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On subextension and approximation of plurisubharmonic
functions with given boundary values

by Hichame Amal (Kénitra)

Abstract. Our aim in this article is the study of subextension and approximation of
plurisubharmonic functions in Eχ(Ω,H), the class of functions with finite χ-energy and
given boundary values. We show that, under certain conditions, one can approximate any
function in Eχ(Ω,H) by an increasing sequence of plurisubharmonic functions defined on
strictly larger domains.

1. Introduction. The purpose of this paper is to study subextension
and approximation of plurisubharmonic functions with given boundary val-
ues. Let Ω ⊂ Ω̂ be domains in Cn and let PSH(Ω) denote the cone of
plurisubharmonic functions (psh for short) on Ω, and PSH−(Ω) the sub-
class of negative functions. A function û ∈ PSH(Ω̂) is said to be a subex-
tension of u if û(z) ≤ u(z) for all z ∈ Ω. In [E], El Mir gave an example
of a plurisubharmonic function on the unit bidisc for which the restriction
to any smaller bidisc admits no subextension to the whole space. In con-
trast with this negative answer, some important results have been proved by
many authors on hyperconvex domains for functions belonging to classes of
psh functions, called energy classes, introduced by U. Cegrell (see Section 1
for detailed definitions). In the class F(Ω), Ep (p > 0), Eχ(Ω) and Eψ(Ω) the
problem has been studied by Cegrell, Zeriahi and Kołodziej (see [CZ] and
[CKZ]), P. H. Hiep (see [Hi]), Benelkourchi (see [B2]), and Hai and Long
(see [HL]) respectively. The problem of subextension of psh functions with
boundary values was studied in the class F(Ω,H) by Czyż and Hed (see
[CzH]) and by Hed (see [H]).

Another problem, which is considered in Cegrell classes, is the approxi-
mation of plurisubharmonic functions on a domain Ω by plurisubharmonic
functions defined on a neighborhood of Ω̄. In [B1], under certain conditions
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on Ω, Benelkourchi proved that any function u in the class Fa(Ω) can be
approximated by an increasing sequence (uj)j of plurisubharmonic functions
defined on larger domains (Ωj)j with uj ∈ Fa(Ωj). This result was gener-
alized to the class F(Ω) by Cegrell and Hed (see [CH]) and recently to the
class Eχ(Ω) by Benelkourchi (see [B2]). The case of functions with given
boundary values was studied in the class F(Ω,H) by Hed (see [H]).

Inspired and motivated by the research going on in this area, we give a
subextension theorem for plurisubharmonic functions in the class Eχ(Ω,H)
of functions with finite χ-energy and given boundary values; this will be used
to prove the following theorem on approximation of psh functions, which is
the main motivation of this paper.

Main Theorem 1.1. Let Ω b Cn be a hyperconvex domain and {Ωj}
be a decreasing sequence of hyperconvex domains containing Ω such that
limj→∞ capΩj (K) = capΩ(K) for all compact subsets K ⊂ Ω. Let G ∈
MPSH−(Ω1) ∩ C(Ω) and χ : R− → R− be a nondecreasing function such
that χ(−t) < 0 for all t > 0. Then for every u ∈ Eχ(Ω,H) such that�

Ω

−χ(u−H)(ddcu)n <∞,

where H = G|Ω, there exists a nondecreasing sequence of functions uj ∈
Eχ(Ωj , G|Ωj ) such that limj→∞ uj(z) = u(z) for all z ∈ Ω.

The rest of the paper is organized as follows. In Section 2, we recall the
Cegrell classes. In Section 3, we give some properties of the energy classes
Eχ(Ω,H). Finally, in Section 4, subextension of functions from Eχ(Ω,H) is
studied and our main theorem is proved.

2. Preliminaries. In this section, we summarize some basic properties
and related definitions which are essential in the following discussions.

A bounded domain Ω is hyperconvex if there exists % in PSH−(Ω)∩C(Ω)
such that {z ∈ Ω; %(z) < −c} b Ω for all c > 0.

The following classes of plurisubharmonic functions, on which the com-
plex Monge–Ampère operator (ddc · )n is well defined, were introduced by
U. Cegrell in [C1] and [C2].

We denote by E0(Ω) the set of negative and bounded psh functions ϕ on
Ω which tend to zero at the boundary and satisfy

	
Ω(ddcϕ)n <∞.

We say that a negative function is in the class F(Ω) if there exists a
decreasing sequence (uj)j in E0(Ω) which converges pointwise to u on Ω and

sup
j∈N

�

Ω

(ddcuj)
n <∞.

We denote by Fa(Ω) the set of functions u in F(Ω) such that (ddc · )n
vanishes on all pluripolar sets.
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A negative function u is in the class E(Ω) if for all z ∈ Ω, there exists
a neighborhood w 3 z and a decreasing sequence (uj)j in E0(Ω) which
converges pointwise to u on w and

sup
j∈N

�

Ω

(ddcuj)
n <∞.

For each p > 0 define Ep(Ω) (resp. Fp(Ω)) to be the class of functions ϕ ∈
PSH−(Ω) such that there exists a decreasing sequence (uj)j in E0(Ω) which
converges to u such that supj∈N

	
Ω(−uj)p(ddcuj)n <∞ (resp. supj∈N

	
Ω(1+

(−uj)p)(ddcuj)n <∞).
Let ψ ∈ PSH−(Ω) with ψ 6≡ 0. We denote by Eψ(Ω) the set of functions

u ∈ PSH−(Ω) such that there is a decreasing sequence (uj)j in E0(Ω) which
converges pointwise to u on Ω and

sup
j∈N

�

Ω

(−ψ)(ddcuj)
n <∞.

We have Eψ(Ω) ⊂ E(Ω).
A fundamental sequence (Ωj)j of Ω is a sequence of strictly pseudoconvex

domains such that Ωj b Ωj+1 b Ω for every j , and
⋃
j Ωj = Ω. Let

u ∈ E(Ω) and

uΩj := sup{ϕ ∈ PSH(Ω); ϕ ≤ u on Ω \Ωj}.

We have uΩj ∈ E(Ω) and (uΩj )j is an increasing sequence.
Define ũ := (limj uΩj )

∗; then ũ ∈ E(Ω) and (ddcũ)n = 0. We define

N (Ω) := {u ∈ E(Ω); ũ = 0}.

The above definitions imply that E0(Ω) ⊂ Fa(Ω) ⊂ F(Ω) ⊂ N (Ω) ⊂ E(Ω).
Let χ : R− → R− be a nondecreasing function. We consider the set Eχ(Ω)

of plurisubharmonic functions of finite χ-weighted Monge–Ampère energy.
These are the functions u ∈ PSH(Ω) such that there exists a decreasing
sequence (uj)j in E0(Ω) with limit u and

sup
j∈N

�

Ω

−χ ◦ uj(ddcuj)n <∞.

When χ is bounded and χ(0) 66= 0, then Eχ(Ω) = F(Ω); and when χ(t) =
−(−t)p (resp. χ(t) = −1 − (−t)p), then Eχ(Ω) = Ep(Ω) (resp. Eχ(Ω) =
Fp(Ω)).

Let K(Ω) ∈ {E0(Ω), F(Ω), N (Ω), Eχ(Ω)} and H ∈ E(Ω). We say that
a plurisubharmonic function u defined on Ω is in K(Ω,H) if there exists a
function ϕ ∈ K(Ω) such that H ≥ u ≥ H + ϕ.

Finally, we denote by M(Ω) the set of psh functions u in E(Ω) with
(ddcu)n = 0.
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3. The energy class Eχ(Ω,H). In the following, χ : R− → R− is a
nondecreasing function such that tχ = 0, where tχ := sup{t > 0; χ(−t) = 0}.
From [B2], we have

⋃
χ,tχ=0 Eχ(Ω)  N (Ω).

Lemma 3.1. Let H ∈ M(Ω) ∩ C(Ω̄) and u ∈ N (Ω,H). Then there is a
constant C > 0 such that for all v in N (Ω,H) with u ≤ v, we have

(3.1)
�

Ω

−χ(v −H)(ddcv)n ≤ C
�

Ω

−χ(u−H)(ddcu)n.

Proof. We remark that
�

Ω

−χ(u−H)(ddcu)n = 0 and
�

Ω

−χ(u−H)(ddcu)n =∞

are trivial cases, so we can assume that 0 <
	
Ω −χ(u−H)(ddcu)n <∞.

From [ACCP, Proposition 2.5], there exists a decreasing sequence (vj)j
in N (Ω,H)∩C(Ω̄) that converges pointwise to v on Ω. We can choose (vj)j
such that

	
Ω(ddcvj)

n <∞ for all j ≥ 0. Indeed, let (Ωj)j be a fundamental
sequence of Ω and put ϕj := sup{ϕ ∈ N (Ω,H); ϕ ≤ v on Ωj and ϕ ≤ H
on Ω}. Then (ϕj)j is a decreasing sequence that converges pointwise to v
and

	
Ω(ddcϕj)

n < ∞ for all j ≥ 0. Therefore from [ACCP, Proposition 2.5

and Lemma 3.3], for every j ≥ 0 there exists a decreasing sequence (ϕkj )j in
N (Ω,H) ∩ C(Ω̄) that converges pointwise to ϕj on Ω and

	
Ω(ddcϕkj )

n <∞
for all k ≥ 0. We can extract from it a subsequence satisfying the desired
conditions.

Now, we have
�

(vj−H≤−s)

(ddcvj)
n =

�

Ω

(ddcvj)
n −

�

(vj−H>−s)

(ddcvj)
n

=
�

Ω

(ddc max(vj , H − s))n −
�

(vj>H−s)

(ddc max(vj , H − s)n

=
�

(vj−H≥−s)

(ddc max(vj , H − s))n

≤
(
s− inf

Ω̄
H
)n

capΩ(vj −H ≤ −s).

Let a = − infΩ̄H. Then
�

Ω

−χ(v −H)(ddcv)n ≤ lim
j→∞

�

Ω

−χ(vj −H)(ddcvj)
n

= lim
j→∞

∞�

0

χ′(−t)
�

(vj−H<−s)

(ddcvj)
n
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≤ lim
j→∞

∞�

0

χ′(−t)(t+ a)n capΩ(vj −H < −t) dt

=

∞�

0

χ′(−t)(t+ a)n capΩ(v −H < −t) dt

≤
∞�

0

χ′(−t)(t+ a)n capΩ(u−H < −t) dt.

On the other hand, from [B3, Lemma 3.3] we have

tn capΩ(u−H < −s− t) ≤
�

(u−H<−s)

(ddcu)n, ∀s, t > 0.

Therefore, for all k ∈ N∗ we obtain
∞�

0

χ′(−t)(t+ a)n capΩ(u−H < −t) dt

=

∞�

− a
1+k

(
s+ s+a

k + a
)n
χ′(−s− s+a

k ) capΩ
(
u−H < −s− s+a

k

)(
1 + 1

k

)
ds

= (1 + k)n
∞�

− a
1+k

χ′
(
−s− s+a

k

)(
s+a
k

)n
capΩ

(
u−H < −s− s+a

k

)(
1 + 1

k

)
ds

≤ (1 + k)n
∞�

− a
1+k

χ′
(
−s− s+a

k

) �

(u−H<−s)

(ddcu)n
(
1 + 1

k

)
ds

= (1 + k)n
∞�

− a
1+k

χ′
(
−s− s+a

k

) �

((1+ 1
k

)(u−H)− a
k
<−s− s+a

k
)

(ddcu)n
(
1 + 1

k

)
ds

= (1 + k)n
∞�

0

χ′(−t)
�

((1+ 1
k

)(u−H)− a
k
<−t)

(ddcu)n dt

= (1 + k)n
�

Ω

−χ
((

1 + 1
k

)
(u−H)− a

k

)
(ddcu)n.

Since

lim
k→∞

�

Ω

−χ
((

1 + 1
k

)
(u−H)− a

k

)
(ddcu)n =

�

Ω

−χ(u−H)
)
(ddcu)n,

there exists k0 such that
�

Ω

−χ
((

1 + 1
k

)
(u−H)− a

k

)
(ddcu)n ≤ 2

�

Ω

−χ(u−H)(ddcu)n, ∀k ≥ k0.
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It follows that
�

Ω

−χ(v −H)(ddcv)n ≤
∞�

0

χ′(−t)(t+ a)n capΩ(u−H < −t)dt

≤ 2(1 + k0)n
�

Ω

−χ(u−H)(ddcu)n.

Proposition 3.2. Let H ∈M(Ω) ∩ C(Ω̄).

(i) If u ∈ Eχ(Ω,H) with
	
Ω −χ(u−H)(ddcu)n <∞, then there exists a

decreasing sequence (uj)j in E0(Ω,H) that converges pointwise to u
and supj

	
Ω −χ(uj −H)(ddcuj)

n <∞.
(ii) Conversely, if there exists a decreasing sequence (uj)j in E0(Ω,H)

that converges pointwise to u and supj
	
Ω −χ(uj −H)(ddcuj)

n <∞,
then u ∈ Eχ(Ω,H) and

	
Ω −χ(u−H)(ddcu)n <∞.

Proof. Assume that u ∈ Eχ(Ω,H). From [ACCP, Proposition 2.5] there
exists a decreasing sequence (uj) ⊂ E0(Ω,H) that converges pointwise to u.
Since u ≤ uj and

	
Ω −χ(u − H)(ddcu)n < ∞, from Lemma 3.1 we de-

duce that
	
Ω −χ(uj −H)(ddcuj)

n ≤ C
	
Ω −χ(u−H)(ddcu)n for all j, hence

supj
	
Ω −χ(u−H)(ddcuj)

n <∞.
Conversely, assume that (uj) ⊂ E0(Ω,H) is a decreasing sequence con-

verging pointwise to u and

(3.2) sup
j

�

Ω

−χ(uj −H)(ddcuj)
n <∞.

From the upper semicontinuity of u−H, −χ(u−H)(ddcu)n is bounded from
above by any cluster point of the bounded sequence −χ(uj − H)(ddcuj)

n.
Therefore

	
Ω −χ(u−H)(ddcu)n <∞.

On the other hand, for all j, put

ψj := sup{ϕ ∈ PSH(Ω); ϕ+H ≤ uj}.

It is clear that ψj ∈ E0(Ω) and (ψj)j is a decreasing sequence. Note that if
uj is continuous then:

(1) (ddcψj)
n = 0 on {ψj +H < uj},

(2) (ddcψj)
n ≤ (ddcuj)

n on Ω.

The first statement follows from [BT, Corollary 9.2]. For the second, we have
(ddcψj)

n ≤ (ddcuj)
n on the open set {ψj + H < uj}. To show that is true

on A = {ψj + H = uj}, we proceed as in [CH, proof of Lemma 2.1]. Let
K ⊂ A be a compact set; then K ⊂ {ψj + H + ε > uj}. It follows from
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[BGZ, Theorem 2.2] that�

K

(ddcψj)
n =

�

K

1{ψj+H+ε>uj}(dd
cψj)

n ≤
�

K

1{ψj+H+ε>uj}(dd
c(ψj +H))n

=
�

K

1{ψj+H+ε>uj}(dd
c max(ψj +H + ε, uj))

n

≤
�

K

(ddc max(ψj +H + ε, uj))
n.

Since max(ψj + H + ε, uj),max(ψj + H,uj) ∈ E(Ω), it follows from
[C3, Lemma 3.2] that the measure (ddc max(ψj + H + ε, uj))

n converges
to (ddcuj)

n in the weak∗ topology. The characteristic function 1K can be
approximated by a decreasing sequence of continuous functions ϕk that are
bounded from above. Then from Lebesgue’s dominated convergence theorem,
we have

lim sup
ε→0

�

Ω

1K(ddc max(ψj +H + ε, uj))
n

= lim sup
ε→0

(
lim
k

�

Ω

ϕk(dd
c max(ψj +H + ε, uj))

n
)

≤ lim sup
ε→0

�

Ω

ϕk(dd
c max(ψj +H + ε, uj))

n =
�

Ω

ϕk(dd
cuj)

n.

Since
	
Ω ϕk(dd

cuj)
n ↘

	
Ω 1K(ddcuj)

n, we get (ddcψj)
n ≤ (ddcuj)

n on A.
Now, fix j ∈ N. We have

	
Ω −χ(uj − H)(ddcuj)

n < ∞. Let (ukj )k ⊂
E0(Ω,H) ∩ C(Ω̄) be a decreasing sequence that converges to uj . Set

ψkj := sup{ϕ ∈ PSH(Ω); ϕ+H ≤ ukj }.

Then (ψkj )k ⊂ E0(Ω) and ψkj ↘ ψj . Moreover from the above, (ddcψkj )n ≤
(ddcukj )

n and (ddcψkj )n = 0 on {ψkj +H < ukj }. It follows that�

Ω

−χ(ψj)(dd
cψj)

n ≤ lim
k→∞

�

Ω

−χ(ψkj )(ddcψkj )n

= lim
k→∞

�

{ψkj+H=ukj }

−χ(ψkj )(ddcψkj )n

= lim
k→∞

�

{ψkj+H=ukj }

−χ(ukj −H)(ddcψkj )n

≤ lim
k→∞

�

{ψkj+H=ukj }

−χ(ukj −H)(ddcukj )
n

≤ lim
k→∞

�

Ω

−χ(ukj −H)(ddcukj )
n

≤ C
�

Ω

−χ(u−H)(ddcu)n (by (3.1) since u ≤ ukj ).
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Therefore from (3.2), we get

(3.3) sup
j

�

Ω

−χ ◦ ψj(ddcψj)n <∞.

Since (ψj)j ⊂ E0(Ω) is a decreasing sequence, and from (3.3), it follows
that ψ := limj ψj ∈ Eχ(Ω). On the other hand, for all k ∈ N, we have
uj ≥ uj+k ≥ ψj+k + H, hence uj ≥ ψ + H; it follows that H ≥ u ≥ ψ + H
and therefore u ∈ Eχ(Ω,H).

4. Subextension and approximation

Theorem 4.1. Let Ω b Ω̂ be hyperconvex domains, F ∈ E(Ω) ∩ C(Ω̄)
and G ∈M(Ω̂) with G ≤ F on Ω. If u ∈ Eχ(Ω,F ) and

	
Ω −χ(u−F )(ddcu)n

< ∞, then there exists a function û ∈ Eχ(Ω̂,G) such that û ≤ u on Ω and
(ddcû)n ≤ 1Ω(ddcu)n.

Proof. Let u ∈ Eχ(Ω,F ). Then u ≤ F and since F ∈ E(Ω) ∩ C(Ω̄), it
follows that there exists a decreasing sequence (uj)j ⊂ E0(Ω,F ) ∩ C(Ω̄)
that converges pointwise to u on Ω (see [ACCP, Proposition 2.5]). Set
m = infz∈Ω F (z) and let F̃ be the maximal function associated to F (see
page 249). Then m + F̃ ≤ F ≤ F̃ , hence F ∈ N (F̃ ). This implies that for
all ϕ in N (F ) we have ϕ ∈ N (F̃ ). Hence, without loss of generality we can
assume that (ddcF )n = 0. Since Eχ(Ω,F ) ⊂ N (Ω,F ), from Lemma 3.1 we
have

(4.1)
�

Ω

−χ(uj − F )(ddcuj)
n ≤ C

�

Ω

−χ(u− F )(ddcu)n.

Since u ∈ Eχ(Ω,F ), there exists ϕ ∈ Eχ(Ω) such that ϕ + F ≤ u ≤ F . Let
ϕ̂ ∈ Eχ(Ω̂) be a subextension of ϕ (see [B2, Theorem 3.1]). Then ϕ̂+G ≤ G
on Ω̂ and ϕ̂ + G ≤ u on Ω, hence the set {ϕ ∈ PSH(Ω̂); ϕ ≤ G on Ω̂ and
ϕ ≤ u on Ω} is not empty. Set

û := sup{ϕ ∈ PSH(Ω̂); ϕ ≤ G on Ω̂ and ϕ ≤ u on Ω},

ûj := sup{ϕ ∈ PSH(Ω̂); ϕ ≤ G on Ω̂ and ϕ ≤ uj on Ω}.

Then (ûj)j ↘ û, and from [H, Lemma 3.3] we have ûj ∈ E0(Ω̂,G), (ddcûj)
n ≤

(ddcuj)
n on Ω and (ddcûj)

n = 0 on [Ω̂ \Ω] ∪ {ûj < uj}. Hence
�

Ω̂

−χ(ûj −G)(ddcûj)
n ≤

�

Ω

−χ(ûj − F )(ddcûj)
n =

�

Ω

−χ(uj − F )(ddcûj)
n

≤
�

Ω

−χ(uj − F )(ddcuj)
n.
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Using (4.1), we get

(4.2) sup
j

�

Ω̂

−χ(ûj −G)(ddcûj)
n <∞.

Therefore, Proposition 3.2 shows that û ∈ Eχ(Ω̂,G).
On the other hand, since (ûj)j ↘ û in Eχ(Ω̂,G) ⊂ E(Ω̂), from [C3,

Lemma 3.2] we have (ddcû)n = limj(dd
cûj)

n. Also (uj)j ↘ u in Eχ(Ω,F ) ⊂
N (Ω,F ), and from [ACCP, Corollary 3.4] it follows that limj

	
Ω(ddcuj)

n =	
Ω(ddcu)n, hence limj 1Ω(ddcuj)

n = 1Ω(ddcu)n. Since (ddcûj)
n≤ 1Ω(ddcuj),

we conclude that (ddcû)n ≤ 1Ω(ddcu)n.

Now, we are ready to prove our main theorem.

Proof of Theorem 1.1. Let (Ωj)j be a decreasing sequence of hyperconvex
domains containing Ω, G be a negative function inM(Ω1)∩C(Ω), χ : R− →
R− be a nondecreasing function such that χ(−t) < 0 for all t > 0 and let
u ∈ Eχ(Ω,G|Ω) be such that

	
Ω −χ(u − H)(ddcu)n < ∞ where H = G|Ω.

Let Hj = G|Ωj . Since u ∈ Eχ(Ω,H), there exists ψ ∈ Eχ(Ω) such that
H ≥ u ≥ ψ +H.

From [B2, Theorem 4.1], there exists an increasing sequence (ψj)j such
that ψj ∈ E(Ωj) and limj ψj(z) = ψ(z) for all z ∈ Ω. Moreover, from
Theorem 4.1, the functions uj defined by

uj := sup{ϕ ∈ PSH(Ωj); ϕ ≤ Hj on Ωj and ϕ ≤ u on Ω}
satisfy uj ∈ Eχ(Ωj , Hj), uj ≤ u and (ddcuj)

n ≤ 1Ω(ddcu)n. Since ψj +Hj ≤
Hj and ψj +Hj ≤ ψ +H ≤ u on Ω, we have ψj +Hj ≤ uj ≤ Hj for all j.

Let h = (limj uj)
∗. From the above, h ∈ Eχ(Ω,H), and since (uj)j is

increasing, (ddch)n ≤ (ddcu)n (by the main theorem in [C4]). Since	
Ω −χ(u − H)(ddcu)n < ∞, from [B2] there exists ϕ ∈ PSH−(Ω) such
that

	
Ω −ϕ(ddcu)n <∞.

We claim that for all ϕ ∈ PSH−(Ω) such that
	
Ω −ϕ(ddcu)n < ∞,

we have
	
Ω −ϕ(ddch)n =

	
Ω −ϕ(ddcu)n. Indeed, since (ddch)n ≤ (ddcu)n,

it follows that
	
Ω −ϕ(ddch)n ≤

	
Ω −ϕ(ddcu)n. On the other hand, since

h, u ∈ Eχ(Ω,H) ⊂ N (Ω,H), h ≤ u and
	
Ω −ϕ(ddch)n < ∞, from [ACCP,

Lemma 3.3] we have
	
Ω −ϕ(ddcu)n ≤

	
Ω −ϕ(ddch)n, hence

	
Ω −ϕ(ddch)n =	

Ω −ϕ(ddcu)n. Finally from [B2, end of proof of Theorem 4.1], it follows that
h = u and the theorem is proved.

Remark 4.2. Examples of domains Ω satisfying the condition of The-
orem 1.1 are polydiscs, bounded pseudoconvex domains with C1-boundary
and with a Stein neighborhood basis, and strictly pseudoconvex domains
with C2-boundary (see [CH, Theorem 3.4 and Example 3.6]).

Remark 4.3. Let H ∈ E(Ω) and χ : R− → R− be a bounded nonde-
creasing function such that χ(−t) < 0 for all t > 0. If u ∈ F(Ω,H) and
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Ω(ddcu)n <∞, then u ∈ Eχ(Ω,H) and

	
Ω −χ(u−H)(ddcu)n <∞. Hence

our theorem generalizes Theorem 1.1 of [H].

Example 4.4. In the following, we give an example of a function v ∈
Eχ(Ω,G) satisfying

	
Ω −χ(v −G)(ddcv)n <∞ but

	
Ω(ddcv)n =∞.

Let P = D×D be the unit polydisc in C2 and let G : P→ R be defined
by G(z1, z2) = |z2|2 − 1. Then G ∈ PSH(P) ∩ C∞(P̄) and (ddcG)2 = 0. For
each j ∈ N, define the function uj : P→ R by

uj(z1, z2) = max

(
1

2j
log |z1|, 2j log |z2|,−

1

23j

)
.

Let ψ ∈ PSH−(P). Since 2j max(log |z1|, log |z2|) ≤ uj and�

P

−ψ(ddc2j max(log |z1|, log |z2|)2 = −(2j)2(2π)2ψ(0, 0) <∞,

from [ACCP, Lemma 3.3] we have�

P

−ψ(ddcuj)
n ≤

�

P

−ψ(ddc max(log |z1|, log |z2|)2 = −(2j)2(2π)2ψ(0, 0).

Hence
	
P−uj(dd

cuj)
2 ≤ (2π)2/2j , and it follows from [C1, Lemma 3.9] that

there exists a subsequence jk such that the function u =
∑∞

k=1 ujk satisfies
�

P

−u(ddcu)n <∞.

Also,
	
P(ddcujk)2 = (2π)2; then

	
P(ddcu)2 ≥

	
P(ddc

∑N
1 ujk)2 ≥ N(2π)2,

hence
	
Ω(ddcu)n =∞.

Let N ∈ N. We now prove that there exists a constant C independent of
N such that

	
P−(

∑N
k=1 ujk)(ddc(

∑N
k=1 ujk +G))2 ≤ C. We have

I1(N) =
�

P

−
( N∑
k=1

ujk)
(
ddc

N∑
k=1

ujk

)2
< C1,

I2(N) = 2
�

P

−
( N∑
k=1

ujk

)
ddc
( N∑
k=1

ujk

)
∧ ddcG

= 4i
�

P

−
( N∑
k=1

ujk

)
ddc
( N∑
k=1

ujk

)
∧ dz2 ∧ dz̄2

= 32
�

P

−
( N∑
k=1

ujk

) ∂2

∂z1∂z̄1

( N∑
k=1

ujk

)
dV (z1, z2)

≤ 32

( N∑
k=1

1

23jk

) �

P

N∑
k=1

∂2ujk
∂z1∂z̄1

dV (z1, z2).
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Let ε ∈ ]0, 1[ and Dε,jk = {t ∈ D; |t| ≤ rε,jk = min(1 − ε, (1 − ε)1/22jk )}.
Choose θ1 and θ2 in C∞0 (D) such that 0 ≤ θ1, θ2 ≤ 1, θ1 = 1 on D(0, 1− ε),
supp(θ2) ⊂ Dε,jk and θ2 = 1 on Dε/2,jk . For z2 ∈ Dε,jk fixed, we have

�

D

θ1(z1)
∂2ujk
∂z∂z̄1

dV (z1) =
8π

2jk
.

It follows that
�

P

θ1(z1)θ2(z2)
∂2ujk
∂z∂z̄1

dV (z1, z2) ≤ C2
1

2jk
,

for some constant C2 independent of ε and jk. By letting ε → 0+, we get
I2(N) < 32C2. Since

	
P−(

∑N
j=1 ujk)(ddc(

∑N
j=1 ujk +G))2 = I1(N) + I2(N),

it follows that
	
P−u(ddc(u + G))n < ∞. Moreover, u ∈ E1(P) = Eχ(P)

where χ(−t) = −t for all t > 0. Consequently, v = u + G ∈ Eχ(P, G) and	
P−χ(v −G)(ddcv)n <∞. Finally,

	
P(ddcu)2 =∞ yields

	
P(ddcv)2 =∞.
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