ANNALES
POLONICI MATHEMATICI
110.3 (2014)

Holder regularity of three-dimensional minimal cones in R”

by TiEN Duc Luu (Orsay)

Abstract. We show the local Holder regularity of Almgren minimal cones of dimen-
sion 3 in R"™ away from their centers. The proof is almost elementary but we use the
generalized theorem of Reifenberg. In the proof, we give a classification of points away
from the center of a minimal cone of dimension 3 in R™, into types P, Y and T. We then
treat each case separately and give a local Holder parameterization of the cone.

1. Introduction. In this paper, we prove Holder regularity for three-
dimensional minimal cones in R™. Thisis a continuation of [D] in which G. David
proved the Holder regularity for two-dimensional almost minimal sets in R".
The structure of two-dimensional minimal cones in R" is quite clear now, as
in [D], G. David has classified them into three types: P, Y and T (see Section 15
of [D] for the definition). For now we do not know yet the list of cones of type T.
For three-dimensional minimal cones, Almgren [Al| has showed that any cone
of dimension 3 in R*, centered at the origin and over a smooth surface of S3,
must be a 3-plane. But for three-dimensional minimal cones in general, the
structure of their singularities is still unclear. This paper is a first step towards
understanding this structure, and we hope it may help to study the structure
of singularities of three-dimensional minimal sets in R*.

Let us first give the definition of Almgren minimal sets of dimension d
in R™.

DEFINITION 1.1. Let E be a closed set in R™ and d < n—1 be an integer.
An Almgren competitor (Al-competitor) for E is a closed set ' C R™ that
can be written as F' = ¢(F), where ¢ : R® — R™ is a Lipschitz mapping
such that W, = {x € R"; ¢(x) # x} is bounded.

An Al-minimal set of dimension d in R" is a closed set £ C R"™ such that
HY(E N B(0,R)) < oo for every R > 0 and

HYE\F) < H(F\E)
for every Al-competitor F' for E.
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Even if we think that the applications will be essentially in R4, we shall
treat the problem in the general case of R™. So we need the following de-
scriptions of cones of type P, Y or T of dimension d in R™ [DDT].

We denote by P the collection of d-dimensional affine planes, which we
shall also call cones of type P.

We next define the collection Y of cones of type Y. We take a propeller Y
in a plane, which is the union of three half-lines with the same endpoint 0
and that make 120° angles at 0. We obtain a first set of type Y as the product
Yo =Y xV, where V is a (d—1)-dimensional vector space that is orthogonal
to the plane that contains Y. We shall call V' the spine of Yq. Finally, ) is
the collection of sets Y of the form Y = j(Yg), where j is an isometry of R".
The spine of Y is the image under j of the spine of Y.

We now define the collection T of sets of type T. The set 7 will be the
collection of sets T' = g(Tp x V'), where Tj lies in a set 7 of 2-dimensional
cones in R"~%+2 and V is the (d — 2)-plane orthogonal to R"~4*2 in R™, and
g is an isometry of R™.

Each Ty € Tp will be the cone over a set K C 0B(0,1), with the following
properties. First, K = Uje ;7 Cj is a finite union of great circles, or closed
arcs of great circles. Denote by @ the collection of extremities of the arcs C},
J € J; each point y € @ lies in exactly three Cj, y is an endpoint for each
such Cj, and the three C; make 120° angles at y. The C; can only meet at
their endpoints (and hence the full arcs of circles are disjoint from the rest
of K). In addition, we choose a small constant 79 > 0, which depends only
on n, such that

(1) Hl(Cj) >mng forjeJ,

and if y € C; and dist(y, C;) < 1o for some other j, then C; and C; have a
common extremity in B(y, dist(y, C;)). Finally, we exclude the case when T’
is a plane or a set of type Y.

For a set T € T as above, denote by C'j, J € J, the cone over C}. Then
we call g(éj x V), j € J, the d-faces of T. We call the sets g(0y x V), y € Q,
the (d — 1)-faces of Q. We call g(V') the spine of T

Finally, we set Z =PUYUT.

Note that the cones of type T are not all minimal, but they are good
enough to apply the generalized Reifenberg theorems [DDT 1.1 and 2.2].

Although we give the descriptions for all dimensions, we need mostly the
cases d = 2 and d = 3. Moreover, in [Dl Section 14|, G. David classifies the
two-dimensional minimal cones in R™ into types P, Y and T described above,
with a suitable choice of 7y for cones of type T.

We can now give the definition of a Holder ball for a set £ C R™.
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DEFINITION 1.2. Let E be a closed set in R™. Suppose that 0 € E. We
say that B(0,r) is a Holder ball of type P, Y or T with exponent 1+« if there
exist a homeomorphism f : R™ — R" and a minimal cone Y of dimension d,
centered at the origin, of type P, Y or T, respectively, such that

(1.2.1) |f(x) — x| <ar forxe B(0,r),
(122) A -a)fla—yl/r" <|f(@) = fy)l/r
< (14 )|z —yl/r]'™™  for z,y € B(0,r),
(1.2.3) EnB(0,(1—-a)r)Cc f(YNB(0,r)) c ENB(0,(1+ a)r).
We then also say that E is bi- Holder equivalent to'Y in B(0,r), with exponent
1+ a.
Our main theorem is the following.

THEOREM 1. Let E be an Al-minimal cone of dimension 3 in R™ and
x € ENB(0,1). Let H be the tangent plane to 0B(0,1) at x and E' = ENH.
Then for each o > 0, there exists r > 0, which depends on x, such that
B(z,r) is a Hélder ball of type P, Y or T for E' in H, with exponent 1+ a.

Our strategy is the following: for each y € B(z,r) and each radius ¢ such
that B(y,t) C B(x,r), we shall find a minimal cone Y of dimension 2 in H
such that dy((E',Y) < € (see the beginning of Section 2 for the definition),
where € > 0 depends on the exponent 1+a. We shall then use the generalized
theorem of Reifenberg [DDT] 1.1 and 2.2] to conclude that E’ is bi-Holder
equivalent to a two-dimensional minimal cone in H, with exponent 1 + a.

2. Proof of Theorem 1. Let us give a list of notations that we shall
use in this paper.

e H? is the d-dimensional Hausdorff measure.

e 04(x,r) = HY(ANB(x,r))/r?, where A C R" is an H%measurable set
and z € A.

o O4(x) = lim,_,004(z,7) is called the density of A at z, if the limit
exists and is finite.

e Local Hausdorff distance dg(E, F). Let E, F C R™ be closed sets and
H C R" be a compact set. We define

dy(E, F) = sup{dist(z, F'); z € EN H} + sup{dist(x, F); x € FNH},
when £ N H and F N H are not empty. We use the convention that
sup{dist(z, F); x € ENH} = 0 when EN H is empty.
We also define
dor(E, F) = Lsup{dist(z, F); 2 € EN B(z,r)}
+ sup{dist(z, E); z € FN B(z,7)},

where E| F' are closed sets which meet B(x,r).
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e Convergence of a sequence of sets. Let U C R™ be an open set, { E;}7°
be a sequence of closed sets in U, and E C U. We say that {Ej} converges
to F in U, and we write limy_,o, Fy, = F, if for each compact H C U,

lim dy(Eg, E) = 0.
k—o00

e Blow-up limit. Let E C R"™ be a closed set and z € E. A blow-up limit
F of E at x is defined as
E—x

Y

F = lim

k—oo Tk

where {ry} is any sequence of positive numbers such that limg_,oo 7 = 0
and the limit exists in R"™.

For two points a,b € R™, we denote by ab the line passing through a
and b, and by ab the half-line through a and b with starting point a.

Now we fix an Al-minimal cone F C R™ of dimension 3, centered at 0,
and x € £ N 0B(0,1). For each y € EN0B(0,1), we denote by H, the
tangent plane to 0B(0,1) at y and write E, = E N H,. For simplicity, we
set H, = H. Note that since F is minimal, the density 0 (y) always exists
for all y € E.

LEMMA 2.1. Each blow-up limit of E at x is of the form F = F' x Oz,
where F' is a two-dimensional Al-minimal cone in H and 0z denotes the line
from 0 through x.

Proof. Let F be a blow-up limit of E at x. Then F' = limy oo (E — ) /7%
with limg_.o 7 = 0. Let y € F. We want to show that y + 0z C F. Setting
Ey = (E — x)/rg, as {Ex} converges to F', we can find points y; € Ej such
that {yr}72, converges to y. Set 2 = riyr + x; then z, € E by definition
of Ey, and zp converges to x because ry converges to 0. We fix A € R and
we set v = (1 4+ Arg)zi. Then v, € FE as F is a cone centered at 0. We have
wy, = r,;l(vk — ) € E). On the other hand,

wy = r,;l((l + M)z —x) = r,;l((l + Arg) (rryg + x) — x)
=1 (reyk + Arpye + Arpz) = Yk + Az + Argyg,
and we see that limy_,o wip =y + Az. As {Ex} converges to F', we see that
y—+ Ax € F. Now for each y € F and A € R, we have y + Az € F, which
implies that F' = F’ x Ox with F/ C F'N H. Next, as F is a minimal set and
F is a blow-up limit of E at x, by |[D] 7.31], F' is a minimal cone centered

at 0. But F' = F’ x Oz, so by [D|, 8.3], F’ is a minimal cone in H, centered
at z. m

By [Dl Section 14|, F’" is of type P, Y or T as above. Note that the
classification of two-dimensional minimal cones in R3 was established earlier
(see [He| and [Tay]). Now, since F = F’ x R, F is also a cone of type P, Y
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or T of dimension 3 in R™. If F' is of type P, we set 0r(0) = dp, which is
the Hausdorff measure of the three-dimensional unit ball. If F' is of type Y,
we set 0r(0) = dy, which is the density at any point of the spine of a Y of
dimension 3. Otherwise F' is of type T, and we deduce from [Dl Section 14|
that there exists a constant dr > dy, which depends only on n, such that
0r(0) > dr. Now by D) 7.31], 0g(z) = 0p(0), so we call the point = €
EnNoB(0,1) of type P if Og(z) = dp, of type Y if Og(z) = dy, and finally
of type T if Op(z) = 0p(0) > dr.

LEMMA 2.2. For each € > 0, we can find vy > 0 such that if r < rg,
then there is a three-dimensional minimal cone F(x,r) of type P, Y or T,
and whose spine passes through 0 and x, such that

dpr(E,F(z,7)) <.

Proof. Suppose that the lemma fails; then there is a sequence {ry}; con-
verging to 0 and such that for each minimal cone F' as above,

(2.2.1) Aoy (B, F) > €.

Set B, = (E — x)/r); without loss of generality, we may assume that {E}}
converges in R"; set limg_,oo B = M.

Since M is a blow-up limit of E at z, by Lemma 2.1, M = M’ x D,
where M’ is a two-dimensional minimal cone in H centered at x, and D, is
the line Ox. So M is a three-dimensional minimal cone of type P, Y or T,
whose spine passes through 0 and z. Since { Ex} converges to M, there exists
k > 0 such that do1(E, M) < e. This means that d ,, (E,z + M) < e. But
M = M’ x Dy, so M = x+ M and hence d; ,, (E, M) < €, which contradicts
(2.2.1). =

LEMMA 2.3. For each 6 > 0, we can find € > 0 with the following prop-
erties:

Let R be a radius. Let I € R™ with d(0,I) > 100R and C' be a minimal
cone of dimension 3 centered at I with the property that for each y € C'N
B(I,R) and each y' € 0y N B(I, R), there exists 2’ € C' such that

(2.3.1) d(y',2') < €R.

Then there exists a three-dimensional minimal cone Yo, of type P, Y or T,
whose spine contains 0 and I, such that dj g/2(C,Yc) < 6.

Proof. Suppose that the lemma fails. By homogeneity, we can fix I such
that d(0,7) = 1000. Then there exist a sequence ¢, — 0, radii Ry < 10 and
minimal cones Cy centered at I such that each C} satisfies the hypothesis
corresponding to € in the ball B(I, Ry) but does not satisfy the conclusion.
That is, for each minimal cone Y as above, dr;(C;,Y) > 6. Now we can
find a subsequence {Cj; 521 which converges to a set E. Since each Cj; is a
minimal cone centered at I, so is E. We shall show that
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0

Fig. 1. Minimal cone C

(2.3.2) FE is a three-dimensional minimal cone of type P, Y or T whose spine
contains 0 and 1.

We consider two cases.

CASE 1: limsup;_, Ri; > 0. In that case, without loss of generality, we
may assume that R;, = 1 for all j. Now take u € £ N B(I,1/2); as {Cj;}
converges to E, there exist u;; € Cj;, j > 1, such that {u;;} converges to u.

If u' € Oun B(I,1/2), we take y; € Ou;, such that [0y; |/|0u;| =
|0u'|/|0u[, where | AB| denotes the length of the segment AB. Then |y; u'| =
(|02'|/|0w]).Ju;, u|, by Thales’ theorem, and we deduce that lim;_, ygj =

But for each j, there exists u;j € Cj, such that d(u;j , y;]) <€, by (2.3.1).
So {u;, } converges to u’ and thus u’ € E. Now

(2.3.3) OunB(1,1/2) c E  for each w € ENB(I,1/2).

In particular 0I N B(I,1/2) C E.

In addition, E is a cone centered at I, so IuC E , where Tu denotes the
half-line from I and passing through u. Now if u does not lie on the line 01,
let uy € PN B(1,1/2), where P is the open half-plane with boundary 07
and containing u. We take ug € [Iu;], where [AB] denotes the segment with
endpoints A and B, which is close to I so that the half-line Ouy intersects
the segment [Iu]. Set ug = Ouy N [Iu]; then uz € E since E is a cone centered
at [ and u € E. By (2.3.3), ug € Ouz N B(I,1/2) belongs to E too. Finally,
we use the fact that F is a cone centered at I to conclude that u; € E.

So for each w € ENB(1,1/2)\ 01, we have PNB(I,1/2) C E, where P is
the open half-plane with boundary 0/ containing u. Since FE is closed, we also
have 0I C E. We deduce that E = E’ x 0I, where E’ is a two-dimensional
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set in the hyperplane orthogonal to 0/ and passing through I. Since F is a
minimal cone centered at I, so is E’, by [D], 8.3]. Since E is a two-dimensinal
minimal cone, by [D) Section 14|, E’ is of type P, Y or T and so is E, as
E = E’ x 0I. We thus have (2.3.2) in this case.

CASE 2: limsup;_,, R;; = 0. In this case we want to show that

(2.3.4) for each w € ENB(I,1/2)\0I, we have B(u, |Iu|/4) NI, C E, where
[y, is the line passing through u and parallel to 01.

Indeed, we take a sequence {u;; € Cy; } which converges to u as above. Let
uéj = Oui; N B(I, R;; /2). Then by (2.3.1), for each z € Ou;j N B(u;j,R,;j/él),
there exists w € Cj; such that d(z,w) < €, R;,. Let l’U«ij be the line pass-
ing through w;; and parallel to Ou;j. Since Cj; is a cone centered at I, by
homothety for each 2’ € bui; N B(uij, [Tui;|/2), there exists w' € Cj; such
that

(2.3.5) d(' w') < e[ Tug; | < €.

Since lim SUp;_,o Ri; = 0, the lines luij converge to the line [, in R™. Next,
if j is large enough, then B(u,[lu|/4) C B(ui;,|lui;|/2), and so for each
v € B(u, |Tu|/4) N, there exists a sequence v;; € C;; which converges to v.
We deduce v € E and we have (2.3.4).

Now for each w € E N B([,1/2) \ 01, by repeating this argument for
the two endpoints of the segment B(u,|lu|/4) N l,, we can conclude that
l,NB(I,1/2) C E. We want to show next that

(2.3.6) l,CE.

For this, take any point v € [,,. Let v' = Iv N B(I,1/4) and let v’ € Tu be
such that the line u/v’ is parallel to l,. Clearly v' € [, N B(I,1/2), where
Iy is defined just as I, and ' € E since E is the cone centered at I. So by
(2.3.4), v" € E and hence v € E, so that (2.3.6) follows.

Since E is closed, we deduce that 0] C E; together with (2.3.6) we then
see that E is of the form £ = E’ x 0I, where E’ is a two-dimensional set
in the hyperplane orthogonal to 0/ and passing through I. By the same
arguments as above, we deduce that E is a three-dimensional minimal cone
of type P, Y or T whose spine contains 0/. We also have (2.3.2) in this case.

As limj o Cj; = E, there exists an integer [ > 0 such that d;1(Cy, E)
< 0/2, which is a contradiction as E is a minimal cone of type P, Y or T
whose spine contains 0. m

We now want to use Lemma 2.3 to control the distance in the ball B(x,r)
between E and a three-dimensional minimal cone C(z,r) of type P, Y or T
whose spine passes through 0 and .
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LEMMA 2.4. For each § > 0, we can find € > 0 such that the following
properties hold. Suppose that 0 < r < 1/100 satisfies

(2.4.1) |0p(z,r) — 0p(x)| <

then there exists a minimal cone Y of dimension 3, of type P, Y or T and
whose spine contains 0 and x, such that dxyr/g(E,Y) < 4. In addition, the
type of Y is exactly the type of x.

Proof. By |Dl 7.1], for each €; > 0 very small, to be chosen later, we can
find € > 0 such that if (2.4.1) holds then there exists a minimal cone C' of
dimension 3 centered at x, such that

(2.4.2) dx,r/2(Eac) < €.

We now check the conditions of Lemma 2.3 for the cone C.

Since d, ,/2(F,C) < €1, whenever z € C'N B(x,r/3), there exists y €
ENB(z,r/2) such that d(z,y) < €1r/2. Because F is a cone centered at 0, the
half-line Oy lies in E. Now if 2’ € 02N B(x,r/3), take the point 3’ € Oy such
that ¢’z is parallel to yz; then d(v/, 2') < €17, and clearly ¥/ € ENB(z,r/2).
By (2.4.2), there exists u € C such that d(u,y") < e;r. Then d(2/,u) < 2¢;7.
So the cone C satisfies the assumptions of Lemma 2.3 with radius r/3 and
with constant 8ey; here x stands for 1. Lemma 2.3 shows that for each es > 0,
we can find €; > 0 such that there exists a three-dimensional minimal cone Y,
of type P, Y or T, whose spine passes through 0 and z, such that

(2.4.3) dyr/a(C,Y) < €.
From (2.4.2) and (2.4.3) we have
(244)  dyss(B,Y) < 2dyya(B,C) + dy,1a(C,Y)) < 2261 + €2)
= 4e1 + 269.
For each 0 > 0, we can find € > 0 such that 4e; 4+ 2e5 < 6. So from (2.4.4)
we have d, ,/g(E,Y) < d, which we wanted to prove. =

LEMMA 2.5. Let C and Cy be two cones centered at 0, and € > 0 be a
small constant. Let r < 1/100 be a small radius, y € CNOB(0,1) and Hy be
the hyperplane which is tangent to 0B(0,1) aty, C' = CNH,, C] = C1NH,.
If ze CNB(y,r/2) N Hy and t < r are such that d,+(C,C1) < €, then

dz,t/Q(Cla Ci) < 2(1 + T‘)E.

Proof. For each w € C' N B(z,t/2), there exists w} € Cy N B(y,r) such

that d(w,w]) < et since d,+(C,C1) < e. Now let w; be the intersection of the

half-line Ow} with H,. Then wy; € C1 N H,. We shall estimate the distance
d(w,w1). By the triangular inequality, we have
/ /
d(w,wy) < 20wt dlw vh)
sin(wwyw))  sin(ww;0)
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here zyz € [0, [, where x,y,x are points in R", denotes the angle between
the half-lines yx and yz. Next,

. ——— dist(0, ww) 1

0) =

sin(ww:0) d0,wy) T 147’

since dist(0, wwy) > dist(0, Hy) = 1 and d(0,wq) < d(0,y)+d(y, w1) < 1+r.
So d(w,w1) < (1 + r)et for each w € C" N B(z,t/2), and it is clear that

wy € B(z,t). By the same arguments, for each w; € C] N B(z,t/2), there
exists w € C' N B(2/,t) such that d(wy,w) < (1+7r)et. m

We shall now prove Theorem 1. We consider three cases: where x is of
type P, Y or T.

Holder regularity near a point of type P

THEOREM 2.6. Suppose that x is a point of type P. Then for each T > 0,
we can find € > 0 such that if the radius r > 0 satisfies
(2.6.1) 0p(z,2%7) — Op(z) <,
then B(xz,r) is a Holder ball for E,, with exponent 1+ 7.

We remark first that for each € > 0, we can find > 0 such that (2.6.1)
holds. Our € does not depend on z, just on 7.

Proof of Theorem 2.6. The main idea is to show that for y € E,NB(z, )
and t < r, we can find a 2-plane P'(y,t) in H such that dy (E,, P'(y,t)) <4,
where § is a very small constant, to be chosen later. Then we can use [DDT),
Theorem 1.1] to conclude that for each 7 > 0, we can find 6 > 0 such that
E, is bi-Holder equivalent to a 2-plane in B(x,r).

Now we start the proof. By Lemma 2.4, for each § > 0 very small, to be
chosen later, we can find € > 0 such that if (z,r) satisfies (2.6.1), then there
exists a 3-plane P which passes through 0 and x, such that

(2.6.2) dy 95, (E, P) < 4.
Consider a point y € E; N B(z,r). By [D}, 16.43|, for each §; > 0 very small,
we can choose § > 0 such that if (2.6.2) holds for §, then
(2.6.3) H3(E N B(y,2%)) < H3(PN B(y, (1 +61)2%)) 4+ 6,(2%)3

< dp((1+61)2%)3 4+ 61(2%)3.
We deduce that 0g(y,2%) — dp < 1 or Og(y, 2*) < dp + 6;. But we know
that 0g(y) = dp, dy or dr and by |D, 5.16], 6£(y,-) is a nondecreasing
function. So if §; is small enough, we have 0p(y) = dp. Since 0g(y,-) is

nondecreasing, dp < 0p(y,t) < dp + 01 for 0 < t < 2%r. With 0 (y) = dp,
we have

(2.6.4) 0(y,t) —Op(y) <6, for 0<t< 2%
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By Lemma 2.4, for each d5 > 0, we can choose §; > 0 such that there exists
a 3-plane P(y,t) which passes through 0 and y, such that

(2.6.5) dy+(E,P(y,t)) <do for 0<t<2r

Set P'(y,t) = P(y,t) N H. Applying Lemma 2.5 for two cones E and P(y,t)
centered at 0, we have

(2.6.6) dy1/2(Eg, P'(y,t)) <652 for 0 <t <2r.

But now P'(y,t) is a 2-plane in H, so for each y € F, N B(z,r) and each
t <r, there exists a 2-plane P;(y,t) in H such that

(2.6.7) dyt(Ey,Yi(y,t)) < 662.

By [DDT), Theorem 1.1|, we conclude that, for each 7 > 0, we can choose
do2 > 0, and then e > 0, such that if (2.6.7) holds, then E, is bi-Holder
equivalent to a 2-plane P in H, with Holder exponent 1 + 7. =

Holder regularity near a point of type Y

PROPOSITION 2.7. Lety € 0B(0,1) andr < 1/2. For each 7 > 0 we can
find € > 0 such that if Y (y,r) is a minimal cone of type Y of dimension 3,
whose spine passes through 0 and y, which satisfies
(271) dy,T(E7 Y(yv 7’)) S €
then there exists a Y-point of E, in B(y,1r). Here, a Y-point of E, is a
Y-point of E which belongs to E,.

Proof. We first take € > 0 very small, to be chosen later. Suppose that
the proposition fails; then there exist a radius 0 < r < 1/2 and a three-
dimensional minimal cone Y (y,7) of type Y, whose spine passes through 0
and y, such that
(2.7.2) dyr(E,Y (y,1)) <,

(2.7.3) for each z € E, N B(y,7r), z is not a Y-point.
We take a point z € E, N B(y,7r). Since B(z,7/4) C B(y,r) and
dyr(E,Y (y,7)) < €, we have d,/4(E,Y (y,7)) < 4d,(E,Y (y,7)) < 4e.
So by [D)}, 16.43]|, for each 6 > 0 we can find € > 0 such that
(2.7.4)  H*(ENB(z,r/4)) < H*(Y(y,7) N B(2, (1 + 0)r/4)) + 6(r/4)*

< dy ((1+0)r/4)> + 6(r/4)%.
So if we take J small enough, we have H3(E N B(z,7/4)) < dr(r/4)3, thus
0p(z,7/4) < dr. Next, Op(z) < 0g(z,r/4) < dr, since E is a minimal cone.
So z cannot be a T-point, and since it is not a Y-point either,
(2.7.5) z is a P-point.

Let L be the spine of Y (y,r). Then L is a 2-plane through 0 and y. Let
Fy, F5, F3 be three half-planes of dimension 3 which form Y (y,r). Then
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Fig. 2. Intersection of E with Hy

I, F5, F5 have L as common boundary, and the angle between any two
of them is 120°. Set Y'(y,r) =Y (y,r) N Hy and w; = F;NOB(y,7r/2) N Hy,
i=1,2,3. Then Y'(y, ) is a two-dimensional minimal cone of type Y in Hy,
centered at y, with spine L' = LNH,,. Then dist(w;, L) = d(w;,y) = 7r/2 for
1 <i < 3. Next, dy,(E,Y(y,r)) < ¢ s0by Lemma 2.5, d,, . o(Ey, Y'(y,7)) <
2(1 + r)e < 6e. Thus for each 1 < ¢ < 3, there is z; € FE, such that
d(zi,w;) < 3er. It is clear that z; € B(y, 57r/8) if we choose € small enough.
Now

(Q76) oY (5.1) < Sy (B, Y (y,1)) < defr
for 1 < ¢ < 3. By [D} 16.43], for each d; > 0, we can choose € > 0 such that
if (2.7.6) holds for €, then
(2.7.7)  H3(E N B(z,7r/8)) < H3(Y (y,7) N B(z, (14+61)771/8)) 481 (71/8)3
= H*(F; N B(z;, (14 61)71/8)) + 61(17/8)?
< dp(1r/8)3 + Cdy(11/8)3,

since dist(w;, L) =77r/4, so dist(z;, L) > dist(w;, L) — d(w;, z;) > 7r/4 — er,
so B(z;, (14 61)7r/8) does not meet L. Then, in B(z;, (1+01)77r/8), Y(y,7)
coincides with Fj;, which is a half-plane of dimension 3.

From (2.7.7) we have

(2.7.8) HE(ZZ‘, TT‘/8) < dP + C(Sl,

which implies that z; is a P-point for 1 < ¢ < 3 if we take §; small enough.
By Theorem 2.6, for each a > 0, we can choose §; > 0 such that if (2.7.8)
holds, then

(2.7.9) for 1 < i < 3, the set E, is bi-Holder equivalent to a 2-plane P; in
B(z;,Tr/2Y) N Hy, with Holder exponent 1 + a.

Now as each z € E, N B(y, Tr) is a P-point, by the proof of Theorem 2.6,
there is a radius r, < 7r/8 such that E is bi-Holder equivalent to a 3-plane
P, in the ball B(z,r,), with Holder exponent 1 + «.
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We see that the set E, satisfies the following conditions:

(i) The minimal cone Y'(y,r) of dimension 2 of type Y centered at v,
which is Y (y,r) N Hy, satisfies

dyr/2(Ey,Y'(y,7)) < Ge.

(ii) Let L’ be the spine of Y'(y,r) and F], 1 < i < 3, the three half-
planes of dimension 2 which form Y’(y,r). Then there are three
points w;, 1 < ¢ < 3, such that for each i, dist(z;, L") = 7r/4,
w; € F! and w;,ws, w3 lie in the same plane of dimension 2 which
is orthogonal to L'. Next, there are three points z; € E,, 1 <1i < 3,
such that d(z;, w;) < 3er, and in the ball B(z;,7r/2M), E, is bi-
Holder equivalent to a 2-plane P; in H,, with Holder exponent 1+ o

(iii) For each z € E,, there is a radius r, < 7r/2' such that in the ball
B(z,1,), E, is bi-Holder equivalent to a 2-plane P, with Holder
exponent 1 + a.

We can adapt the techniques of [D, Section 17]|. G. David showed there
that if a two-dimensional almost minimal set F' in R™ and a cone Y of type
Y of dimension 2 whose spine passes through a point z satisfy d, . (F,Y) <,
then there must be a Y-point of F' in B(z,r/1000). To prove this, G. David
supposes that in B(z,7/1000), F' contains only P-points; then he shows that
the set F; = F N B(x,r/1000) has the same properties (i)—(iii). He next
shows that it is not possible for a set F} to have those properties.

We can now use the same techniques for our set E,, and conclude that
it is not possible for E, to satisfy (i)-(iii). Proposition 2.7 follows. =

THEOREM 2.8. Suppose that x is a point of type Y. Then for each o > 0
there exists € > 0 such that if the radius r > 0 satisfies

(2.8.1) 0p(z,2'7) — 0p(z) < e,
(2.8.2) 2y <,

then in the ball B(xz,r), Ey is bi-Holder equivalent to a two-dimensional
minimal cone Y of type Y in H, and centered at x, with Hélder exponent
1+a.

The proof uses the fact that for each § > 0, we can choose ¢ > 0 such
that if (2.8.1) and (2.8.2) hold, then for each y € E, N B(xz,r) and for each
0 < t < r, there exists a two-dimensional minimal cone Z(y,t) in H, such
that dy(Fy, Z(y,t)) < §. We remark that for each € > 0, we can choose
r > 0 such that (2.8.1) and (2.8.2) hold.

Proof of Theorem 2.8. By Lemma 2.4, for each ¢; > 0, we can find € > 0
such that if the radius r satisfies (2.8.1), then there exists a minimal cone
Y (x,28r) of dimension 3, of type Y and whose spine passes through 0 and z,
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such that
(2.8.3) dyos, (B, Y (2,2%r)) < €.
We take a point y € E, N B(x,27r). We have
dyorr (B, Y (2,2°7)) < 2d, 98, (E, Y (2,2%r)) < 2¢1.
Then by [Dl 16.43], for each e > 0, we can choose €; > 0 such that
(2.8.4) H3(ENB(y,27r)) < H3 (Y (2,2%) N By, (1 + €)277)) + e(27r)3
< dy(27r)® + Cea(27r)3,
which implies
(2.8.5) 05 (y,27r) < dy + Ces.
So if € is small enough, we have 0g(y) < 0p(y,27r) < dy + Ce; < dr. So

by the classification preceding Lemma 2.2, y can only be of type P or Y. We
consider two cases.

CASE 1: y is of type Y. We have 0g(y) = dy. By (2.8.5), 0p(y,27r) —
0r(y) < Ce;. Since E is a minimal set, the function 6g(y, -) is nondecreasing,
so 0 < 0p(y,t) — 0p(y) < Ce for 0 < t < 27r. By Lemma 2.4, for each
€2 > 0, we can choose €1 > 0 such that for each ¢ < 24r, there exists a three-
dimensional minimal cone Y (y,t), of type Y, whose spine passes through 0
and y, and satisfies
(286) dy,t(E7 Y(yv t)) < €.

Set Yi(y,t) = Y(y,t) N Hy; then Yi(y,t) is the union of three half-planes
of dimension 2 with common boundary a line L. We see that L' = L N H,
where L is the spine of Y (y,t). Since y € B(z,27r) and Y (y,t) is a Y of
dimension 3 whose spine passes through y and 0, there is a two-dimensional
minimal cone Y'(y,t) in H, with the same spine L’ such that

(2.8.7) dy1(Y1(y,t),Y'(y,t)) < Cr < Ce.

Now by Lemma 2.5, dy¢/2(Ez, Y1(y,t)) < 2(1 + t)dy(E,Y (y,t)) < 4deg for

t < 2%, This fact together with (2.8.7) gives

(288) dy,t/4(E:B7 Y/(y7 t)) <2 (dy,t/Q(Erv Y1 (y7 t)) +dy,t/2(}/1 (ya t)v Y/(yv t)))
S Cl (6 + 62)

for t < 2. Set e3 = Oy (e + €2); then by (2.8.8), for each t < 2%r/4 = 4r and

for each Y-point y € E, N B(x,r), there is a two-dimensional minimal cone

Y'(y,t) € H, of type Y such that

(289) dy,t(Ex’ Y/(y> t)) S €3.

This is what we need for Y-points in E, N B(z,27r). We then note that, for

each Y-point y € B(x,27r) and t < 2%, Y(y,t) is the minimal cone as in

(2.8.6), and for t < 4r, Y'(y,t) is the minimal cone as in (2.8.9).
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CASE 2: y is of type P. Here we consider only the case y € B(x,r). We
set By = {z € E; N B(x,4r) : z is a Y-point}. By the proof of Theorem 2.6,
there is a radius r, > 0 such that in the ball B(y,r,), there are only P-points
of E; as a consequence, we have dist(y, Ey) > 0. Set d = dist(y, Ey); then
d < d(y,xz) < r. We take u € Ey such that d(y,u) < 11d(y)/10; then it is
clear that u € B(x,23r).

We take Y (u,2d(y)) as in (2.8.6) and denote by L the spine of Y’ (y,2d(y)).
We want to show that

(2.8.10) dist(y, L) > d(y)/10.

Suppose that (2.8.10) does not hold. Then there is a point w € L’ such that
d(y, w) < d(y)/10. Next, d(w,u) < d(w,y)+d(y,u) < 11d(y)/10+d(y) /10 <
3d(y)/2 and so B(w,d(y)/10) C B(u,2d(y)). Thus
2d(y)
2.8.11 d E)Y (u,2d < ——4d E)Y (u,2d
( 8 ) ’w,d(y)/l()( ) (U, (y))) = d(y)/lO u,2d(y)( ) (U, (y)))
S 2062.

Since w belongs to the spine of Y'(u,2d(y)), we can apply Proposition 2.7
for £ and w for 7 = 1/100. So we can find €2 > 0 such that if (2.8.11)
holds, then there is a Y-point £ of E in the ball B(w,d(y)/100) and then
d(&,y) < d(& w)+d(w,y) < d(y)/3. Let £ be the intersection of the half-line
0¢ with E,. Because F is a cone centered at 0 and & is a Y-point, it is clear
that ¢’ € Ey and d(¢',y) < 2d(&,y) < 2d(y)/3, which is a contradiction. We
have thus proved (2.8.10).

Next, since du,Zd(y) (E7 Y(U, 2d(y))) <02 and B(y> d(y)/ZO) - B(U, Qd(y))a
by |D} 16.43|, for each ¢4 > 0 we can find €3 > 0 such that
(2.8.12)

0y, d(y)/20) = (d(y)/20)*H*(E N B(y, d(y)/20))

< (d(y)/20) P [H (Y (u, 2d(y)) 0 B(y, (1 + ea)d(y) /20))
+ea(d(y)/20)]
<dp+ Ces = 0g(y) + Cey.

We explain the last line: since dist(y,L) > 11d(y)/10, it follows that
B(y, (1 + €4)d(y)/20) does not meet the spine L of Y (u,2d(y)), so that in

the ball B(y, (1 + €4)d(y)/20), Y (u,2d(y)) coincides with a 3-plane P, and
then

HP(Y (u,2d(y)) N B(y, (1 + e1)d(y)/20)) = H*(P N B(y, (1 + e1)d(y)/20))
< dp((1+es)d(y)/20)°.
Since 0g(y, -) is nondecreasing, we deduce from (2.8.12) that
(2.8.13) 0<0g(y,t)—0p(y) < Ce fort <d(y)/20.
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By Lemma 2.4, for each €5 > 0, we can choose €4 > 0 such that if (2.8.13)
holds, then there is a 3-plane P(y,t) which passes through 0 and y, such
that

(2.8.14) dy/s(E, P(y,t)) <es for t < d(y)/20.

If we set P’'(y,t) to be the intersection of P(y,t) with H,, then P'(y,t) is a
2-plane, and satisfies, by Lemma 2.5,

(2.8.15) dy1/16(Ee, P'(y,t)) < 4des  for t < d(y)/20.

Now consider the case when d(y)/320 < t < r. We keep the same point u
as above, that is, v € Fy such that d(u,y) < 11d(y)/10. We now have

t +2d(y) < 4r, so we can take the cone Y'(u,t + 2d(y)) as in (2.8.9), thus
(2.8.16)  dy¢(Ey, Y (u,t +2d(y)))
it 2d(y)
- t
Now (2.8.9), (2.8.15) and (2.8.16) together show that for each e > 0, we can

choose € > 0 such that for each y € E, N B(x,r) and each ¢t < r, there is a
minimal cone P'(y,t) C H, of dimension 2, of type P or Y, such that

(2.8.17) dyt(Ez, Y (y,t)) < €.
By [DDT), Theorem 1.1], for each a > 0, we can find €5 > 0 such that if

(2.8.17) holds, then E, is bi-Holder equivalent to a minimal cone of dimen-
sion 2, of type Y, in the ball B(z,r), with Holder exponent 1+ «. m

du,t+2d(y) (Eza Y/(ua t+ Qd(y))) < 700€s.

Holder regularity near a point of type T

THEOREM 2.9. Suppose that x is a point of type T. Then for each a > 0,
we can find € > 0 such that if the radius r > 0 satisfies

(2.9.1) 0p(x,2'r) — 0p(z) <,
(2.9.2) 2l <,

then in the ball B(x,r), E, is bi-Hélder equivalent to a minimal cone T' of
dimension 2, of type T, in the plane H, and centered at x.

We note that for each € > 0, we can always find » > 0 which satisfies
(2.9.1) and (2.9.2). Our strategy will be the same as in Theorem 2.8: we
show that for each § > 0, we can choose € > 0 such that if (2.9.1) and (2.9.2)
hold, then for each y € E; N B(x,r) and for each 0 < ¢t < r, there exists a
two-dimensional minimal cone Z(y,t) in H, such that dy(E,, Z(y,t)) < 6.

Proof of Theorem 2.9. Since Og(z,-) is nondecreasing, we have 0 <
Op(r,t) — 0p(r) < e for 0 <t < 2. By Lemma 2.4, for each €; > 0, we
can find € > 0 such that for each t < 2117“, there exists a three-dimensional
minimal cone T'(z,t) of type T, whose spine passes through 0 and z, such
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that
(2.9.3) det(E,T(z,t)) < €.
Consider a point y € E, N B(z,2'%) with y # z. Set n = 27121/10, where
no is the constant in (1) (before Definition 1.2). Then (1 + 2n)|z —y| < 2!1r
and so we can take the cone T'(z, (1 + 2n)|z — y|) to satisfy (2.9.3). Next,
since B(y,n|z —y|) C B(z, (1 + 2n)|x — y|), we have
(2'9'4) dy,77|:c—y|(E7 T(l‘, (1 + 277)’37 - y’))

< At 2)z —yl

nle =yl
We want to show that
(2.9.5) T(x,(1+ 2n)|z — y|) coincides with a cone Y} of type Y in the ball
B(y, nolx — y|/10).

To see this, it suffices to show that

dx,(1+2n)|x—y|(E7 T(x7 (1 + 277)‘$ - y’)) < 277_161'

(2.9.6) T = T(z, (142n)|x —y|) N H; coincides with a two-dimensional cone
of type Y in B(y, nolz — y|/5) N Hy.
But now since the spine of T'(z, (1 4+ 2n)|z — y|) passes through 0 and z, T”
is a two-dimensional minimal cone of type T in H, and centered at x. So by
the same arguments as in [D (16.61)], we have (2.9.6), and hence (2.9.5).
Now (2.9.4) gives us

(2.9.7) d E.Y,) < 2n le.

By the same arguments as for (2.8.4), for each €2 > 0 we can find ¢ > 0
such that if (2.9.7) holds, then

(2.9.8) Op(y) < Op(y,nlz —y[/2) < dy + Ce.

So if we take e small enough, we have, for each y € E, N B(x,2'%r) and
y # x, 0p(y) < dy + Ces < dp, and hence y can only be a point of type P
or Y. Since F is a cone centered at the origin, each z € E N B(z,2%) with
z # x can only be a point of type P or Y. We consider two cases.

CASE 1: y is of type Y. By (2.9.7), Og(y,n|z — y|/2) < dy + Cegs =
0r(y) + Cea. As 0g(y,-) is nondecreasing, we have 0p(y,t) < 0p(y) + Cey
for 0 < t < n|z — y|/2. By Lemma 2.4, for each e3 > 0, we can find €2 > 0
such that there exists a three-dimensional minimal cone Y (y,t) of type Y,
whose spine passes through 0 and y, such that

(2.9.9) dy+(E,Y (y,t)) <e3 for 0 <t <nlx—y|/16.

Set Y1(y,t) = Y (y,t)NH,; then Y;(y, t) is a two-dimensional cone centered at
y in the plane H,. Since F and Y (y, t) are cones centered at 0, by Lemma 2.5,

(2.9.10) dyi/2(Ez, Y1(y,t)) < deg for 0 <t < nlx —y|/16.

y,nlx—y\(
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Next, since Y (y, t) is a three-dimensional minimal cone of type Y whose spine
passes through 0 and y, and y € B(xz,2!r), there exists a two-dimensional
minimal cone Y'(y,t) C H, of type Y centered at y such that

(2.9.11) dy1(Y1(y,t),Y'(y,t)) < Cr.
By (2.9.10) and (2.9.11) we have

(2912) dy,t/4(E$7 Y/(yv t)) < 2[dy7t/2(E$? Yl(ya t))+dy,t/2(YI(yv t)? Y/(y7 t))]
<2(4e3 +Cr) < Ci(ez +¢€)

for 0 <t < nlx —y|/16.

We consider the case when r > ¢ > n|z — y|/64, and we only consider
y € B(z,r) in this case. By (2.9.3), we can take the cone T'(z,2(t + |x —y|))
whose spine is Ox and which satisfies d;, o4 |o—y)) (£, (7, 2(t+[z—y|))) < €1.
Set T"(x,2(t+ |z —y|)) = HyNT(z,2(t+ |z —y|)). Then T'(z,2(t+ |z —y|))
is a two-dimensional minimal cone of type T. By Lemma 2.5,

(2913) da:,t+|x—y\(EfL"7 T/(xa Q(t + |l’ - y|))) < 4dey.

Since B(y,t) C B(x,t+ |x — y|), we have
t+py

(2914) dyo(Be Tt + ) < Dy (B Tt 4 pla)
t+ |z —yl 210

< de1 < —ey.
n

From (2.9.12) and (2.9.14), for y € B(xz,r) and 0 < ¢t < r, there exists a
two-dimensional minimal cone Z'(y,t) C H, of type Y or T such that

(2.9.15) dyt(Ey, Z'(y,t)) < es,
with €4 = max{C1(e3 + €), (2'°/n)e1 }.

CASE 2: y is of type P. Recall that each z € E, N B(x,2'9%), 2z # x, can
only be of type P or Y. Let Ey be the set of Y-points of E in B(z,4r), and
d = min{dist(y, Ey), |z — y|}.

We have two subcases:

SUBCASE 1: d > n|z — y|. Let T5 be the union of the 2-faces of
T(x,2|z — y|). We want to show that

(2.9.16) dist(y, Ta) > d/10.

Otherwise there is a 2-face L of T'(x, 2|x—y|) (see the definition of d-face prior
to Definition 1.2) and a point z € L such that d(y, z) = dist(y, L) < d/10.
Next, |z — x| > |x — y| — d/10 > |x — y|/2 and so dist(z, 0z) > dist(y,0z) —
d/10 > |z —y|/2. By the same argument as for (2.9.5), in the ball B(z,nd/2),
T'(x, 2|z —y|) coincides with a three-dimensional minimal cone Y, of type Y
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and whose spine passes through 0 and z. In addition
2|z —y|
nd/2

By Proposition 2.7, we can choose €; small enough such that if (2.9.17)
holds, there exists a Y-point 2/ € B(z,nd/4). We deduce that d(y,z’) <
d(y,z) +d(z,2") < d/5. But 2’ € Ey, a contradiction. Hence (2.9.16) holds.

Now since dist(y, 0x) > d and dist(y, T2) > d/10, by a simple geometrical
argument, in B(y,nd), T(z, 2|z —y|) coincides with a 3-plane P, whose spine
passes through 0 and z. In fact, P, is the 3-face of T'(z,2|x — y|) which is
nearest to y. Since B(y,nd) C B(z,2|x — y|), we obtain

(2917) dz,nd/Q(E7Yz) <

4
dz,2|zfy|(EvT(x72|5C - y|)) < ,’77261'

2|z —y|

2
(2918) dyﬂ?d(E’ Py) < d:p,2|:p7y\(E) T(.I, 2‘1‘ - y‘)) < ﬁel-

By |Dl 16.43], for each €5 > 0, we can find ¢; > 0 such that if (2.9.18) holds,
then 0g(y,nd/2) < dp + €5. Since E is a minimal cone, 0g(y,t) < dp + €5
for 0 <t < nd/2. By Lemma 2.4, for each €5 > 0, we can find e5 > 0 such
that there exists a 3-plane P(y,t) which passes through 0 and y, such that

(2.9.19) dy/8(E, P(y,t)) <€ for 0 <t <mnd/2.
By Lemma 2.5, the 2-plane P’(y,t) = P(y,t) N H, satisfies
(2.9.20) dy,t/m(Em, P'(y,t) < 4dy7t/8(E,P(y,t)) <des fort <nd/2.

For |z —y|/2 >t > nd/32, let T'(z,2|x — y|) = H, N T(z,2|z — y|). Then
T'(x,2|x — y|) is a two-dimensional minimal cone of type T in H, and cen-
tered at . By Lemma 2.5, we have d, ,_y(Ez, T'(z, 2|z — y|)) < 4. Since
B(y,t) C B(z, |z —y|), we obtain

|z -y
t
128

—€1.
= 2
n

(2.9.21)  dy(Ey, T'(z,2]z — y)) < g 5—y| (B, T'(z, 2|z — y]))

For r > ¢ > |x — y|/2, we set T'(z,2t + |x — y|) = T'(z,2t + |x — y|) N H,.
Then T'(z,2t + |z — y|) is a two-dimensional minimal cone of type T
in H;. As above, we have dg ¢, oy /2(Ez, T' (2,2t + |2 — y)) < 4e1. Since
B(y,t) C B(z,t + |z — y|/2), we obtain
(2.9.22)  dy(Ey, T (z,2t + |z — y|))
t+ |z —y|/2
< IRy ol BT 20 4 o — ) < 81/,

Now (2.9.20)-(2.9.22) are all that we need for Subcase 1.

SUBCASE 2: d < n|z—y|. By definition of Ey, there exists a Y-point such
that d(y, z) < 2d. This implies z € B(zx, 3|z — y|/2) and d(z,z) > |z — y|/2
and dist(z,0x) > dist(y,0x) — 2d > |xr — y|/2. By the same arguments as
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for (2.9.5), T'(z,2|z — y|) coincides with a three-dimensional minimal cone
Y, of type Y in B(z,2'2n|x — y|). This is clear that the spine of Y, passes
through 0. Since B(z,2'%n|z — y|) € B(z,2|x — yl|), we have

(2923) dz7212n|x—y\ (E, Y;) = dz,21277|:c—y| (E, T(I‘, 2|.CU - y|))

2|z — y|
S Sz — g P2l (B T, 20z = o))
S ﬁ61.

Since z is a Y-point, by [D], 16.43], for each €7 > 0, we can find €; > 0 such
that if (2.9.23) holds then

(2.9.24) Op(z,2 " nlz —y|) — 0(z) < €.
In addition
(2.9.25) 22|z —y| <7 <e

We see that (2.9.24) and (2.9.25) are the hypotheses of Theorem 2.8, with
radius n|z—y| and with constant eg = max{e, €1 }. As in the proof of Theorem
2.8, for each €9 > 0, we can find eg > 0 such that for ¢t < 2n|x — y|, there is
a two-dimensional minimal cone Y'(y,t) C H, of type P or Y such that

(2926) dy,t(Ean Y/(y7 t)) S €9.

The case r >t > 2n|z — y| is the same as (2.9.22). We now have all that we
need for Subcase 2.

Now we can conclude that, for each €19 > 0, we can find € > 0 such that
for y € E, N B(z,r) and for ¢ < r, there exists a two-dimensional minimal
cone Y'(y,t) C Hy such that dy +(E,,Y"(y,t)) < €19. By [DDT), 2.2], for each
a > 0, we can find € > 0 such that if (2.9.1) and (2.9.2) hold, then B(z,r)
is a Holder ball of type T for E,, with exponent 1 4+ . =
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