z, w ∈ D ∩ U2. Here we denote by RD the diameter of D.

In [Car] the case of strongly pseudoconvex domains was treated, where
one can find a plurisubharmonic function ψ with properties (a) and (b)
for ε = 1/2. For a convex domain of finite type an estimate for GD was
established in [Che] that implies (1.2) without the factor M(z, w).

The methods from [Car], [Che] do not carry over to our case since the
Green function is not symmetric in general; whether or not holomorphic peak
functions are available under the above comparatively weak hypotheses is
also an open question.

As a corollary we obtain from Theorem 1.1:

Theorem 1.2. Let D ⊂⊂ Cn be a smooth bounded domain, and let
w0 ∈ ∂D be such that there exist an open neighborhood U1 3 w0, constants
C > 0 and 0 < ε ≤ 1/2, and a C 2-smooth plurisubharmonic function Φ :
D ∩ U1 → (−1, 0) with properties (a) and (b). Then we can choose an
open neighborhood U2 ⊂⊂ U1 of w0 such that for any w ∈ D ∩ U2 the
sublevel set {GD(·, w) < −1} is contained in a ball about w of radius ≤
C ′δD(w)ε logn 1

δD(w) . In particular, the Bergman metric BD of D grows at
least like

BD(w;X) ≥ C2
|X|

δD(w)ε logn 1
δD(w)

for all w ∈ D ∩ U2 and X ∈ Cn.
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The first assertion is clear. The second, concerning the growth order of
the Bergman metric, follows from Proposition 4.1 from [DiHe].

This improves the estimate of Theorem 1.13 from [DiHe] insofar as the
points w are not restricted to nontangential approach to the boundary point
w0 and the growth is up to a log-term exactly of order ε and not only ε− t
(with arbitrary 0 < t� 1).

In [Bło2] and [NPT] the question of Hölder continuity of the Green func-
tion was treated for a special class of domains. With the methods applied in
those papers we will show (1.1).

As a by-product we further obtain

Theorem 1.3. Suppose D is as in Theorem 1.1. Then there is a constant
C > 0 such that

|GD(z′′, w)− GD(z′, w)| ≤ C |z′ − z′′|ε2/3n

M(z′, z′′, w)(1+ε)/n
log

RD
M(z′, z′′, w)

for any z′, z′′ ∈ D \ {w}, where

M(z′, z′′, w) = min{|z′ − w|, |z′′ − w|}.

Later we will consider pseudoconvex domains that are uniformly extend-
able in a pseudoconvex way of some finite order N ≥ 2. They belong to the
class of pseudoconvex domains to which the above results apply.

The notion of pseudoconvex extendability is explained in the following

Definition 1.4 (cf. [DiHe, Def. 1.10]). Let D ⊂⊂ Cn be pseudoconvex
and smoothly bounded. We call D uniformly extendable of order N in a
pseudoconvex way near a point w0 ∈ ∂D if there exist an open neighborhood
U ′ 3 w0, a constant C1 > 0 and a C 2-smooth function ψ : U ′×U ′ → R such
that:

(i) The open set {ψ(q, ·) < 0} ∩ U ′ is pseudoconvex and the surface
{ψ(q, ·) = 0}∩U ′ is smooth and passes through q when q ∈ ∂D∩U ′.

(ii) For x ∈ U ′, q ∈ U ′ ∩ ∂D we have the estimate

C1(r(x)− |x− q|) ≤ ψ(q, x) ≤ r(x)− 1

C1
|x− q|N .

In [DiFo] it was shown that real-analytically bounded pseudoconvex do-
mains have this property. This result was extended later in [Cho] to the larger
class of smooth bounded pseudoconvex domains that are of finite type in the
sense of [DA]. We will prove

Lemma 1.5. Assume that the domain D ⊂⊂ Cn is uniformly extendable
of order N in a pseudoconvex way near a point w0 ∈ ∂D. Then there exist
an open neighborhood U1 of w0, a continuous plurisubharmonic function Φ :
D ∩ U1 → R and constants C1, c1 > 0 such that:
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(i) On D ∩ U1 we have −C1δ
2/N
D ≤ Φ < 0.

(ii) The function z 7→ Φ(z)− c1|z|2 is plurisubharmonic on D ∩ U1.

Hence Theorems 1.1 and 1.2 apply with ε = 1/N .
In conjunction with a result of [Cho] one obtains the following:

Lemma 1.6. Let D ⊂⊂ Cn be a smooth bounded domain and w0 ∈ ∂D a
point such that there exist an open neighborhood U1 3 w0, constants C > 0
and 0 < ε ≤ 1/2, and a family (λδ)0<δ<δ0 of plurisubharmonic functions on
U1 satisfying:

(a) For all δ ∈ (0, δ0) one has 0 ≤ λδ ≤ 1.
(b) On the strip Sδ := {z ∈ D ∩ U1 | δD(z) < δ} the function z 7→

λδ(z)− δ−2ε|z|2 is still plurisubharmonic.
(c) For any derivative Dλδ of λδ of order k ≤ 2 one has |Dλδ| ≤ Cδ−k.

Then D is uniformly extendable of order 1/ε near w0. In particular Theo-
rems 1.1 and 1.2 apply.

2. Estimating the Green function in terms of the boundary dis-
tance of its first argument. Our plan is to estimate the Green function
GD(P,Q) in terms of δD(P ) and |P − Q|, and then to compare GD(P,Q)
with GD(Q,P ).

Proposition 2.1. Let D ⊂⊂ Cn satisfy the hypotheses of Theorem 1.1
near w0 ∈ ∂D. Then there exist a constant C5 > 0 and a radius R1 > 0 such
that for any P ∈ D ∩B(w0, R1) and Q ∈ D one has

(2.1) |GD(P,Q)| ≤ 1

2
log

(
1 + C5

δD(P )2ε

|P −Q|2

)
.

Proof. Let us take radii R1 < R̃1 < R2 such that B(w0, 2R2) ⊂ U1 and
R2 ≥ 5R̃1. Furthermore, we may assume that each x ∈ B(w0, 3R2/2) has
an orthogonal projection x∗ ∈ ∂D ∩B(w0, 3R2). We may certainly suppose
that δD(P ) < R1/2. Let us consider two cases:

Case I: |Q− w0| < 3R1. On U1 the function

Φ1(z) := Φ(z)− c1|z −Q|2 − c1|z − P ∗|2,
where c1 < 1

2C , is negative and plurisubharmonic. Also we have

−Φ1(z)

c1|z −Q|2
≥ 1 +

|z − P ∗|2

|z −Q|2
.

But for z ∈ ∂B(w0, R2) we have, for P ∈ B(w0, R1),

|z − P ∗| ≥ |z − w0| − |w0 − P | − |P − P ∗| ≥ R2 − 3
2R1 ≥ 7

10R2

and
|z −Q| ≤ |z − w0|+ |w0 −Q| ≤ R2 + 3R1 ≤ 8

5R2.
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Therefore,
−Φ1(z)

c1|z −Q|2
≥ 1 +

(
7

16

)2

and hence

1

2
log

c1|z −Q|2

−Φ1(z)
≤ −c3 := −1

2
log

(
1 +

(
7

16

)2)
.

The function

Φ2(z) :=

max

{
1

2
log

c1|z −Q|2

−Φ1(z)
,−c3

}
if z ∈ B(w0, R2) ∩D,

−c3 if z ∈ D \ (B(w0, R2) ∩D),
now becomes plurisubharmonic on D and thus it is a good candidate for
GD(P,Q). Since |P − w0| < R1 < R2, we obtain

|GD(P,Q)| ≤ −Φ2(P ) ≤ 1

2
log

−Φ1(P )

c1|P −Q|2

=
1

2
log
−Φ(P ) + c1|P −Q|2 + c1|P − P ∗|2

c1|P −Q|2

≤ 1

2
log

(
1 + c2

δD(P )2ε

|P −Q|2

)
with some positive constant c2, as desired.

Case II: |Q− w0| ≥ 3R1. Now we put

Φ3(z) := Φ(z)− c1|z − P ∗|2

in D ∩ U1. This function is plurisubharmonic and if |z − P ∗| = R1/2 we
obtain Φ3(z) ≤ −c1R2

1/4. Thus the function

Φ4(z) =

{
max{Φ3(z),−c1R2

1/4} if z ∈ B(P ∗, R1/2) ∩D,

−c1R2
1/4 if z ∈ D \ (B(P ∗, R1/2) ∩D),

becomes well-defined and plurisubharmonic on D. Next we define an appro-
priate candidate for GD(·, Q). Let

Φ5(z) =


max

{
C7Φ4(z), log

|z −Q|
RD

}
if z ∈ D \ (B(Q,R1/2) ∩D),

log
|z −Q|
RD

if z ∈ B(Q,R1/2) ∩D,

where C7 > 0 is chosen so large that

C7Φ4(z) ≤ log
R1

2RD
for z ∈ D ∩ ∂B(Q,R1/2).
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Note that this is possible, since for such points z one has

|z − P ∗| ≥ |Q− P ∗| − |z −Q| ≥ |Q− w0| − |w0 − P ∗| − |z −Q|
≥ |Q− w0| − |w0 − P | − δD(P )− |z −Q| ≥ R1,

hence Φ4(z) = −c1R2
1/4.

We find that

|GD(P,Q)| ≤ −Φ5(P ) ≤ −C7Φ4(P ) = −C7Φ(P ) + c1C7|P − P ∗|2

≤ C8δD(P )2ε,

because in our situation we have

|P −Q| ≥ |Q− w0| − |P − w0| ≥ 2R1.

This implies also δD(P )ε

|P−Q| ≤
Rε

D
2R1

.
The function V (t) := 1

t log(1 + t) is decreasing on (0,∞). This yields, if
we choose C5 so large that

2R2
1

R2+2ε
D

log

(
1 + C2

5

R2ε
D

4R2
1

)
≥ C8,

the estimate
1

2
log

(
1 + C2

5

δD(P )2ε

|P −Q|2

)
=

1

2
C2
5

δD(P )2ε

|P −Q|2
V

(
C2
5

δD(P )2ε

|P −Q|2

)
≥ 1

2
C2
5

δD(P )2ε

|P −Q|2
V

(
C2
5

R2ε
D

4R2
1

)
≥ 1

2R2
D

C2
5 V

(
C2
5

R2ε
D

4R2
1

)
δD(P )2ε

=
2R2

1

R2+2ε
D

log

(
1 + C2

5

R2ε
D

4R2
1

)
δD(P )2ε

≥ C8δD(P )2ε ≥ |GD(P,Q)|.
The proposition is proved.

3. A first Hölder estimate for the Green function. We adopt the
methods from [Bło2] and [NPT]. Let D be a bounded hyperconvex domain
in Cn. Let w ∈ D be fixed and r = 2

3δD(w). We consider for r > η > 0 the
family

Pη :={v | v plurisubharmonic on D, v ≤ 0 on D, v ≤ log(η/r) on B(w, η)}
and its upper envelope

uη(z) = sup{v(z) | v ∈Pη}.
Then (for details see [Kli2, Sec. 4.5]) we have:
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(a) uη is continuous, and uη(z)→ 0 as z tends to a boundary point of D.
(b) The function uη is maximal plurisubharmonic outside B(w, η).
(c) We have uη = log(η/r) onB(w, η) and uη(z) ≤ log(max{|z−w|, η}/r)

on D.
(d) For η1 ≤ η2 we have uη1 ≤ uη2 . Further limη↘0 u

η(z) = GD(z, w)
on D.

We recall from [NPT] the following construction, associated with two
given different points P,w ∈ D. Let D denote the unit disc in the plane.
We choose a holomorphic function FP,w on D with values in D such that
FP,w(w) = 0 and artgh|FP,w(P )| is equal to the Carathéodory distance
cD(P,w) between P and w. Then we put, for h ∈ Cn, z ∈ D,

HP,w,h(z) := z +
FP,w(z)

FP,w(P )
h.

Since tgh cD(P,Q) ≥ |P −Q|/RD for P,Q ∈ D, we obtain

(3.1) |HP,w,h(z)− z| ≤ RD|FP,w(z)| |h|
|P − w|

for z ∈ D. If |z − w| < δD(w), then we get

|FP,w(z)| ≤ tgh cD(z, w) ≤ |z − w|
δD(w)

,

and from (3.1) we see that

(3.2) |HP,w,h(z)− z| ≤ RD
|z − w|
|P − w|

|h|
δD(w)

.

We will make use of this later.

Lemma 3.1. Let D be a pseudoconvex domain as in Theorem 1.1. Then,
with some constant C1 > 0, for z′, z′′ ∈ D \ {w} we have

|GD(z′, w)− GD(z′′, w)| ≤ log

(
1 + C1

RεD
δD(w)

|z′ − z′′|ε

M(z′, z′′, w)ε

)
provided that

(3.3) |z′ − z′′| ≤ δD(w)

8RD
M(z′, z′′, w),

where we write M(z′, z′′, w) = min{|z′ − w|, |z′′ − w|}.

Proof. We follow an idea from [NPT]. Let h := z′′− z′, and consider the
domain

D1 := {z ∈ D | Hz′,w,h(z) ∈ D}.

Then B(w, η) ⊂ D1 for small enough η, since w ∈ D1.
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If z ∈ D and Hz′,w,h(z) ∈ ∂D, we have

(3.4) δD(z) ≤ |Hz′,w,h(z)− z| ≤ RD
|z′ − w|

|h|

and
|z − w| ≥ |Hz′,w,h(z)− w| − |Hz′,w,h(z)− z|(3.5)

≥ δD(w)− RD
|z′ − w|

|h| ≥ 1

2
δD(w),

using (3.3). This implies (together with Prop. 2.1)

uη(z) ≥ GD(z, w) ≥ − log

(
1 + C5

δD(z)ε

|z − w|

)
≥ − log

(
1 + C5

RεD
|z − w|

|h|ε

|z′ − w|ε

)
by (3.4)

≥ − log

(
1 + 2C5

RεD
δD(w)

|h|ε

|z′ − w|ε

)
by (3.5).

For z ∈ ∂D we even have uη(z) = 0. In each case we see that the last
displayed estimate holds for any z ∈ ∂D1. In particular,

uη(Hz′,w,h(z)) ≤ 0 ≤ uη(z) + log

(
1 + 2C5

RεD
δD(w)

|h|ε

|z′ − w|ε

)
on ∂D1. We want to prove this estimate also for z ∈ ∂B(w, η).

For this purpose we take an arbitrary z ∈ D with |z − w| = η. Then,
by (3.2),

|Hz′,w,h(z)− w| ≤ |z − w|+ RD
δD(w)

|z − w|
|z′ − w|

|h|

=

(
1 +

RD
δD(w)

|h|
|z′ − w|

)
η.

This gives

uη(Hz′,w,h(z)) ≤ log
max{|Hz′,w,h(z)− w|, η}

r

≤ log(η/r) + log

(
1 +

RD
δD(w)

|h|
|z′ − w|

)
≤ uη(z) + log

(
1 + 2C5

RεD
δD(w)

|h|ε

|z′ − w|ε

)
, by (3.3).

Since uη is maximal on D1 \ B(w, η), the above estimate holds even on
D1 \ B(w, η), since it holds on ∂(D1 \ B(w, η)). We choose z = z′ and get,
because Hz′,w,h(z′) = z′′,

uη(z′′) ≤ uη(z′) + log

(
1 + 2C5

RεD
δD(w)

|h|ε

M(z′, z′′, w)ε

)
.
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Letting η tend to zero and recalling the definition of h, we obtain the desired
estimate

GD(z′′, w)− GD(z′, w) ≤ log

(
1 + 2C5

RεD
δD(w)

|z′ − z′′|ε

M(z′, z′′, w)ε

)
.

Interchanging the roles of z′ and z′′ we can complete the proof.

4. Proof of Theorem 1.1

4.1. Proof of estimate (1.1). We must consider two cases.

Case 1: δD(w)ε ≤ |z − w|. The starting point is the following estimate
that was obtained in [He] (based upon an inequality of [Bło1]):

(4.6)
�

D

|GD(·, w)| dµz,η ≤ (2π)n(n!)1/nη(n−1)/n|GD(w, z)|1/n,

where dµz,η denotes for any η > 0 the measure

dµz,η := (ddc max{GD(·, z), −η})n.
This measure is supported on the set {GD(·, z) = −η} ⊂ B(z,RDe

−η), and
its total mass is (2π)n (see [He]).

We want to apply Lemma 3.1 for z′ = z. For this we must choose η > 1
such that

(4.7) RDe
−η ≤ δD(w)

8RD
min{|z − w|, |z′′ − w|}

for |z′′ − z| < RDe
−η. Now we note that

|z′′ − w| ≥ |z − w| − |z′′ − z| ≥ |z − w| −RDe−η ≥ 1
2 |z − w|,

if only η ≥ log 2RD
|z−w| . We must choose

(4.8) η ≥ log
16RD

|z − w|δD(w)

in order to arrange for (4.7). Lemma 3.1 and (4.6) yield

(4.9) (n!)1/nη(n−1)/n|GD(w, z)|1/n

≥ (2π)−n
�

D

|GD(z′′, w)| dµz,η(z′′) ≥ (2π)−n
�

D

|GD(z, w)| dµz,η(z′′)

− (2π)−n
�

D

|GD(z′′, w)− GD(z, w)| dµz,η(z′′)

= |GD(z, w)| − (2π)−n
�

D

|GD(z′′, w)− GD(z, w)| dµz,η(z′′)

≥ |GD(z, w)| − (2π)−n
�

D

log

(
1 + 2C5

R2ε
D

δD(w)

e−εη

|z − w|ε

)
dµz,η(z

′′)

= |GD(z, w)| − log(1 +Mηe
−εη)
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with the abbreviation

Mη := (2C5)
ε Rε

2+1
D

δD(w)|z − w|ε
.

We now choose

(4.10) η :=

(
1

n
+

1

ε

)
1

ε
log

1

|GD(w, z)|
+

1+ε2

ε2
log

2C5

R1−ε
D

+
1+ε2

ε2
log

RD
|z−w|

.

Next we show that

(4.11) η >
1

ε
logMη +

1

nε
log

1

|GD(w, z)|
.

By Proposition 2.1 we have

|GD(w, z)| ≤ C5
δD(w)ε

|z − w|
.

This leads to

η − 1

ε
logMη −

1

nε
log

1

|GD(w, z)|

=
1

ε2
log

1

|GD(w, z)|
+

1 + ε2

ε2
log

RD
|z−w|

+
1 + ε2

ε2
log

2C5

R1−ε
D

− log(2C5)−
1 + ε2

ε
logRD +

1

ε
log δD(w) + log |z−w|

≥ − 1

ε2
logC5−

1

ε
log δD(w) +

1

ε2
log |z−w|+ 1 + ε2

ε2
log

RD
|z−w|

+
1 + ε2

ε2
log

2C5

R1−ε
D

− log(2C5)−
1 + ε2

ε
logRD +

1

ε
log δD(w) + log |z−w|

=
1

ε2
log 2 > 0,

which yields (4.11). Further we get (4.8) from

η − log
16RD

|z − w|δD(w)

≥ 1

ε
logMη −

1

nε
logC5 − log(16RD) + log δD(w) + log |z − w|

≥ − log(8R
1−ε−1/ε
D C

1/nε−1
5 ) +

(
1

ε
− 1

)
log

1

δD(w)
> 0

using (4.11) and |GD(w, z)| ≤ C5δD(w)ε/|z − w| ≤ C5 (recall that we sup-
pose δD(w)ε/|z − w| ≤ 1).
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Finally,

log
Mη

exp(η1−1/n|GD(w, z)|1/n)− 1

≤ log
Mη

η1−1/n|GD(w, z)|1/n
= logMη −

(
1− 1

n

)
log η +

1

n
log

1

|GD(w, z)|

≤ εη −
(

1− 1

n

)
log η ≤ εη, by (4.11),

hence
e−εη ≤ 1

Mη

(
exp(η1−1/n|GD(w, z)|1/n)− 1

)
and

log(1 +Mηe
−εη) ≤ η1−1/n|GD(w, z)|1/n.

Plugging these into (4.9) we find by means of (2.1), applied to |GD(w, z)|,

|GD(z, w)| ≤ (1 + (n!)1/n)η(n−1)/n|GD(w, z)|1/n

≤ 2

ε2
(1 + (n!)1/n)M(z, w)|GD(w, z)|1/n,

from which the claim follows.

Case 2: δD(w)ε > |z − w|. With a constant M̂η > 1 to be chosen later,
we consider the function

v(x) := M̂η log

(
1

2

|x− w|
δD(w)ε

)
on the domain

Ωr := D ∩B(w, δD(w)ε) \B(w, r),

where the radius r > 0 is less than |z − w| and satisfies

M̂η log
r

δD(w)ε
≤ log

r

RD
,

which is equivalent to

log r <
εM̂η log δD(w)− logRD

M̂η − 1
.

Then z ∈ Ωr, and w /∈ Ωr.
On Ωr we have v ≤ −M̂η log 2 < 0.
Next let us consider v on ∂Ωr. For x ∈ D ∩ ∂B(w, r) we can estimate

v(x) = M̂η log
r

δD(w)ε
≤ log

r

RD
< GD(x,w).

For x ∈ ∂D we obtain

v(x) ≤ −M̂η log 2 < 0 = GD(x,w).
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Finally, let x ∈ D ∩ ∂B(w, δD(w)ε). Then, by Case 1, because |x − w| =
δD(w)ε,

|GD(x,w)| ≤ 2ε−2(1 + (n!)1/n)M(x,w)1−1/n|GD(w, x)|1/n.

But

|GD(w, x)| logn−1
1

|GD(w, x)|
≤ C6

and

log
RD
|x− w|

= log
RD

δD(w)ε
≤ log

RD
|z − w|

.

(We are considering the case δD(w)ε > |z − w|.) This proves

|GD(x,w)| ≤ C7 + C8

(
log

RD
|z − w|

)1−1/n

and, since v(x) = −M̂η log 2, we get

|GD(x,w)| ≤ 1

M̂η

(
C ′7 + C ′8

(
log

RD
|z − w|

)1−1/n)
|v(x)|.

Let
M̂η := C9M(z, w)1−1/n,

where the constant C9 can be chosen independently of z, w in such a way
that |GD(x,w)| ≤ |v(x)|. Hence, by the maximality of GD(·, w) we get v ≤
GD(·, w) on Ωr. This implies

|GD(z, w)| ≤ |v(z)| ≤ M̂η log

(
2
δD(w)ε

|z − w|

)
≤ nM̂η log

(
1 + 2

(
δD(w)ε

|z − w|

)1/n)
,

from which the desired estimate on GD(z, w) will follow.

4.2. Proof of estimate (1.2). Our aim is the proof of

|GD(z, w)| ≤ CM(z, w)1−1/n log

(
1 + C

(
δD(z)εδD(w)ε

|z − w|2

)1/n)
.

We fix distinct z, w ∈ D∩U1. Without loss of generality we may assume that
they are close to the boundary so that the orthogonal projections z∗, w∗ to
the boundary are well-defined.

Let c > 0 denote a small constant such that

4c1/εR
1/ε−1
D < 1.
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If δD(z)ε ≥ c|z − w|, then (1.1) yields

|GD(z, w)| ≤ nCM(z, w)1−1/n log

(
1 + C

(
δD(w)ε

|z − w|

)1/n)
≤ nCM(z, w)1−1/n log

(
1 + Cc−1/n

(
δD(z)εδD(w)ε

|z − w|2

)1/n)
.

So we suppose that δD(z)ε ≤ c|z − w|. Now we define

V := D ∩B(z∗, 2c1/εR
1/ε−1
D |z − w|)

and note that

|z − z∗| = δD(z) ≤ (c|z − w|)1/ε ≤ c1/εR1/ε−1
D |z − w|,

hence z ∈ V . At the same time we have

|w − z∗| ≥ |z − w| − |z − z∗| = |z − w| − δD(z) ≥ |z − w| − (c|z − w|)1/ε

> 2c1/εR
1/ε−1
D |z − w|

by the choice of c. Hence w /∈ V , and GD(·, w) is a maximal plurisubharmonic
function on V . We define on V a plurisubharmonic comparison function v2.
For this we use

ψ(x) := Φ(x)− γ|x− z∗|2,
which is negative and for small enough γ > 0 also plurisubharmonic. Then,
for any x ∈ V ,

|x− w| ≥ |z − w| − |x− z| ≥ |z − w| − δD(z)− |x− z∗|

≥ (1− 3c1/εR
1/ε−1
D )|z − w| ≥ 1

4 |z − w|.
By (1.1) we have the estimate

GD(x,w) ≥ −CM(x,w)1−1/n log

(
1 + C̃

(
δD(w)ε

|x− w|

)1/n)
≥ −C ′M(z, w)1−1/n log(1 + CM

1/n
1 )

≥ −C ′M(z, w)1−1/n log

(
1 + CM

1/n
1

(
−ψ(x)

γ|x− z∗|2

)1/2n)
with some constant C ′ and M1 := 4δD(w)ε/|z − w|. Our plurisubharmonic
comparison function v2 is now defined by

v2(x) := −C ′M(z, w)1−1/n log

(
1 + C

(
δD(w)ε

γ1|z − w|2

)1/n

(−ψ(x))1/2n
)

with a constant γ1 that will be chosen in a moment.
It is easily verified that v2 is plurisubharmonic on V . We compare v2 and

GD(·, w) on ∂V . On V ∩ ∂D certainly v2 ≤ 0 = GD(·, w).
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For x ∈ D ∩ ∂B(z∗, 2c1/εR
1/ε−1
D |z − w|) we have

γ1|z − w| = γ1
|x− z∗|

2c1/εR
1/ε−1
D

=
1

4

√
γ |x− z∗|

for γ1 =
√
γ
2 c

1/εR
1/ε−1
D , and therefore

v2(x) = −C ′M(z, w)1−1/n log
(
1 + CM

1/n
1 (−ψ(x))1/2n

)
≤ −C ′M(z, w)1−1/n log

(
1 + CM

1/n
1

(
−ψ(x)

γ|x− z∗|2

)1/2n)
≤ GD(x,w).

Hence v2 ≤ GD(·, w) on ∂V and, by the comparison principle, v2 ≤ GD(·, w)
on V . But this gives

|GD(z, w)| ≤ |v2(z)|

= C ′M(z, w)1−1/n log

(
1 +C

(
δD(w)ε

γ1|z − w|2

)1/n

(−ψ(z))1/2n
)

≤ C ′M(z, w)1−1/n log

(
1 + Ĉ

(
δD(z)εδD(w)ε

|z − w|2

)1/n)
with some new constant Ĉ. Note that

|ψ(z)| = |Φ(z)|+ δD(z) ≤ (C + 1)δD(z)2ε.

This finishes the proof of Theorem 1.1.

4.3. Proof of Theorem 1.3. We let h := z′ − z′′ and consider two
cases.

Case 1: |h|2ε/3 ≤ δD(w) and |h| ≤ (δD(w)/8RD)M(z′, z′′, w). Then, by
Lemma 3.1 we have

|GD(z′, w)− GD(z′′, w)| ≤ log

(
1 + C ′

|h|ε

δD(w)M(z′, z′′, w)ε

)
≤ log

(
1 + C ′

|h|ε/3

M(z′, z′′, w)ε

)
,

which proves the claimed estimate.

Case 2: |h|2ε/3 ≥ δD(w) or |h| ≥ (δD(w)/8RD)M(z′, z′′, w). Now we
simply estimate

|GD(z′, w)− GD(z′′, w)| ≤ |GD(z′, w)|+ |GD(z′′, w)|
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and want to apply (1.1) to the right-hand side. For this we note that

M(z′, w) ≤
∣∣∣∣log log

(
1 + C

δD(w)ε

|z′ − w|

)∣∣∣∣+ log
RD

M(z′, z′′, w)

≤ C ′ log
RD

M(z′, z′′, w)
,

and M(z′′, w) ≤ C ′ log RD
M(z′,z′′,w) . This results in

|GD(z′, w)| ≤ ĈM(z′, w)1−1/n log

(
1 + C

(
δD(w)ε

|z′ − w|

)1/n)
≤ ĈM(z′, w)1−1/n log

(
1 + Ĉ

|h|2ε2/n

M(z′, z′′, w)1+ε/n

)
and

|GD(z′′, w)| ≤ ĈM(z′′, w)1−1/n log

(
1 + Ĉ

|h|2ε2/n

M(z′, z′′, w)1+ε/n

)
,

which in conjunction with the estimates onM(z′, w) andM(z′′, w) gives the
desired Hölder estimate for |GD(z′, w)|.

5. The case of pseudoconvex extendable domains. Proofs of
Lemmas 1.5 and 1.6

5.1. Proof of Lemma 1.5. We assume that N > 2, otherwise the
assertion is well-known. As in the definition of pseudoconvex extendability,
let ψ ∈ C 2(U ′ × U ′) be an extending function of order N , defined on a
neighborhood U ′ of w0. Then there exists a constant C2 > 0 such that its
Levi form Lψ(q,·) satisfies (for all q ∈ ∂D ∩ U ′)

Lψ(q,·)(z;X) ≥ −C2

(
|ψ(q, z)| |X|2 + |〈∂ψ(q, ·), X〉| |X|

)
.

For any constant A > 0 and any q ∈ ∂D ∩ U ′, the function

(5.1) σ(q, z) := ψ(q, z)e−A|z−q|
2

also extends in a pseudoconvex way on ∂D near w0, more explicitly

(5.2) −C3(−r(z) + |z − q|) ≤ σ(q, z) ≤ e−AR′2r(z)− c2|z − q|N ,
where R′ is the diameter of U ′ and c2 > 0 is a small constant.

We choose open neighborhoods U1 ⊂⊂ U2 ⊂⊂ U ′ of w0 such that, given
z ∈ U1, its orthogonal projection z∗ onto ∂D lies inside U2. By making A
very large and then shrinking U1 we can arrange that for any q ∈ ∂D ∩ U2,
the function −(−σ(q, z))2/N is plurisubharmonic on D∩U1. Now we put, for
z ∈ D ∩ U1,

Φ′(z) := sup
q∈∂D∩U2

(
−(−σ(q, z))2/N + 1

4c
2/N
2 |z − q|2

)
.
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Our claim is that Φ′ satisfies the estimate

−C ′1δ
2/N
D ≤ Φ′ ≤ −C ′2δ

2/N
D

with suitable constants C ′1, C ′2 > 0.
For this we observe that for any t, s ≥ 0,

(t2/N + s2/N )N/2 ≤ 2N (t+ s).

This implies(
(−e−AR′2r(z))2/N + c

2/N
2 |z − q|2

)N/2 ≤ 2N (−e−AR′2r(z) + c2|z − q|N )

≤ −2Nσ(q, z)

by (5.2), or

(−e−AR′2r(z))2/N + c
2/N
2 |z − q|2 ≤ 4(−σ(q, z))2/N .

This gives
Φ′(z) ≤ −1

4e
−2AR′2/N (−r(z))2/N .

The lower estimate is easier to show. Let z ∈ D ∩ U1; then z∗ ∈ ∂D ∩ U2,
and we find that

Φ′(z) ≥ −(−σ(z∗, z))2/N + 1
4c

2/N
2 |z − z∗|2

≥ −(C3(−r(z) + |z − z∗|))2/N ≥ −C4δD(z)2/N .

The upper semicontinuous regularization Φ of Φ′ is plurisubharmonic and
satisfies property (i). But also property (ii) holds, since the function Φ′′(z) :=

Φ′(z)− 1
5c

2/N
2 |z|2 is the supremum of a family of plurisubharmonic functions,

and furthermore z 7→ Φ(z) − 1
5c

2/N
2 |z|2 equals the upper semicontinuous

regularization of Φ′′ and hence is also plurisubharmonic.

5.2. Proof of Lemma 1.6. We only need to recall Cho’s proof. We give
a sketch of this proof and then state where to modify it.

Let φ ∈ C∞0 (B(0, 2) \ B(0, 1/4)) be a function such that φ(z) = 1 for
1/2 < |z| < 1. Also let ψ ∈ C∞(Cn) be a smooth function such that ψ(z) = 1
for |z| ≥ 2, and ψ(z) = 0 if |z| < 1.

For some large integer N we put φN (z) = ψ(2N εz) and φk(z) = φ(2kεz)
for k > N . Let ζ ∈ ∂D. Then we consider, with a suitable small number
a > 0, the function

Eζ(z) :=
∞∑

k=N

2−2kφk(z − ζ)(λ2−ka(z)− 2).

The only difference between this definition for Eζ and that of Cho’s proof is
the factor 2−2k in front of φk(z− ζ)(λ2−ka(z)− 2). In Cho’s proof the factor
was 2−4k.
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There exists L ∈ N such that for any ζ and z there are at most L integers
k such that z ∈ suppφk(· − ζ). Again we have

|DEζ(z)| ≤ La−`2`−2k

for any `th order derivative DEζ of Eζ and z ∈ suppφk(· − ζ). This shows
that Eζ is of class C 2. The rest of the proof of the pseudoconvexity of the
surface {Eζ = 0} is completely analogous to that in [Cho]. Because of the
factor 2−2k instead of 2−4k, now the function Eζ extends in a pseudoconvex
way to order ≤ 1/ε instead of 2/ε.
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