The pluricomplex Green function
on some regular pseudoconvex domains

by GREGOR HERBORT (Wuppertal)

Abstract. Let D be a smooth bounded pseudoconvex domain in \mathbb{C}^n of finite type. We prove an estimate on the pluricomplex Green function $\mathcal{G}_D(z, w)$ of D that gives quantitative information on how fast the Green function vanishes if the pole w approaches the boundary. Also the Hölder continuity of the Green function is discussed.

1. Introduction. Let D be a bounded pseudoconvex domain in \mathbb{C}^n with a smooth boundary. We will investigate the behavior of the pluricomplex Green function $\mathcal{G}_D(\cdot, w)$, $w \in D$, of D when w tends to the boundary.

This function is defined by

$$\mathcal{G}_D(\cdot, w) := \sup \{ u(z) \mid u \in P(w; D) \},$$

where $P(w; D)$ denotes the class of all negative plurisubharmonic functions on D such that $u - \log |\cdot - w|$ is bounded from above near w. It has been introduced by Klimek [Kli], and later in hyperconvex domains in general complex manifolds by Demailly [Dem]. In both papers fundamental properties of \mathcal{G}_D were proved (in particular its relationship to the Monge–Ampère operator was clarified in [Dem]).

The fact that \mathcal{G}_D has a logarithmic pole at w makes it an important tool in applications of real methods in complex analysis, in particular those that are based upon the L^2-theory for the $\bar{\partial}$-operator with plurisubharmonic weight functions (see [Hör], [OhTă]). We need to know, however, how $\mathcal{G}_D(\cdot, w)$ behaves when w tends to the boundary. First results in this context were obtained in [CCW], [He], and [DiHe] (for quantitative results in special cases see [Car], [Che]).

For a domain $D \subseteq \mathbb{C}^n$ we denote by δ_D the boundary-distance function. Our main result is

2010 Mathematics Subject Classification: Primary 32U35; Secondary 32T25, 32T45.

Key words and phrases: pluricomplex Green function, finite type, Bergman metric.
Theorem 1.1. Let $D \subset \subset \mathbb{C}^n$ be a smooth bounded domain, and let $w_0 \in \partial D$. Assume that there exist an open neighborhood $U_1 \ni w_0$, constants $C > 0$ and $0 < \varepsilon \leq 1/2$, and a C^2-smooth plurisubharmonic function $\Phi : D \cap U_1 \to (-1, 0)$ such that:

(a) The function $z \mapsto \Phi(z) - C^{-1}|z|^2$ is plurisubharmonic.
(b) One has $\Phi(z) \geq -C\delta_D(z)^{2\varepsilon}$ for all $z \in D \cap U_1$.

Then there exists a constant $C > 0$, and a neighborhood $U_2 \subset \subset U_1$ of w_0, such that

\begin{equation}
|G_D(z, w)| \leq C M(z, w)^{1-1/n} \log \left(1 + C \left(\frac{\delta_D(w)^\varepsilon}{|z - w|}\right)^{1/n}\right)
\end{equation}

and

\begin{equation}
|G_D(z, w)| \leq C M(z, w)^{1-1/n} \log \left(1 + C \left(\frac{\delta_D(z)^\varepsilon \delta_D(w)^\varepsilon}{|z - w|^2}\right)^{1/n}\right),
\end{equation}

where

\[M(z, w) := \log \log \left(1 + C \frac{\delta_D(w)^\varepsilon}{|z - w|}\right) + 1 + C \log \frac{R_D}{|z - w|} \]

for all $z, w \in D \cap U_2$. Here we denote by R_D the diameter of D.

In [Car] the case of strongly pseudoconvex domains was treated, where one can find a plurisubharmonic function ψ with properties (a) and (b) for $\varepsilon = 1/2$. For a convex domain of finite type an estimate for G_D was established in [Che] that implies (1.2) without the factor $M(z, w)$.

The methods from [Car], [Che] do not carry over to our case since the Green function is not symmetric in general; whether or not holomorphic peak functions are available under the above comparatively weak hypotheses is also an open question.

As a corollary we obtain from Theorem 1.1

Theorem 1.2. Let $D \subset \subset \mathbb{C}^n$ be a smooth bounded domain, and let $w_0 \in \partial D$ be such that there exist an open neighborhood $U_1 \ni w_0$, constants $C > 0$ and $0 < \varepsilon \leq 1/2$, and a C^2-smooth plurisubharmonic function $\Phi : D \cap U_1 \to (-1, 0)$ with properties (a) and (b). Then we can choose an open neighborhood $U_2 \subset \subset U_1$ of w_0 such that for any $w \in D \cap U_2$ the sublevel set $\{G_D(\cdot, w) < -1\}$ is contained in a ball about w of radius \(\leq C'\delta_D(w)^\varepsilon \log^n \frac{1}{\delta_D(w)}\). In particular, the Bergman metric B_D of D grows at least like

\[B_D(w; X) \geq C_2 \frac{|X|}{\delta_D(w)^\varepsilon \log^n \frac{1}{\delta_D(w)}} \]

for all $w \in D \cap U_2$ and $X \in \mathbb{C}^n$.
The first assertion is clear. The second, concerning the growth order of the Bergman metric, follows from Proposition 4.1 from [DiHe].

This improves the estimate of Theorem 1.13 from [DiHe] insofar as the points w are not restricted to nontangential approach to the boundary point w^0 and the growth is up to a log-term exactly of order ε and not only $\varepsilon - t$ (with arbitrary $0 < t \ll 1$).

In [Blo2] and [NPT] the question of Hölder continuity of the Green function was treated for a special class of domains. With the methods applied in those papers we will show (1.1).

As a by-product we further obtain

Theorem 1.3. Suppose D is as in Theorem 1.1 Then there is a constant $C > 0$ such that

$$|G_D(z'', w) - G_D(z', w)| \leq C \frac{|z' - z''|^{\varepsilon^2/3n}}{M(z', z'', w)^{(1+\varepsilon)/n}} \log \frac{R_D}{M(z', z'', w)}$$

for any $z', z'' \in D \setminus \{w\}$, where

$$M(z', z'', w) = \min\{|z' - w|, |z'' - w|\}.$$

Later we will consider pseudoconvex domains that are uniformly extendable in a pseudoconvex way of some finite order $N \geq 2$. They belong to the class of pseudoconvex domains to which the above results apply.

The notion of pseudoconvex extendability is explained in the following

Definition 1.4 (cf. [DiHe Def. 1.10]). Let $D \subset\subset \mathbb{C}^n$ be pseudoconvex and smoothly bounded. We call D uniformly extendable of order N in a pseudoconvex way near a point $w^0 \in \partial D$ if there exist an open neighborhood $U' \ni w^0$, a constant $C_1 > 0$ and a C^2-smooth function $\psi : U' \times U' \to \mathbb{R}$ such that:

(i) The open set $\{\psi(q, \cdot) < 0\} \cap U'$ is pseudoconvex and the surface $\{\psi(q, \cdot) = 0\} \cap U'$ is smooth and passes through q when $q \in \partial D \cap U'$.

(ii) For $x \in U'$, $q \in U' \cap \partial D$ we have the estimate

$$C_1(r(x) - |x - q|) \leq \psi(q, x) \leq r(x) - \frac{1}{C_1} |x - q|^N.$$

In [DiFo] it was shown that real-analytically bounded pseudoconvex domains have this property. This result was extended later in [Cho] to the larger class of smooth bounded pseudoconvex domains that are of finite type in the sense of [DA]. We will prove

Lemma 1.5. Assume that the domain $D \subset\subset \mathbb{C}^n$ is uniformly extendable of order N in a pseudoconvex way near a point $w^0 \in \partial D$. Then there exist an open neighborhood U_1 of w^0, a continuous plurisubharmonic function $\Phi : D \cap U_1 \to \mathbb{R}$ and constants $C_1, c_1 > 0$ such that:
(i) On \(D \cap U_1 \) we have \(-C_1 \delta_D^{2/N} \leq \Phi < 0\).
(ii) The function \(z \mapsto \Phi(z) - c_1 |z|^2 \) is plurisubharmonic on \(D \cap U_1 \).

Hence Theorems 1.1 and 1.2 apply with \(\varepsilon = 1/N \).

In conjunction with a result of [Cho] one obtains the following:

Lemma 1.6. Let \(D \subset \subset \mathbb{C}^n \) be a smooth bounded domain and \(w_0 \in \partial D \) a point such that there exist an open neighborhood \(U_1 \ni w_0 \), constants \(C > 0 \) and \(0 < \varepsilon \leq 1/2 \), and a family \((\lambda_\delta)_0 < \delta < \delta_0\) of plurisubharmonic functions on \(U_1 \) satisfying:

(a) For all \(\delta \in (0, \delta_0) \) one has \(0 \leq \lambda_\delta \leq 1 \).
(b) On the strip \(S_\delta := \{ z \in D \cap U_1 | \delta_D(z) < \delta \} \) the function \(z \mapsto \lambda_\delta(z) - \delta^{-2\varepsilon}|z|^2 \) is still plurisubharmonic.
(c) For any derivative \(D\lambda_\delta \) of \(\lambda_\delta \) of order \(k \leq 2 \) one has \(|D\lambda_\delta| \leq C\delta^{-k} \).

Then \(D \) is uniformly extendable of order \(1/\varepsilon \) near \(w_0 \). In particular Theorems 1.1 and 1.2 apply.

2. Estimating the Green function in terms of the boundary distance of its first argument. Our plan is to estimate the Green function \(\mathcal{G}_D(P,Q) \) in terms of \(\delta_D(P) \) and \(|P-Q| \), and then to compare \(\mathcal{G}_D(P,Q) \) with \(\mathcal{G}_D(Q,P) \).

Proposition 2.1. Let \(D \subset \subset \mathbb{C}^n \) satisfy the hypotheses of Theorem 1.1 near \(w^0 \in \partial D \). Then there exist a constant \(C_5 > 0 \) and a radius \(R_1 > 0 \) such that for any \(P \in D \cap B(w^0, R_1) \) and \(Q \in D \) one has

\[
|\mathcal{G}_D(P,Q)| \leq \frac{1}{2} \log \left(1 + C_5 \frac{\delta_D(P)^{2\varepsilon}}{|P-Q|^2} \right).
\]

Proof. Let us take radii \(R_1 < \tilde{R}_1 < R_2 \) such that \(B(w_0, 2R_2) \subset U_1 \) and \(R_2 \geq 5\tilde{R}_1 \). Furthermore, we may assume that each \(x \in B(w^0, 3R_2/2) \) has an orthogonal projection \(x^* \in \partial D \cap B(w^0, 3R_2) \). We may certainly suppose that \(\delta_D(P) < R_1/2 \). Let us consider two cases:

Case I: \(|Q - w^0| < 3R_1 \). On \(U_1 \) the function \(\Phi_1(z) := \Phi(z) - c_1 |z - Q|^2 - c_1 |z - P^*|^2 \), where \(c_1 < \frac{1}{2C} \), is negative and plurisubharmonic. Also we have

\[
\frac{-\Phi_1(z)}{c_1 |z - Q|^2} \geq 1 + \frac{|z - P^*|^2}{|z - Q|^2}.
\]

But for \(z \in \partial B(w^0, R_2) \) we have, for \(P \in B(w^0, R_1) \),

\[
|z - P^*| \geq |z - w^0| - |w^0 - P| - |P - P^*| \geq R_2 - \frac{3}{2} R_1 \geq \frac{7}{10} R_2
\]

and

\[
|z - Q| \leq |z - w^0| + |w^0 - Q| \leq R_2 + 3R_1 \leq \frac{8}{5} R_2.
\]
Therefore,

\[-\Phi_1(z) \geq \frac{1}{c_1 |z - Q|^2} \geq 1 + \left(\frac{7}{16} \right)^2\]

and hence

\[\frac{1}{2} \log \frac{c_1 |z - Q|^2}{-\Phi_1(z)} \leq -c_3 := -\frac{1}{2} \log \left(1 + \left(\frac{7}{16} \right)^2 \right).

The function

\[
\Phi_2(z) := \begin{cases}
\max \left\{ \frac{1}{2} \log \frac{c_1 |z - Q|^2}{-\Phi_1(z)}, -c_3 \right\} & \text{if } z \in B(w^0, R_2) \cap D, \\
-c_3 & \text{if } z \in D \setminus (B(w^0, R_2) \cap D),
\end{cases}
\]

now becomes plurisubharmonic on \(D \) and thus it is a good candidate for \(\mathcal{G}_D(P, Q) \). Since \(|P - w^0| < R_1 < R_2 \), we obtain

\[|\mathcal{G}_D(P, Q)| \leq -\Phi_2(P) \leq \frac{1}{2} \log \frac{-\Phi_1(P)}{c_1 |P - Q|^2} \]
\[= \frac{1}{2} \log \frac{-\Phi(P) + c_1 |P - Q|^2 + c_1 |P - P^*|^2}{c_1 |P - Q|^2} \]
\[\leq \frac{1}{2} \log \left(1 + c_2 \frac{\delta_D(P)^{2\varepsilon}}{|P - Q|^2} \right)\]

with some positive constant \(c_2 \), as desired.

Case II: \(|Q - w^0| \geq 3R_1 \). Now we put

\[\Phi_3(z) := \Phi(z) - c_1 |z - P^*|^2\]

in \(D \cap U_1 \). This function is plurisubharmonic and if \(|z - P^*| = R_1/2 \) we obtain \(\Phi_3(z) \leq -c_1 R_1^2/4 \). Thus the function

\[\Phi_4(z) = \begin{cases}
\max \{ \Phi_3(z), -c_1 R_1^2/4 \} & \text{if } z \in B(P^*, R_1/2) \cap D, \\
-c_1 R_1^2/4 & \text{if } z \in D \setminus (B(P^*, R_1/2) \cap D),
\end{cases}\]

becomes well-defined and plurisubharmonic on \(D \). Next we define an appropriate candidate for \(\mathcal{G}_D(\cdot, Q) \). Let

\[\Phi_5(z) = \begin{cases}
\max \left\{ C_7 \Phi_4(z), \log \frac{|z - Q|}{R_D} \right\} & \text{if } z \in D \setminus (B(Q, R_1/2) \cap D), \\
\log \frac{|z - Q|}{R_D} & \text{if } z \in B(Q, R_1/2) \cap D,
\end{cases}\]

where \(C_7 > 0 \) is chosen so large that

\[C_7 \Phi_4(z) \leq \log \frac{R_1}{2R_D} \quad \text{for } z \in D \cap \partial B(Q, R_1/2).\]
Note that this is possible, since for such points \(z \) one has
\[
|z - P^*| \geq |Q - P^*| - |z - Q| \geq |Q - w^0| - |w^0 - P^*| - |z - Q|
\]
\[
\geq |Q - w^0| - |w^0 - P - \delta_D(P) - |z - Q| \geq R_1,
\]
hence \(\Phi_4(z) = -c_1 R_1^2 / 4 \).

We find that
\[
|G_D(P, Q)| \leq -\Phi_5(P) \leq -c_7 \Phi(P) = -c_7 C_7|P - P^*|^2
\]
\[
\leq C_8 \delta_D(P)^{2\epsilon},
\]
because in our situation we have
\[
|P - Q| \geq |Q - w_0| - |P - w_0| \geq 2R_1.
\]

This implies also
\[
\frac{\delta_D(P)^{\epsilon}}{|P - Q|} \leq \frac{R_2}{2R_1}.
\]

The function \(V(t) := \frac{1}{t} \log(1 + t) \) is decreasing on \((0, \infty)\). This yields, if we choose \(C_5 \) so large that
\[
\frac{2R_2}{R_2^{2+2\epsilon}} \log \left(1 + C_5^2 \frac{R_2^{2\epsilon}}{4R_1^2} \right) \geq C_8,
\]
the estimate
\[
\frac{1}{2} \log \left(1 + C_5^2 \frac{\delta_D(P)^{2\epsilon}}{|P - Q|^2} \right) = \frac{1}{2} C_5^2 \frac{\delta_D(P)^{2\epsilon}}{|P - Q|^2} V \left(C_5^2 \frac{\delta_D(P)^{2\epsilon}}{|P - Q|^2} \right)
\]
\[
\geq \frac{1}{2} C_5^2 \frac{\delta_D(P)^{2\epsilon}}{|P - Q|^2} V \left(C_5^2 \frac{R_2^{2\epsilon}}{4R_1^2} \right)
\]
\[
\geq \frac{1}{2R_2^2} C_5^2 V \left(C_5^2 \frac{R_2^{2\epsilon}}{4R_1^2} \right) \delta_D(P)^{2\epsilon}
\]
\[
= \frac{2R_2^2}{R_2^{2+2\epsilon}} \log \left(1 + C_5^2 \frac{R_2^{2\epsilon}}{4R_1^2} \right) \delta_D(P)^{2\epsilon}
\]
\[
\geq C_8 \delta_D(P)^{2\epsilon} \geq |G_D(P, Q)|.
\]

The proposition is proved. \(\blacksquare \)

3. A first Hölder estimate for the Green function. We adopt the methods from \cite{Blo2} and \cite{NPT}. Let \(D \) be a bounded hyperconvex domain in \(\mathbb{C}^n \). Let \(w \in D \) be fixed and \(r = \frac{2}{3}\delta_D(w) \). We consider for \(r > \eta > 0 \) the family
\[
\mathcal{P}_\eta := \{ v \mid v \text{ plurisubharmonic on } D, v \leq 0 \text{ on } D, v \leq \log(\eta/r) \text{ on } \overline{B}(w, \eta) \}
\]
and its upper envelope
\[
u^n(z) = \sup \{ v(z) \mid v \in \mathcal{P}_\eta \}.
\]

Then (for details see \cite{Kli2}, Sec. 4.5) we have:
(a) \(u^n \) is continuous, and \(u^n(z) \to 0 \) as \(z \) tends to a boundary point of \(D \).

(b) The function \(u^n \) is maximal plurisubharmonic outside \(\overline{B}(w, \eta) \).

(c) We have \(u^n = \log(\eta/r) \) on \(\overline{B}(w, \eta) \) and \(u^n(z) \leq \log(\max\{|z-w|, \eta\}/r) \) on \(D \).

(d) For \(\eta_1 \leq \eta_2 \) we have \(u^{\eta_1} \leq u^{\eta_2} \). Further \(\lim_{\eta \searrow 0} u^n(z) = G_D(z, w) \) on \(D \).

We recall from \([\text{NPT}]\) the following construction, associated with two given different points \(P, w \in D \). Let \(D \) denote the unit disc in the plane. We choose a holomorphic function \(F_{P,w} \) on \(D \) with values in \(D \) such that \(F_{P,w}(w) = 0 \) and \(\arctgh|F_{P,w}(P)| \) is equal to the Carathéodory distance \(c_D(P, w) \) between \(P \) and \(w \). Then we put, for \(h \in \mathbb{C}^n, \ z \in D \),

\[
H_{P,w,h}(z) := z + \frac{F_{P,w}(z)}{F_{P,w}(P)} h.
\]

Since \(tgh c_D(P, Q) \geq |P - Q|/R_D \) for \(P, Q \in D \), we obtain

\[
|H_{P,w,h}(z) - z| \leq R_D |F_{P,w}(z)| \frac{|h|}{|P - w|}
\]

for \(z \in D \). If \(|z - w| < \delta_D(w) \), then we get

\[
|F_{P,w}(z)| \leq tgh c_D(z, w) \leq \frac{|z - w|}{\delta_D(w)},
\]

and from (3.1) we see that

\[
|H_{P,w,h}(z) - z| \leq R_D \frac{|z - w|}{|P - w|} \frac{|h|}{\delta_D(w)}.
\]

We will make use of this later.

Lemma 3.1. Let \(D \) be a pseudoconvex domain as in Theorem 1.1. Then, with some constant \(C_1 > 0 \), for \(z', z'' \in D \setminus \{w\} \) we have

\[
|G_D(z', w) - G_D(z'', w)| \leq \log \left(1 + C_1 \frac{R_D^\varepsilon}{\delta_D(w)} \frac{|z' - z''|^\varepsilon}{M(z', z'', w)^\varepsilon} \right)
\]

provided that

\[
|z' - z''| \leq \frac{\delta_D(w)}{8R_D} M(z', z'', w),
\]

where we write \(M(z', z'', w) = \min\{|z' - w|, |z'' - w|\} \).

Proof. We follow an idea from \([\text{NPT}]\). Let \(h := z'' - z' \), and consider the domain

\[
D_1 := \{ z \in D \mid H_{z',w,h}(z) \in D \}.
\]

Then \(\overline{B}(w, \eta) \subset D_1 \) for small enough \(\eta \), since \(w \in D_1 \).
If $z \in D$ and $H_{z',w,h}(z) \in \partial D$, we have
\begin{equation}
\delta_D(z) \leq |H_{z',w,h}(z) - z| \leq \frac{R_D}{|z' - w|}|h| \tag{3.4}
\end{equation}
and
\begin{equation}
|z - w| \geq |H_{z',w,h}(z) - w| - |H_{z',w,h}(z) - z| \\
\geq \delta_D(w) - \frac{R_D}{|z' - w|}|h| \geq \frac{1}{2}\delta_D(w), \tag{3.5}
\end{equation}
using (3.3). This implies (together with Prop. 2.1)
\[u_\eta(z) \geq G_{\hat{D}}(z,w) \geq -\log \left(1 + C_5 \frac{\delta_D(z)^c}{|z - w|} \right) \]
\[\geq -\log \left(1 + C_5 \frac{R_D^c}{|z - w|} \frac{|h|^c}{|z' - w|^c} \right) \text{ by (3.4)} \]
\[\geq -\log \left(1 + 2C_5 \frac{R_D^c}{\delta_D(w)} \frac{|h|^c}{|z' - w|^c} \right) \text{ by (3.5)}. \]
For $z \in \partial D$ we even have $u_\eta(z) = 0$. In each case we see that the last displayed estimate holds for any $z \in \partial D_1$. In particular,
\[u_\eta(H_{z',w,h}(z)) \leq 0 \leq u_\eta(z) + \log \left(1 + 2C_5 \frac{R_D^c}{\delta_D(w)} \frac{|h|^c}{|z' - w|^c} \right) \]
on ∂D_1. We want to prove this estimate also for $z \in \partial B(w,\eta)$.

For this purpose we take an arbitrary $z \in D$ with $|z - w| = \eta$. Then, by (3.2),
\[|H_{z',w,h}(z) - w| \leq |z - w| + \frac{R_D}{\delta_D(w)} \frac{|z - w|}{|z' - w|}|h| \]
\[= \left(1 + \frac{R_D}{\delta_D(w)} |h| \frac{|z' - w|}{|z' - w|^c} \right) \eta. \]
This gives
\[u_\eta(H_{z',w,h}(z)) \leq \log \frac{\max\{|H_{z',w,h}(z) - w|, \eta\}}{r} \]
\[\leq \log(\eta/r) + \log \left(1 + \frac{R_D}{\delta_D(w)} \frac{|h|}{|z' - w|} \right) \]
\[\leq u_\eta(z) + \log \left(1 + 2C_5 \frac{R_D^c}{\delta_D(w)} \frac{|h|^c}{|z' - w|^c} \right), \text{ by (3.3)}. \]
Since u_η is maximal on $D_1 \setminus \overline{B}(w,\eta)$, the above estimate holds even on $D_1 \setminus \overline{B}(w,\eta)$, since it holds on $\partial(D_1 \setminus \overline{B}(w,\eta))$. We choose $z = z'$ and get, because $H_{z',w,h}(z') = z''$,
\[u_\eta(z'') \leq u_\eta(z') + \log \left(1 + 2C_5 \frac{R_D^c}{\delta_D(w)} \frac{|h|^c}{M(z',z'',w)^c} \right). \]
Letting η tend to zero and recalling the definition of h, we obtain the desired estimate
\[G_D(z'', w) - G_D(z', w) \leq \log \left(1 + 2C_5 \frac{R_D^e}{\delta_D(w)} \frac{|z' - z''|^e}{M(z', z'', w)^e} \right). \]
Interchanging the roles of z' and z'' we can complete the proof. ■

4. Proof of Theorem 1.1

4.1. Proof of estimate (1.1). We must consider two cases.

Case 1: $\delta_D(w)^e \leq |z - w|$. The starting point is the following estimate that was obtained in \[\text{[He]}\] (based upon an inequality of \[\text{[Bło1]}\]):
\[(4.6) \int_D |\mathcal{G}_D(\cdot, w)| d\mu_{z, \eta} \leq (2\pi)^n (n!)^{1/n} \eta^{(n-1)/n} |\mathcal{G}_D(w, z)|^{1/n}, \]
where $d\mu_{z, \eta}$ denotes for any $\eta > 0$ the measure
\[d\mu_{z, \eta} := (dd^c \max\{\mathcal{G}_D(\cdot, z), -\eta\})^n. \]
This measure is supported on the set \(\{\mathcal{G}_D(\cdot, z) = -\eta\} \subset B(z, R_De^{-\eta}) \), and its total mass is $(2\pi)^n$ (see \[\text{[He]}\]).

We want to apply Lemma 3.1 for $z' = z$. For this we must choose $\eta > 1$ such that
\[(4.7) R_De^{-\eta} \leq \frac{\delta_D(w)}{8R_D} \min\{|z - w|, |z'' - w|\} \]
for $|z'' - z| < R_De^{-\eta}$. Now we note that
\[|z'' - w| \geq |z - w| - |z'' - z| \geq |z - w| - R_De^{-\eta} \geq \frac{1}{2} |z - w|, \]
if only $\eta \geq \log \frac{2R_D}{|z - w|}$. We must choose
\[(4.8) \eta \geq \log \frac{16R_D}{|z - w|\delta_D(w)} \]
in order to arrange for (4.7). Lemma 3.1 and (4.6) yield
\[(n!)^{1/n} \eta^{(n-1)/n} |\mathcal{G}_D(w, z)|^{1/n} \]
\[\geq (2\pi)^{-n} \int_D |\mathcal{G}_D(z'', w)| d\mu_{z, \eta}(z'') \geq (2\pi)^{-n} \int_D |\mathcal{G}_D(z, w)| d\mu_{z, \eta}(z'') \]
\[- (2\pi)^{-n} \int_D |\mathcal{G}_D(z'', w) - \mathcal{G}_D(z, w)| d\mu_{z, \eta}(z'') \]
\[= |\mathcal{G}_D(z, w)| - (2\pi)^{-n} \int_D |\mathcal{G}_D(z'', w) - \mathcal{G}_D(z, w)| d\mu_{z, \eta}(z'') \]
\[\geq |\mathcal{G}_D(z, w)| - (2\pi)^{-n} \int_D \log \left(1 + 2C_5 \frac{R_{De}^e}{\delta_D(w)} \frac{e^{-\eta}}{|z - w|^e} \right) d\mu_{z, \eta}(z'') \]
\[= |\mathcal{G}_D(z, w)| - \log(1 + M_\eta e^{-\eta}) \]
with the abbreviation
\[
M_\eta := (2C_5)^\varepsilon \frac{R_D^{2+1}}{\delta_D(w)|z-w|^\varepsilon}.
\]

We now choose
\[
(4.10) \quad \eta := \left(\frac{1}{n+\varepsilon}\right)^{\frac{1}{\varepsilon}} \log \frac{1}{|G_D(w,z)|} + \frac{1+\varepsilon^2}{\varepsilon^2} \log \frac{2C_5}{R_D^{1-\varepsilon}} + \frac{1+\varepsilon^2}{\varepsilon^2} \log \frac{R_D}{|z-w|}.
\]

Next we show that
\[
(4.11) \quad \eta > \frac{1}{\varepsilon} \log M_\eta + \frac{1}{n\varepsilon} \log \frac{1}{|G_D(w,z)|}.
\]

By Proposition 2.1 we have
\[
|G_D(w,z)| \leq C_5 \delta_D(w)^\varepsilon.
\]

This leads to
\[
\eta - \frac{1}{\varepsilon} \log M_\eta - \frac{1}{n\varepsilon} \log \frac{1}{|G_D(w,z)|} = \frac{1}{\varepsilon^2} \log \frac{1}{|G_D(w,z)|} + \frac{1+\varepsilon^2}{\varepsilon^2} \log \frac{R_D}{|z-w|} + \frac{1+\varepsilon^2}{\varepsilon^2} \log \frac{2C_5}{R_D^{1-\varepsilon}}
\]
\[
- \log(2C_5) - \frac{1+\varepsilon^2}{\varepsilon} \log R_D + \frac{1}{\varepsilon} \log \delta_D(w) + \log |z-w|
\]
\[
\geq - \frac{1}{\varepsilon^2} \log C_5 - \frac{1}{\varepsilon} \log \delta_D(w) + \frac{1}{\varepsilon^2} \log |z-w| + \frac{1+\varepsilon^2}{\varepsilon^2} \log \frac{R_D}{|z-w|}
\]
\[
+ \frac{1+\varepsilon^2}{\varepsilon^2} \log \frac{2C_5}{R_D^{1-\varepsilon}} - \log(2C_5) - \frac{1+\varepsilon^2}{\varepsilon} \log R_D + \frac{1}{\varepsilon} \log \delta_D(w) + \log |z-w|
\]
\[
= \frac{1}{\varepsilon^2} \log 2 > 0,
\]

which yields (4.11). Further we get (4.8) from
\[
\eta - \log \frac{16R_D}{|z-w|\delta_D(w)}
\]
\[
\geq \frac{1}{\varepsilon} \log M_\eta - \frac{1}{n\varepsilon} \log C_5 - \log(16R_D) + \log \delta_D(w) + \log |z-w|
\]
\[
\geq - \log(8R_D^{1-\varepsilon}C_5^{1/n\varepsilon - 1}) + \left(\frac{1}{\varepsilon} - 1\right) \log \frac{1}{\delta_D(w)} > 0
\]

using (4.11) and $|G_D(w,z)| \leq C_5 \delta_D(w)^\varepsilon/|z-w| \leq C_5$ (recall that we suppose $\delta_D(w)^\varepsilon/|z-w| \leq 1$).
Finally,

\[
\begin{align*}
&\log \frac{M_\eta}{\exp(\eta^{1/n}|G_D(w,z)|^{1/n}) - 1} \\
&\leq \log \frac{M_\eta}{\eta^{1/n}|G_D(w,z)|^{1/n}} = \log M_\eta - \left(1 - \frac{1}{n}\right) \log \eta + \frac{1}{n} \log \frac{1}{|G_D(w,z)|} \\
&\leq \varepsilon \eta - \left(1 - \frac{1}{n}\right) \log \eta \leq \varepsilon \eta, \quad \text{by (4.11)},
\end{align*}
\]

and

\[
\log(1 + M_\eta e^{-\varepsilon \eta}) \leq \eta^{1/n}|G_D(w,z)|^{1/n}.
\]

Plugging these into (4.9) we find by means of (2.1), applied to |G_D(w,z)|,

\[
|G_D(z,w)| \leq (1 + (n!)^{1/n})^{\varepsilon_\eta} \eta^{(n-1)/n}|G_D(w,z)|^{1/n}
\]

\[
\leq \frac{2}{\varepsilon_\eta} (1 + (n!)^{1/n}) M(z,w)|G_D(w,z)|^{1/n},
\]

from which the claim follows.

Case 2: \(\delta_D(w)^\varepsilon > |z - w| \). With a constant \(\widehat{M}_\eta > 1 \) to be chosen later, we consider the function

\[
v(x) := \widehat{M}_\eta \log \left(\frac{1}{2} \frac{|x - w|}{\delta_D(w)^\varepsilon}\right)
\]

on the domain

\[
\Omega_r := D \cap B(w, \delta_D(w)^\varepsilon) \setminus B(w, r),
\]

where the radius \(r > 0 \) is less than \(|z - w| \) and satisfies

\[
\widehat{M}_\eta \log \frac{r}{\delta_D(w)^\varepsilon} \leq \log \frac{r}{R_D},
\]

which is equivalent to

\[
\log r < \frac{\varepsilon \widehat{M}_\eta \log \delta_D(w) - \log R_D}{\widehat{M}_\eta - 1}.
\]

Then \(z \in \Omega_r \), and \(w \notin \Omega_r \).

On \(\Omega_r \) we have \(v \leq -\widehat{M}_\eta \log 2 < 0 \).

Next let us consider \(v \) on \(\partial \Omega_r \). For \(x \in D \cap \partial B(w, r) \) we can estimate

\[
v(x) = \widehat{M}_\eta \log \frac{r}{\delta_D(w)^\varepsilon} \leq \log \frac{r}{R_D} < G_D(x,w).
\]

For \(x \in \partial D \) we obtain

\[
v(x) \leq -\widehat{M}_\eta \log 2 < 0 = G_D(x,w).
\]
Finally, let \(x \in D \cap \partial B(w, \delta_D(w)^\varepsilon) \). Then, by Case 1, because \(|x - w| = \delta_D(w)^\varepsilon\),
\[
|J_D(x, w)| \leq 2\varepsilon^{-2}(1 + (n!)^{1/n})M(x, w)^{1-1/n}|J_D(w, x)|^{1/n}.
\]
But
\[
|J_D(w, x)| \log^{n-1} \left(\frac{1}{|J_D(w, x)|} \right) \leq C_6
\]
and
\[
\log \frac{R_D}{|x - w|} = \log \frac{R_D}{\delta_D(w)^\varepsilon} \leq \log \frac{R_D}{|z - w|}.
\]
(We are considering the case \(\delta_D(w)^\varepsilon > |z - w| \).) This proves
\[
|J_D(x, w)| \leq C_7 + C_8 \left(\log \frac{R_D}{|z - w|} \right)^{1-1/n}
\]
and, since \(v(x) = -\hat{M}_\eta \log 2 \), we get
\[
|J_D(x, w)| \leq \frac{1}{\hat{M}_\eta} \left(C_7^\prime + C_8^\prime \left(\log \frac{R_D}{|z - w|} \right)^{1-1/n} \right) |v(x)|.
\]
Let
\[
\hat{M}_\eta := C_9 M(z, w)^{1-1/n},
\]
where the constant \(C_9 \) can be chosen independently of \(z, w \) in such a way that \(|J_D(x, w)| \leq |v(x)|\). Hence, by the maximality of \(J_D(\cdot, w) \) we get \(v \leq J_D(\cdot, w) \) on \(\Omega_r \). This implies
\[
|J_D(z, w)| \leq |v(z)| \leq \hat{M}_\eta \log \left(\frac{2 \delta_D(w)^\varepsilon}{|z - w|} \right) \leq n\hat{M}_\eta \log \left(1 + 2 \left(\frac{\delta_D(w)^\varepsilon}{|z - w|} \right)^{1/n} \right),
\]
from which the desired estimate on \(J_D(z, w) \) will follow. ■

4.2. Proof of estimate (1.2). Our aim is the proof of
\[
|J_D(z, w)| \leq CM(z, w)^{1-1/n} \log \left(1 + C \left(\frac{\delta_D(z)^\varepsilon \delta_D(w)^\varepsilon}{|z - w|^2} \right)^{1/n} \right).
\]
We fix distinct \(z, w \in D \cap U_1 \). Without loss of generality we may assume that they are close to the boundary so that the orthogonal projections \(z^*, w^* \) to the boundary are well-defined.

Let \(c > 0 \) denote a small constant such that
\[
4c^{1/\varepsilon} R_D^{1/\varepsilon - 1} < 1.
\]
If $\delta_D(z)^e \geq c|z - w|$, then (1.1) yields
$$|\mathcal{G}_D(z, w)| \leq nCM(z, w)^{1-1/n} \log \left(1 + C \left(\frac{\delta_D(w)^e}{|z - w|} \right)^{1/n} \right) \leq nCM(z, w)^{1-1/n} \log \left(1 + Cc^{-1/n} \left(\frac{\delta_D(z)^e \delta_D(w)^e}{|z - w|^2} \right)^{1/n} \right).$$

So we suppose that $\delta_D(z)^e \leq c|z - w|$. Now we define
$$V := D \cap B(z^*, 2c^{1/e} R_D^{1/e-1}|z - w|)$$
and note that
$$|z - z^*| = \delta_D(z) \leq (c|z - w|)^{1/e} \leq c^{1/e} R_D^{1/e-1}|z - w|,$$
hence $z \in V$. At the same time we have
$$|w - z^*| \geq |z - w| - |z - z^*| = |z - w| - \delta_D(z) \geq |z - w| - (c|z - w|)^{1/e} > 2c^{1/e} R_D^{1/e-1}|z - w|$$
by the choice of c. Hence $w \notin V$, and $\mathcal{G}_D(\cdot, w)$ is a maximal plurisubharmonic function on V. We define on V a plurisubharmonic comparison function v_2. For this we use
$$\psi(x) := \Phi(x) - \gamma|x - z^*|^2,$$
which is negative and for small enough $\gamma > 0$ also plurisubharmonic. Then, for any $x \in V$,
$$|x - w| \geq |z - w| - |x - z| \geq |z - w| - \delta_D(z) - |x - z^*| \geq (1 - 3c^{1/e} R_D^{1/e-1})|z - w| \geq \frac{1}{4}|z - w|.$$
By (1.1) we have the estimate
$$\mathcal{G}_D(x, w) \geq -CM(x, w)^{1-1/n} \log \left(1 + \tilde{C} \left(\frac{\delta_D(w)^e}{|x - w|} \right)^{1/n} \right) \geq -C'M(z, w)^{1-1/n} \log(1 + CM_1^{1/n}) \geq -C'M(z, w)^{1-1/n} \log \left(1 + CM_1^{1/n} \left(\frac{-\psi(x)}{\gamma|x - z^*|^2} \right)^{1/2n} \right)$$
with some constant C' and $M_1 := 4\delta_D(w)^e/|z - w|$. Our plurisubharmonic comparison function v_2 is now defined by
$$v_2(x) := -C'M(z, w)^{1-1/n} \log \left(1 + C \left(\frac{\delta_D(w)^e}{\gamma_1|z - w|^2} \right)^{1/n} (-\psi(x))^{1/2n} \right)$$
with a constant γ_1 that will be chosen in a moment.

It is easily verified that v_2 is plurisubharmonic on V. We compare v_2 and $\mathcal{G}_D(\cdot, w)$ on ∂V. On $V \cap \partial D$ certainly $v_2 \leq 0 = \mathcal{G}_D(\cdot, w)$.

The pluricomplex Green function
For \(x \in D \cap \partial B(z^*, 2c^{1/\varepsilon} R_D^{1/\varepsilon-1}|z - w|) \) we have
\[
\gamma_1 |z - w| = \gamma_1 \frac{|x - z^*|}{2c^{1/\varepsilon} R_D^{1/\varepsilon-1}} = \frac{1}{4} \sqrt{\gamma} |x - z^*|
\]
for \(\gamma_1 = \frac{\sqrt{\gamma}}{2} c^{1/\varepsilon} R_D^{1/\varepsilon-1} \), and therefore
\[
v_2(x) = -C'' M(z, w)^{-1/n} \log \left(1 + C M_1^{1/n}(-\psi(x))^{1/2n}\right)
\leq -C'' M(z, w)^{-1/n} \log \left(1 + C M_1^{1/n}(-\psi(x))^{1/2n}\right)^{1/2n} \leq \mathcal{G}_D(x, w).
\]
Hence \(v_2 \leq \mathcal{G}_D(\cdot, w) \) on \(\partial V \) and, by the comparison principle, \(v_2 \leq \mathcal{G}_D(\cdot, w) \) on \(V \). But this gives
\[
|\mathcal{G}_D(z, w)| \leq |v_2(z)|
\]
\[
= C' M(z, w)^{1-1/n} \log \left(1 + C \left(\frac{\delta_D(w)^{\varepsilon}}{\gamma_1 |z - w|^2}\right)^{1/n} (-\psi(z))^{1/2n}\right)
\leq C' M(z, w)^{1-1/n} \log \left(1 + \widehat{C} \left(\frac{\delta_D(z)^{\varepsilon} \delta_D(w)^{\varepsilon}}{|z - w|^2}\right)^{1/n}\right)
\]
with some new constant \(\widehat{C} \). Note that
\[
|\psi(z)| = |\Phi(z)| + \delta_D(z) \leq (C + 1) \delta_D(z)^{2\varepsilon}.
\]
This finishes the proof of Theorem 1.1.

4.3. Proof of Theorem 1.3. We let \(h := z' - z'' \) and consider two cases.

Case 1: \(|h|^{2\varepsilon/3} \leq \delta_D(w) \) and \(|h| \leq (\delta_D(w)/8R_D) M(z', z'', w) \). Then, by Lemma 3.1 we have
\[
|\mathcal{G}_D(z', w) - \mathcal{G}_D(z'', w)| \leq \log \left(1 + C' \frac{|h|^{\varepsilon}}{\delta_D(w) M(z', z'', w)^{\varepsilon}}\right)
\leq \log \left(1 + C' \frac{|h|^{\varepsilon/3}}{M(z', z'', w)^{\varepsilon}}\right),
\]
which proves the claimed estimate.

Case 2: \(|h|^{2\varepsilon/3} \geq \delta_D(w) \) or \(|h| \geq (\delta_D(w)/8R_D) M(z', z'', w) \). Now we simply estimate
\[
|\mathcal{G}_D(z', w) - \mathcal{G}_D(z'', w)| \leq |\mathcal{G}_D(z', w)| + |\mathcal{G}_D(z'', w)|
\]

With some new constant \(\hat{C} \). Note that
\[
|\psi(z)| = |\Phi(z)| + \delta_D(z) \leq (C + 1) \delta_D(z)^{2\varepsilon}.
\]
This finishes the proof of Theorem 1.1.
and want to apply (1.1) to the right-hand side. For this we note that
\[M(z', w) \leq \left| \log \log \left(1 + C \left(\frac{\delta_D(w)^e}{|z' - w|} \right) \right) \right| + \log \frac{R_D}{M(z', z'', w)} \]
\[\leq C' \log \frac{R_D}{M(z', z'', w)}, \]
and \(M(z'', w) \leq C' \log \frac{R_D}{M(z', z'', w)}. \) This results in
\[|G_D(z', w)| \leq \hat{C} M(z', w)^{1-1/n} \log \left(1 + C \left(\frac{\delta_D(w)^e}{|z' - w|} \right)^{1/n} \right) \]
\[\leq \hat{C} M(z', w)^{1-1/n} \log \left(1 + \hat{C} \frac{|h|^{2\varepsilon/n}}{M(z', z'', w)^{1+\varepsilon/n}} \right) \]
and
\[|G_D(z'', w)| \leq \hat{C} M(z'', w)^{1-1/n} \log \left(1 + \hat{C} \frac{|h|^{2\varepsilon/n}}{M(z', z'', w)^{1+\varepsilon/n}} \right), \]
which in conjunction with the estimates on \(M(z', w) \) and \(M(z'', w) \) gives the desired Hölder estimate for \(|G_D(z', w)|. \)

5. The case of pseudoconvex extendable domains. Proofs of Lemmas 1.5 and 1.6

5.1. Proof of Lemma 1.5. We assume that \(N > 2 \), otherwise the assertion is well-known. As in the definition of pseudoconvex extendability, let \(\psi \in \mathcal{C}^2(U' \times U') \) be an extending function of order \(N \), defined on a neighborhood \(U' \) of \(w^0 \). Then there exists a constant \(C_2 > 0 \) such that its Levi form \(\mathcal{L}_{\psi(q, \cdot)} \) satisfies (for all \(q \in \partial D \cap U' \))
\[\mathcal{L}_{\psi(q, \cdot)}(z; X) \geq -C_2 \left(|\psi(q, z)| |X|^2 + ||\partial\psi(q, \cdot), X|| |X| \right). \]

For any constant \(A > 0 \) and any \(q \in \partial D \cap U' \), the function
\[\sigma(q, z) := \psi(q, z)e^{-A|z-q|^2} \]
also extends in a pseudoconvex way on \(\partial D \) near \(w^0 \), more explicitly
\[-C_3(-r(z) + |z - q|) \leq \sigma(q, z) \leq e^{-Ar^2} r(z) - c_2 |z - q|^N, \]
where \(R' \) is the diameter of \(U' \) and \(c_2 > 0 \) is a small constant.

We choose open neighborhoods \(U_1 \subset U_2 \subset U' \) of \(w^0 \) such that, given \(z \in U_1 \), its orthogonal projection \(z^* \) onto \(\partial D \) lies inside \(U_2 \). By making \(A \) very large and then shrinking \(U_1 \) we can arrange that for any \(q \in \partial D \cap U_2 \), the function \(-(-\sigma(q, z))^{2/N} \) is plurisubharmonic on \(D \cap U_1 \). Now we put, for \(z \in D \cap U_1 \),
\[\Phi'(z) := \sup_{q \in \partial D \cap U_2} \left(-(-\sigma(q, z))^{2/N} + \frac{1}{4} c_2^{2/N} |z - q|^2 \right). \]
Our claim is that \(\Phi' \) satisfies the estimate
\[
-C_1' \delta_D^{2/N} \leq \Phi' \leq -C_2' \delta_D^{2/N}
\]
with suitable constants \(C_1', C_2' > 0 \).

For this we observe that for any \(t, s \geq 0 \),
\[
(t^{2/N} + s^{2/N})^{N/2} \leq 2^N (t + s).
\]
This implies
\[
((-e^{-AR^2} r(z))^{2/N} + c_2^{2/N} |z - q|^2)^{N/2} \leq 2^N (-e^{-AR^2} r(z) + c_2 |z - q|^N)
\]
\[
\leq -2^N \sigma(q, z)
\]
by (5.2), or
\[
(-e^{-AR^2} r(z))^{2/N} + c_2^{2/N} |z - q|^2 \leq 4(-\sigma(q, z))^{2/N}.
\]
This gives
\[
\Phi'(z) \leq -\frac{1}{4} e^{-2AR^2/N} (-r(z))^{2/N}.
\]
The lower estimate is easier to show. Let \(z \in D \cap U_1 \); then \(z^* \in \partial D \cap U_2 \), and we find that
\[
\Phi'(z) \geq -(-\sigma(z^*, z))^{2/N} + \frac{1}{4} c_2^{2/N} |z - z^*|^2
\]
\[
\geq -C_3(-r(z) + |z - z^*|))^{2/N} \geq -C_4 \delta_D(z)^{2/N}.
\]

The upper semicontinuous regularization \(\Phi \) of \(\Phi' \) is plurisubharmonic and satisfies property (i). But also property (ii) holds, since the function \(\Phi''(z) := \Phi'(z) - \frac{1}{5} c_2^{2/N} |z|^2 \) is the supremum of a family of plurisubharmonic functions, and furthermore \(z \mapsto \Phi(z) - \frac{1}{5} c_2^{2/N} |z|^2 \) equals the upper semicontinuous regularization of \(\Phi'' \) and hence is also plurisubharmonic. ■

5.2. Proof of Lemma 1.6

We only need to recall Cho’s proof. We give a sketch of this proof and then state where to modify it.

Let \(\phi \in \mathcal{C}_0^\infty (B(0, 2) \setminus B(0, 1/4)) \) be a function such that \(\phi(z) = 1 \) for \(1/2 < |z| < 1 \). Also let \(\psi \in \mathcal{C}_0^\infty (\mathbb{C}^n) \) be a smooth function such that \(\psi(z) = 1 \) for \(|z| \geq 2 \), and \(\psi(z) = 0 \) if \(|z| < 1 \).

For some large integer \(\mathcal{N} \) we put \(\phi_{\mathcal{N}}(z) = \psi(2^{\mathcal{N}} e z) \) and \(\phi_k(z) = \phi(2^k e z) \) for \(k > \mathcal{N} \). Let \(\zeta \in \partial D \). Then we consider, with a suitable small number \(\alpha > 0 \), the function
\[
E_{\zeta}(z) := \sum_{k=\mathcal{N}}^{\infty} 2^{-2k} \phi_k(z - \zeta)(\lambda_{2^{-k} \alpha}(z) - 2).
\]
The only difference between this definition for \(E_{\zeta} \) and that of Cho’s proof is the factor \(2^{-2k} \) in front of \(\phi_k(z - \zeta)(\lambda_{2^{-k} \alpha}(z) - 2) \). In Cho’s proof the factor was \(2^{-4k} \).
The pluricomplex Green function

There exists $L \in \mathbb{N}$ such that for any ζ and z there are at most L integers k such that $z \in \text{supp} \phi_k(\cdot - \zeta)$. Again we have

$$|DE_\zeta(z)| \leq La^{-\ell}2^{\ell-2}k$$

for any ℓth order derivative DE_ζ of E_ζ and $z \in \text{supp} \phi_k(\cdot - \zeta)$. This shows that E_ζ is of class C^2. The rest of the proof of the pseudoconvexity of the surface $\{E_\zeta = 0\}$ is completely analogous to that in [Cho]. Because of the factor 2^{-2k} instead of 2^{-4k}, now the function E_ζ extends in a pseudoconvex way to order $\leq 1/\varepsilon$ instead of $2/\varepsilon$. ■

References

[Hör] L. Hörmander, L^2 estimates and existence theorems for the $\bar{\partial}$-operator, Acta Math. 113 (1965), 89–152.
Received 20.3.2013
and in final form 28.8.2013