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A note on the separated maximum modulus points of
meromorphic functions

by Ewa Ciechanowicz and Ivan I. Marchenko (Szczecin)

Abstract. We give an upper estimate of Petrenko’s deviation for a meromorphic
function of finite lower order in terms of Valiron’s defect and the number p(∞, f) of
separated maximum modulus points of the function. We also present examples showing
that this estimate is sharp.

1. Introduction. We shall use the standard notations of value distri-
bution theory of meromorphic functions: m(r, a, f) for the proximity func-
tion, n(r, a, f) and N(r, a, f) for the functions counting a-points, T (r, f)
for Nevanlinna’s characteristic, δ(a, f) for Nevanlinna’s defect, and λ, ρ for
the lower order and order, respectively [10, 17]. In 1969 Petrenko raised a
question: how will Nevanlinna’s theory change if we measure the proximity
of a meromorphic function f to a value a applying a different metric? He
introduced the following deviation function:

L(r, a, f) =


max
|z|=r

log+ |f(z)| for a =∞,

max
|z|=r

log+
∣∣∣∣ 1

f(z)− a

∣∣∣∣ for a 6=∞.

The quantity

β(a, f) = lim inf
r→∞

L(r, a, f)

T (r, f)

is called the deviation of f from a, and Ω(f) := {a ∈ C : β(a, f) > 0}, the
set of positive deviations of f [18]. The deviation β(a, f) characterizes the
proximity of f to a with a stronger metric than δ(a, f) does, and always
δ(a, f) ≤ β(a, f). However, in the case of meromorphic functions of finite
lower order the properties of β(a, f) are similar to the properties of δ(a, f).
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Petrenko himself obtained a sharp upper estimate of β(a, f) and also an
estimate of the sum

∑
a∈C β(a, f).

Theorem A ([18]). If f is a meromorphic function of finite lower or-
der λ, then for all a ∈ C we have

β(a, f) ≤ B(λ) :=


πλ

sinπλ
if λ ≤ 0.5,

πλ if λ > 0.5.∑
a∈C

β(a, f) ≤ 816π(λ+ 1)2.

It should be mentioned here that the conjecture that β(∞, f) ≤ π% for
entire functions of order % with 0.5 ≤ % < ∞ was stated in 1932 by Paley
and proved in 1969 by Govorov [11].

In 1990 Marchenko and Shcherba presented an exact upper estimate of
the sum of deviations for functions of finite lower order, which is an analogue
of the estimate of the sum of Nevanlinna’s defects. This way they solved the
problem stated by Petrenko in his monograph [19].

Theorem B ([16]). If f is a meromorphic function of finite lower or-
der λ, then ∑

a

β(a, f) ≤ 2B(λ).

Let E ⊂ (0,∞) be a measurable set. The quantites

logdensE = lim sup
R→∞

1

lnR

�

E∩[1,R]

dt

t
,

logdensE = lim inf
R→∞

1

lnR

�

E∩[1,R]

dt

t

are called, respectively, the upper and lower logarithmic density of E.
In 1998 Marchenko proved the following theorem.

Theorem C ([14]). Let f be a meromorphic function of finite lower
order λ and order ρ. For a ∈ C and 0 < γ <∞ put

E1(γ) = {r : L(r, a, f) < B(γ)T (r, f)}.
Then

logdensE1(γ) ≥ 1− λ/γ and logdensE1(γ) ≥ 1− ρ/γ.
Let now f(z) be a meromorphic function and let φ(r) be a positive

nondecreasing convex function of log r for r > 0, such that φ(r) = o(T (r, f)).
We denote by pφ(r,∞, f) the number of component arcs of the set

{z : |z| = r, log |f(z)| > φ(r)}



Separated maximum modulus points 297

containing at least one maximum modulus point of f . Moreover, let

pφ(∞, f) = lim inf
r→∞

pφ(r,∞, f), p(∞, f) = sup
φ
pφ(∞, f).

For a ∈ C we put p(a, f) := p(∞, 1/(f − a)).

In [4] we obtained the following relationship between deviation from
infinity and the number of separated maximum modulus points of a mero-
morphic function of finite lower order.

Theorem D. For a meromorphic function f of finite lower order λ we
have

β(∞, f) ≤



πλ

p(∞, f)
if λ/p(∞, f) ≥ 1/2,

πλ

sinπλ
if p(∞, f) = 1 and λ < 1/2,

πλ

p(∞, f)
sin

πλ

p(∞, f)
if p(∞, f) > 1 and λ/p(∞, f) < 1/2.

The value

∆(a, f) := lim sup
r→∞

m(r, a, f)

T (r, f)

is called Valiron’s defect of f at a. If ∆(a, f) > 0 we say that a is a defective
value of f in the sense of Valiron, and we set V (f) := {a ∈ C : ∆(a, f) > 0}.
It easily follows from Nevanlinna’s first main theorem that

0 ≤ δ(a, f) ≤ ∆(a, f) ≤ 1

and thus N(f) ⊂ V (f), where N(f) denotes the set of values defective in
the sense of Nevanlinna.

An interesting issue is the relationship between the set of positive devia-
tions and the set of Valiron’s defective values. The solution of this problem
was given by Shea and presented by Fuchs [8] (see also [19]).

For γ ≥ 0 we put

B(γ,∆)

:=


πγ
√
∆(2−∆) if γ > 1/2 or sin(πγ/2) >

√
∆/2,

πγ(1− (1−∆) cosπγ)

sinπγ
if 0 ≤ γ ≤ 1/2 and sin(πγ/2) ≤

√
∆/2.

Theorem E. Let f be a meromorphic function of finite lower order λ.
Then for each a ∈ C we have

β(a, f) ≤ B(λ,∆), where ∆ = ∆(a, f).

Corollary. For meromorphic functions f of finite lower order, we
have Ω(f) ⊂ V (f).
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The estimate in Theorem E is sharp. An appropriate example of a mero-
morphic function was given by Ryshkov [21]. The following extension of
Theorem E was given in 2000 by Marchenko [15].

Theorem F. Let f be a meromorphic function of finite lower order λ
and order ρ. For each positive number γ and a ∈ C set

E(γ) := {r : L(r, a, f) < B(γ/p0(a, f), ∆(a, f))T (r, f)}.

Then

logdensE(γ) ≥ 1− λ/γ and logdensE(γ) ≥ 1− ρ/γ.

Here p0(r, a, f) is the number of component arcs of the set {z : |z| = r,
log(1/|f(z) − a|) > 0} containing at least one maximum modulus point of
1/(f(z) − a), and p0(a, f) = lim infr→∞ p0(r, a, f). It is easy to notice that
p0(a, f) ≤ p(a, f).

We now present a result which improves Theorems E and F in a certain
sense and expresses the upper estimate of β(a, f) in terms of both Valiron’s
defect and the number p(a, f).

Theorem 1.1. Let f be a meromorphic function of finite lower order λ
and order ρ. Let 0 < γ <∞, a ∈ C and p > 0. Put

E(γ) := {r : L(r, a, f) < B(γ/p(a, f), ∆(a, f))T (r, f)}

if p(a, f) <∞ and ∆(a, f) > 0, and

E(γ) := {r : L(r, a, f) < B(γ/p,∆(a, f))T (r, f)}

if p(a, f) =∞ or ∆(a, f) = 0. Then

logdensE(γ) ≥ 1− λ/γ and logdensE(γ) ≥ 1− ρ/γ.

Corollary. Let f be a meromorphic function of finite lower order λ.
Then for each a ∈ C we have

(1.1) β(a, f) ≤ B(λ/p(a, f), ∆(a, f)).

The estimate in the above corollary is sharp. We give relevant examples
in the last section of this paper.

2. Auxiliary results. Let φ(r) be a positive nondecreasing convex func-
tion of log r for r > 0, such that φ(r) = o(T (r, f)). We consider the function

uφ(z) = max(log |f(z)|, φ(|z|)),

where f(z) is a meromorphic function in C. In [4] we proved the following
lemma. We repeat the proof for completeness.

Lemma 2.1. The function uφ is δ-subharmonic in C.
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Proof. Let g1 and g2 be entire functions without common zeros such that
f(z) = g1(z)/g2(z). It is easy to see that

uφ(z) = max
(
log |g1(z)|, log |g2(z)|+ φ(|z|)

)
− log |g2(z)|.

Since φ(r) is a convex function of log r for r > 0, φ(|z|) is a subharmonic
function in C (see [20]). Also

v1(z) := max
(
log |g1(z)|, log |g2(z)|+ φ(|z|)

)
is subharmonic in C. Thus

uφ(z) = v1(z)− log |g2(z)| : = v1(z)− v2(z)
is a δ-subharmonic function in C.

For a complex number z = reiθ we now put [1]

m∗(r, θ, uφ) = sup
|E|=2θ

1

2π

�

E

uφ(reiϕ) dϕ,

T ∗(r, θ, uφ) = T ∗(reiθ) = m∗(r, θ, uφ) +N(r,∞, f)

where r ∈ (0,∞), θ ∈ [0, π], and |E| is the Lebesgue measure of the set E.
Let us write ũφ for the circular symmetrization of uφ. The function ũφ(reiϕ)
is nonnegative and nonincreasing on [0, π], even in ϕ and equimeasurable
with uφ(reiϕ) for each fixed r [12]. Moreover,

ũφ(r) = max
(

log max
|z|=r
|f(z)|, φ(r)

)
,

ũφ(reiπ) = max
(

log min
|z|=r
|f(z)|, φ(r)

)
,

m∗(r, θ, uφ) = sup
|E|=2θ

1

2π

�

E

uφ(reiϕ) dϕ =
1

π

θ�

0

ũφ(reiϕ) dϕ.

From Baernstein’s theorem [1] the function T ∗(r, θ, uφ) is subharmonic on

D = {reiθ : 0 < r <∞, 0 < θ < π},
continuous on D ∪ (−∞, 0)∪ (0,∞) and logarithmically convex in r > 0 for
each fixed θ ∈ [0, π]. What is more,

T ∗(r, 0, uφ) = N(r,∞, f),

T ∗(r, π, uφ) = T (r, f) + o(T (r, f)) (r →∞),

∂

∂θ
T ∗(r, θ, uφ) =

ũφ(reiθ)

π
for 0 < θ < π.

For α(r) a real-valued function of a real variable r we put

Lα(r) = lim inf
h→0

α(reh) + α(re−h)− 2α(r)

h2
.
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If α(r) is twice differentiable in r, then

Lα(r) = r
d

dr

(
r
d

dr
α(r)

)
.

Lemma 2.2 ([4]). For almost all θ ∈ [0, π] and for all r > 0 such that on
the set {z : |z| = r} the meromorphic function f(z) has neither zeros nor
poles, we have

LT ∗(r, θ, uφ) ≥ −
p2φ(r,∞, f)

π

∂ũφ(reiθ)

∂θ
.

Let φ(r) be a positive nondecreasing convex function of log r for r > 0,
such φ(r) = o(T (r, f)) and 0 < pφ(∞, f) <∞. For τ > 0 we choose numbers
α and ψ such that

(2.1) 0<α≤min

(
π,
πpφ(∞, f)

2τ

)
, −

πpφ(∞, f)

2τ
≤ ψ ≤

πpφ(∞, f)

2τ
− α.

We set

(2.2) hφ(r, τ) :=
p2φ(∞, f)

π

(
ũφ(r) cos

τψ

pφ(∞, f)
− ũφ(reiα) cos

τ(α+ ψ)

pφ(∞, f)

)
− τpφ(∞, f)

(
sin

τ(α+ ψ)

pφ(∞, f)
T ∗(r, α, uφ)− sin

τψ

pφ(∞, f)
N(r,∞, f)

)
.

Lemma 2.3. Let A(φ, τ) := {r : hφ(r, τ) > 0}. Then

τ
�

A(φ,τ)∩[1,R]

dt

t
≤ log T (2R, f) +O(1).

Proof. In the course of this proof, r0 stands for an appropriate positive
number, not necessarily the same at each occurrence. We put [7, 9]

σ(r) =

α�

0

T ∗(r, θ, uφ) cos
τ(θ + ψ)

pφ(∞, f)
dθ.

As T ∗(r, θ, uφ) is a convex function of log r, we have LT ∗(r, θ, uφ) ≥ 0. We
apply Fatou’s lemma to get

(2.3) Lσ(r) ≥
α�

0

LT ∗(r, θ, uφ) cos
τ(θ + ψ)

pφ(∞, f)
dθ ≥ 0.

It follows that σ(r) is a convex function of log r so rσ′−(r) is an increasing
function on (0,∞). Therefore for almost all r > 0,

Lσ(r) = r
d

dr
(rσ′−(r)),
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where σ′−(r) is the left derivative of σ(r) at r. Lemma 2.2 and inequality
(2.3) imply that for almost all r > 0,

Lσ(r) = r
d

dr
(rσ′−(r)) ≥ −

α�

0

p2φ(r,∞, f)

π

∂ũφ(reiθ)

∂θ
cos

τ(θ + ψ)

pφ(∞, f)
dθ.

By definition pφ(r,∞, f) takes only integral values. Thus, pφ(∞, f) ≤
pφ(r,∞, f) for r ≥ r0. It follows that for almost all r ≥ r0,

r
d

dr
(rσ′−(r)) ≥ −

α�

0

p2φ(∞, f)

π

∂ũφ(reiθ)

∂θ
cos

τ(θ + ψ)

pφ(∞, f)
dθ.

If for r > 0 there are neither zeros nor poles of f(z) on the circle |z| = r,
the function uφ(reiθ) satisfies the Lipschitz condition in θ. Therefore ũφ(reiθ)
also satisfies the Lipschitz condition on [0, π] [12], and hence is absolutely
continuous on [0, π]. We integrate by parts twice to obtain
α�

0

p2φ(∞, f)

π

∂ũφ(reiθ)

∂θ
cos

τ(θ + ψ)

pφ(∞, f)
dθ

=
p2φ(∞, f)

π
ũφ(reiα) cos

τ(α+ ψ)

pφ(∞, f)
−
p2φ(∞, f)

π
ũφ(r) cos

τψ

pφ(∞, f)

+ τpφ(∞, f)

(
T ∗(r, α, uφ) sin

τ(α+ ψ)

pφ(∞, f)
−N(r,∞, f) sin

τψ

pφ(∞, f)

)
− τ2σ(r)

= −hφ(r, τ)− τ2σ(r).

As ũ(reiθ) is decreasing in θ we have

(2.4) hφ(r, τ) + τ2σ(r) ≥ 0 for r ≥ r0.
Thus for almost all r ≥ r0 we get

r
d

dr
rσ′−(r) ≥ hφ(r, τ) + τ2σ(r).

We divide this inequality by rτ+1 and integrate it by parts over the interval
[r,R] [13] to obtain

R�

r

hφ(t, τ)

tτ+1
dt ≤

R�

r

1

tτ
d

dt
(tσ′−(t)) dt+ τ2

R�

r

1

tτ+1
σ(t) dt

≤
(
tσ′−(t)

tτ
+ τ

σ(t)

tτ

)∣∣∣∣R
r

, r0 ≤ r ≤ R.

We now apply the method of P. Barry [2, 3]. We set

Φ(r) = −
R�

r

hφ(t, τ)

tτ+1
dt, r0 ≤ r ≤ R.
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From the above inequality we get

Φ(r) ≥ −
σ′−(R)

Rτ−1
− τ σ(R)

Rτ
+
σ′−(r)

rτ−1
+ τ

σ(r)

rτ
.

We now put

ψ(r) = rτ
[
Φ(r) +

σ′−(R)

Rτ−1
+ τ

σ(R)

Rτ

]
.

Then
ψ(r) ≥ rσ′−(r) + τσ(r), r0 ≤ r ≤ R.

Using (2.4) we get, for r ≥ r0,
rψ′(r) = τψ(r) + hφ(r, τ) ≥ τrσ′−(r) + τ2σ(r) + hφ(r, τ) ≥ τrσ′−(r) ≥ 0.

The function T ∗(r, θ, uφ) is increasing for r > r0 ([9, 5]) and so σ(r) is
increasing on (r0, R). Therefore rσ′−(r) ≥ 0 for all r > r0. Moreover, σ(r) > 0
for all r > r0. Thus we have, for all r > r0,

ψ(r) ≥ rσ′−(r) + τσ(r) > 0.

If r ∈ A(φ, τ) then rψ′(r) > τψ(r) > 0. Therefore ψ′(r)/ψ(r) > τ/r. As a
result, for r ≥ r0,

τ
�

A(φ,τ)∩[1,R]

dr

r
≤

�

A(φ,τ)∩[r0,R]

ψ′(r)

ψ(r)
dr + τ log r0(2.5)

≤
R�

r0

ψ′(r)

ψ(r)
dr + τ log r0 = log

ψ(R)

ψ(r0)
+ τ log r0.

But ψ(R) = Rσ′−(R) + τσ(R). It follows from the definition of σ(r) that

σ(r) =

α�

0

T ∗(r, θ, uφ) cos
τ(θ + ψ)

pφ(∞, f)
dθ ≤

α�

0

T ∗(r, θ, uφ) dθ

≤
π�

0

(T (r, f) + o(T (r, f)) dθ = πT (r, f) + o(T (r, f)) (r →∞).

From the monotonicity of rσ′−(r) we get

rσ′−(r) ≤
2r�

r

σ′−(t)dt ≤ σ(2r) ≤ πT (2r, f).

Thus from (2.5) we obtain

τ
�

A(φ,τ)∩[1,R]

dr

r
≤ log

ψ(R)

ψ(r0)
+O(1) ≤ logψ(R) +O(1)

= log[Rσ′−(R) + τσ(R)] +O(1) ≤ log T (2R, f) +O(1),

and the proof of Lemma 2.3 is complete.
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Notice that it follows from Lemma 2.3 that the logarithmic density of
the set E(φ, τ) := {r : hφ(r, τ) ≥ 0} satisfies the inequalities

(2.6) logdensE(φ, τ) ≥ 1− λ/τ and logdensE(φ, τ) ≥ 1− ρ/τ.

3. Proof of Theorem 1.1. We shall conduct the proof for a = ∞.
Then, for a 6= ∞, we may apply the same considerations to the function
F (z) = 1/(f(z)− a).

We concentrate on the upper logarithmic density of E. If β(∞, f) = 0
or γ ≤ λ the theorem is straightforward. Assume that β(∞, f) > 0. This
means that p(∞, f) ≥ 1. We start with the case 1 ≤ p(∞, f) <∞.

Let us recall that

∆(∞, f) := lim sup
r→∞

m(r,∞, f)

T (r, f)
= 1− lim inf

r→∞

N(r,∞, f)

T (r, f)
.

Thus for a fixed ε > 0, for r ≥ r0(ε) we have

(3.1) N(r,∞, f) > (1−∆(∞, f)− ε)T (r, f).

Notice that when ∆(∞, f) = 1 we have

B(γ/p(∞, f), ∆(∞, f)) = B(γ/p(∞, f))

and the statement follows easily from Theorem C. If, on the other hand,
∆(∞, f) = 0 then also β(∞, f) = 0. Therefore we consider 0 < ∆(∞, f) < 1
and select 0 < ε < 1−∆(∞, f).

As p(∞, f) < ∞, and pφ(∞, f) and p(∞, f) take only integral values,
we can find φ(r) such that pφ(∞, f) = p(∞, f). Let now φ(r) be a positive
nondecreasing convex function of log r for r > 0 such that φ(r) = o(T (r, f))
and pφ(∞, f) = p(∞, f). Let us also take a number τ such that λ < τ < γ,
and ψ = πpφ(∞, f)/(2τ)− α. Then

hφ(r, τ) =
p2φ(∞, f)

π
ũφ(r) sin

τα

pφ(∞, f)

+ τpφ(∞, f)

{
cos

τα

pφ(∞, f)
N(r,∞, f)− T ∗(reiα, f)

}
.

Then, as ũφ(r) ≥ L(r,∞, f), for r ≥ r0(ε) we have

hφ(r, τ) ≥
p2φ(∞, f)

π

{
L(r,∞, f) sin

τα

pφ(∞, f)

− πτ

pφ(∞, f)

[
T (r, f) + φ(r)− (1−∆(∞, f)− ε) cos

τα

pφ(∞, f)
T (r, f)

]}
.
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Let E(φ, τ) be the set from (2.6). We get

L(r,∞, f) ≤
πτ

pφ(∞,f)

sin τα
pφ(∞,f)

(
1− (1−∆(∞, f)) cos

τα

pφ(∞, f)

)
T (r, f)

+ o(T (r, f))

when r →∞, r ∈ E(φ, τ). We now consider two cases.

First, if arccos(1−∆(∞, f)) < πτ/pφ(∞, f) we can take

α = arccos(1−∆(∞, f)),

as arccos(1 − ∆(∞, f)) < min(π, πpφ(∞, f)/2τ). Then
√
∆(∞, f)/2 <

sin πτ
2pφ(∞,f) , so

B

(
τ

pφ(∞, f)
, ∆(∞, f)

)
=

πτ

pφ(∞, f)

√
∆(∞, f)(2−∆(∞, f))

=
πτ

pφ(∞, f)
sinα

and we get

L(r,∞, f) ≤ πτ

pφ(∞, f)

1− cosα cos τα
pφ(∞,f)

sin τα
pφ(∞,f)

T (r, f) + o(T (r, f))

≤ πτ sinα

pφ(∞, f)
T (r, f)+o(T (r, f)) = B

(
τ

pφ(∞, f)
, ∆(∞, f)

)
T (r, f)+o(T (r, f))

for r →∞, r ∈ E(φ, τ).

Second, let arccos(1−∆(∞, f))≥πτ/pφ(∞, f) and min
(
π,

πpφ(∞,f)
2τ

)
=π.

In this case
√
∆(∞, f)/2 ≥ sin πτ

2pφ(∞,f) and τ/pφ(∞, f) ≤ 1/2, so

B

(
τ

pφ(∞, f)
, ∆(∞, f)

)
=
πτ
(
1− (1−∆(∞, f)) cos πτ

pφ(∞,f)
)

pφ(∞, f) sin πτ
pφ(∞,f)

.

We put α = π and directly obtain

L(r,∞, f) ≤ B(τ/pφ(∞, f), ∆(∞, f))T (r, f) + o(T (r, f))

for r →∞, r ∈ E(φ, τ).

As pφ(∞, f) = p(∞, f) and τ < γ, in both cases we get

L(r,∞, f) ≤ B(τ/p(∞, f), ∆(∞, f))T (r, f) + o(T (r, f))

< B(γ/p(∞, f), ∆(∞, f))T (r, f)

for r →∞, r ∈ E(φ, τ). Thus E(φ, τ) ⊂ E(γ) and it follows that

logdensE(γ) ≥ 1− λ/τ.

Letting τ → γ leads us to the desired statement.
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Finally, we consider the case when p(∞, f) = ∞ (it should be stressed
here that we are not sure if this case is at all possible for a meromorphic func-
tion of finite lower order). Let p > 0 be a fixed number. By definition, there
exists a function φ such that pφ(∞, f) > p. If pφ(∞, f) <∞ we may repeat
all the previous considerations with respect to pφ(∞, f) and the statement
follows from the fact that B(γ/pφ(∞, f), ∆(∞, f)) < B(γ/p,∆(∞, f)). If,
on the other hand, pφ(∞, f) =∞ we put p instead of pφ(∞, f) in (2.1) and
(2.2). Notice that the conclusion of Lemma 2.3 holds. Also Lemma 2.2 holds
for φ(r) as pφ(r,∞, f) 6=∞. Since pφ(∞, f) =∞, we get pφ(r,∞, f) > p for
r ≥ r0. This leads us directly to the conclusion in this case.

We have conducted the proof for the upper logarithmic density. The
proof for the lower logarithmic density can be done in a similar way.

4. Exactness of the estimate

4.1. Case 0 < λ < 1. For 0 < λ < 1 and 0 < u ≤ 1 let fλ(z, u) =∏∞
n=1(1−z/an) be a canonical product of genus zero with positive zeros {an}

such that n(r, 0) ∼ urλ (r →∞). Ryshkov [21] considered the meromorphic
function

Fλ(z) =
fλ(z, u)

fλ(−z, v)
,

where 0 < λ < 1 and 0 ≤ v ≤ u ≤ 1, u > 0 and, by definition, f(z, 0) ≡ 1.
This is a special case of an example given by Gol’dberg and Ostrovskĭı [10].
Notice that Fλ has only positive zeros and negative poles, and

N(r,∞, Fλ) = N(r, 0, fλ(−z, v)) =
v

λ
rλ + o(rλ) (r →∞).

It is shown in [10] that

(4.1)

log |Fλ(reiϕ)| = π

sinπλ
{u cosλ(ϕ− π)− v cosλϕ}rλ + o(rλ) (r →∞)

uniformly in ϕ in every interval [η, π− η] where 0 < η < π/2. It follows that

m(r,∞, Fλ) =
1

λ
I(u, v, λ)rλ + o(rλ) (r →∞),

T (r, Fλ) =
1

λ
{I(u, v, λ) + v}rλ + o(rλ) (r →∞),

where

I(u, v, λ) =


u− v if u cosπλ ≥ v,√
u2 +

(
v − u cosπλ

sinπλ

)2

− v if u ≥ v ≥ u cosπλ.
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Thus Fλ is a meromorphic function of both lower order and order λ with
p(∞, Fλ) = 1. Moreover, as Fλ(z) = Fλ(z) it follows from (4.1) that

L(r,∞, Fλ) =
π

sinπλ
{u− v cosπλ}rλ + o(rλ) (r →∞),

for r such that Fλ(−r) 6=∞. Thus

β(∞, Fλ) =
πλ(u− v cosπλ)

sinπλ (I(u, v, λ) + v)
and ∆(∞, Fλ) =

I(u, v, λ)

I(u, v, λ) + v
.

We also get

B(λ,∆(∞, Fλ))

=


πλ
√

2I2 + 2vI − I
I + v

if λ > 1/2 or sin(πλ/2) >
√
∆(∞, Fλ)/2,

πλ(1− v
I+v cosπλ)

sinπλ
if 0 ≤ λ ≤ 1/2 and sin(πλ/2) ≤

√
∆(∞, Fλ)/2,

where I := I(u, v, λ). By elementary computations we obtain the equality
β(∞, Fλ) = B(λ,∆(∞, Fλ)).

Let n be a fixed positive integer. We consider the function F (z) :=
Fλ/n(zn). It is easy to see that p(∞, F ) = n. Also

N(r,∞, F ) =
nv

λ
rλ + o(rλ) (r →∞).

It follows from (4.1) that

(4.2)

log |F (reiϕ)| = π

sin(πλ/n)

{
u cosλ

(
ϕ−π

n

)
−v cosλϕ

}
rλ+o(rλ) (r →∞)

uniformly in ϕ in every interval [η, π/n− η], where 0 < η < π/(2n).
By a similar argument to one in [10] it can be shown that

m(r,∞, F ) =
n

λ
I

(
u, v,

λ

n

)
rλ + o(rλ) (r →∞),

T (r, F ) =
n

λ

{
I

(
u, v,

λ

n

)
+ v

}
rλ + o(rλ) (r →∞).

Thus F is a meromorphic function of both lower order and order λ with

L(r,∞, F ) =
π

sin(πλ/n)

{
u− v cos

πλ

n

}
rλ + o(rλ) (r →∞),

for r such that Fλ/n(−rn) 6=∞. Thus

β(∞, F ) =
(πλ/n)(u− v cos(πλ/n))

sin(πλ/n) (I(u, v, λ/n) + v)
, ∆(∞, F ) =

I(u, v, λ/n)

I(u, v, λ/n) + v
.

By similar considerations to the case of Fλ it follows that

β(∞, F ) = B(λ/n,∆(∞, F )),
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which shows that the estimate (1.1) is sharp for meromorphic functions of
lower order 0 < λ < 1.

4.2. Case λ = 0. Let r > 1 and %(r) := log(log r)/log r. Then %(r)→ 0
(r →∞) and r%(r) = log r ↑ ∞ (r →∞).

For 0 < u ≤ 1 let f0(z, u) =
∏∞
n=1(1 − z/an) be a canonical product

of genus zero with positive zeros {an} such that n(r, 0) ∼ ur%(r) (r → ∞).
Thus %(r) is a proximate order. Gol’dberg and Ostrovskĭı [10] considered
the meromorphic function

F0(z) =
f0(z, u)

f0(−z, v)
,

where 0 ≤ v ≤ u ≤ 1, u > 0 and, by definition, f0(z, 0) ≡ 1. Notice that

N(r,∞, F0) = N(r, 0, f0(−z, v)) = (v + o(1))

r�

1

t%(t)−1 dt

= (v + o(1))
log2 r

2
(r →∞).

It is shown in [10] that

(4.3) log |F0(re
iϕ)| = (u− v + o(1))

log2 r

2
(r →∞)

uniformly in ϕ in every interval [η, π − η] and [π + η, 2π − η] where 0 < η
< π/2. It follows that

m(r,∞, F0) = (u− v + o(1))
log2 r

2
(r →∞),

T (r, F0) = (u+ o(1))
log2 r

2
(r →∞).

Thus F0 is a meromorphic function of both lower order and order 0 with
p(∞, F0) = 1. Moreover, it follows from (4.3) that

β(∞, F0) =
u− v
u

= ∆(∞, F0) = B(0, ∆(∞, F0)).

Let n be a fixed positive integer. Consider the function F (z) := F0(z
n). It

is easy to notice that

N(r,∞, F ) = (v + o(1))
n log2 r

2
(r →∞),

m(r,∞, F ) = (u− v + o(1))
n log2 r

2
(r →∞),

T (r, F ) = (u+ o(1))
n log2 r

2
(r →∞).
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Thus F is a meromorphic function of both lower order and order 0 with
p(∞, F ) = n. It follows that

β(∞, F ) =
u− v
u

= B(0, ∆(∞, F )),

which shows that (1.1) is sharp for meromorphic functions of lower order 0.

4.3. Case λ ≥ 1. Let λ ≥ 1 be fixed and define

p = [λ], 0 < β <
π

2λ
, α = (2 cosβλ)−1/λ,

where [λ] is the integral part of λ. Following Edrei and Fuchs [6] and Rysh-
kov [21], we consider the canonical products of genus p

g(z) =
∞∏
n=1

E

(
− z

n1/λ
, p

)
.

If λ is not an integer we put

Fλ(z) :=
g(αeiβz)g(αe−iβz)

g(z)
.

If λ is an integer we put

Fλ(z) :=
g(αeiβz)g(αe−iβz)

g(z)
exp{((−1)pβ tanβp+ (−1)p−1 logα)zp}.

Thus Fλ has got zeros an =
(

n
2 cosβλ

)
ei(π−β) and an =

(
n

2 cosβλ

)
ei(π+β) (n =

1, 2, . . .) and poles bn = −n1/λ. It follows that n(r, Fλ) ∼ rλ (r →∞) and

N(r,∞, Fλ) = rλ/λ+ o(rλ) (r →∞).

Let 0 < η < min{β/2, π − β}. It was shown in [6] that the relations

(4.4) log |Fλ(reiϕ)| = o(rλ) (r →∞)

if ϕ ∈ [−π + β + η, π − β − η], and

(4.5) log |Fλ(reiϕ)| = π sinλ(ϕ+ β − π)

cosβλ
rλ + o(rλ) (r →∞)

if ϕ ∈ [π − β + η, π − η], hold uniformly in ϕ. It follows that

m(r, Fλ) =
1− cosβλ

λ cosβλ
rλ + o(rλ) (r →∞),

T (r, Fλ) =
rλ

λ cosβλ
+ o(rλ) (r →∞),

so

∆(∞, Fλ) = 1− cosβλ.
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It is clear that Fλ is a meromorphic function of both lower order and order
λ with p(∞, Fλ) = 1. Also, for r 6= n1/λ (n = 1, 2, . . .) we have

L(r,∞, Fλ) =
π sinβλ

cosβλ
rλ + o(rλ) (r →∞),

so
β(∞, Fλ) = πλ sinβλ.

We get

B(λ,∆(∞, Fλ)) = πλ
√
∆(∞, Fλ)(2−∆(∞, Fλ)) = β(∞, Fλ).

Consider now the function F (z) = Fλ/n(zn), where n is a fixed positive
integer. As in the previous cases we observe that F is a meromorphic function
with both lower order and order λ. Also p(∞, F ) = n and

B(λ,∆(∞, F )) = π
λ

n

√
∆(∞, F )(2−∆(∞, F )) = π

λ

n
sinβ

λ

n
= β(∞, F ).

Finally, let us mention that for ∆(∞, f) = 1 the equality (1.1) holds
for the function f(z) = Fλ/n(zn), where Fλ is a Mittag-Leffler function of

order λ, Fλ(z) =
∑∞

n=0
zn

Γ (1+n/λ) [10].
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