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The transmission problem withboundary 
onditions given by real measuresby Dagmar Medková (Praha)Abstra
t. The unique solvability of the problem ∆u = 0 in G+
∪G−, u+ −au− = fon ∂G+, n+

· ∇u+ − bn+
· ∇u− = g on ∂G+ is proved. Here a, b are positive 
onstantsand g is a real measure. The solution is 
onstru
ted using the boundary integral equationmethod.1. Introdu
tion. V. G. Maz'ya, J. Král and their 
ollaborators studiedthe weak Neumann problem for the Lapla
e equation with boundary 
ondi-tion given by a real measure µ using the integral equation method (see [8℄,[9℄, [13℄): The fun
tion u is a weak solution of the Neumann problem

∆u = 0 in G,

∂u

∂n
= µ on ∂G,if u is a harmoni
 fun
tion in G, |∇u| ∈ L1(H) for ea
h bounded opensubset H of G, and for ea
h in�nitely di�erentiable fun
tion ϕ with 
ompa
tsupport we have \

G

∇u · ∇ϕdHm =
\

∂G

ϕdµ.For a given open set G with 
ompa
t boundary ∂G they looked for a solutionin the form of a single layer potential Uν 
orresponding to a real measure
ν on ∂G. They proved that one obtains an integral equation T̃ ν = µ witha bounded linear operator T̃ on the spa
e of �nite real measures on ∂G ifand only if the set G has bounded 
y
li
 variation. They restri
ted 
onsid-erations to this 
ase. (Note that open sets with pie
ewise-smooth boundaryhave bounded 
y
li
 variation.) A ne
essary and su�
ient 
ondition for thesolvability of the equation T̃ ν = µ has been stated under the assumption2000 Mathemati
s Subje
t Classi�
ation: 31B10, 35J05.Key words and phrases: Lapla
e equation, transmission problem, boundary integralequation method. [243℄ 
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244 D. Medkováthat the essential spe
tral radius of the operator T̃ − 1
2I, where I is theidentity operator, is smaller than 1

2 (see [14℄). (Observe that this 
onditionis ful�lled for G with boundary of 
lass C1+α, for 
onvex domains, for do-mains with pie
ewise-smooth boundary in R
3 and for some 
lass of domainswith pie
ewise-smooth boundary in higher dimensional spa
es; see [8℄, [22℄,[26℄, [14℄, [6℄. We remark that su
h sets may not have Lips
hitz boundary.)The solution of the integral equation T̃ ν = µ was expressed in the form of aNeumann series �rst for 
onvex domains by J. Král and I. Netuka (see [11℄,[8℄) and later for general open sets by D. Medková (see [15℄, [16℄). Similarresults have been proved for the Robin problem for the Lapla
e equation(see [23℄�[25℄, [15℄).A solution of the weak Neumann problem with homogeneous boundary
ondition may be non
onstant. This is evident for G unbounded be
ause wehave no restri
tion on the behaviour of a solution at in�nity. For G boundedthis is a bit surprising result, proved in [21, Example 2.1℄. Uniqueness upto an additive 
onstant was proved under the 
ondition that a solution u is
ontinuously extendible onto the 
losure of G and u(x) → 0 as |x| → ∞ (see[18, Theorem 2℄ and [19, Lemma 3℄).In this paper, the following transmission problem is studied using theintegral equation method:

∆u = 0 in G+ ∪G−,

u+ − au− = f on ∂G+,

∂u+

∂n+
− b

∂u−
∂n+

= µ on ∂G+.Here µ is a real measure on ∂G+, and a, b are positive 
onstants. To en-sure the uniqueness of the solution we will suppose that u is 
ontinuouslyextendible onto the 
losure of G+ and onto the 
losure of G− and that
u(x) → 0 as |x| → ∞. Here u± is the limit of u with respe
t to G±. The �rstboundary 
ondition is satis�ed in the 
lassi
al sense and the se
ond one issatis�ed in the weak sense. We suppose that G+ is a bounded open set withbounded 
y
li
 variation, and G− = R

m \ clG+. (We do not suppose that
G+ and G− are 
onne
ted.) We look for a solution in the form u = Df +Uνin G+, u = (Df +Uν)/a in G−, where Df is the double layer potential withdensity f and Uν is a single layer potential 
orresponding to an unknownmeasure ν on ∂G+. We get an integral equation Tν = µ̃ (see �4). Underthe assumption that the essential spe
tral radius of the operator T̃ − 1

2I issmaller than 1
2 ne
essary and su�
ient 
onditions for the solvability of theproblem are stated and the uniqueness of the solution is proved. Moreover,the solution of the equation Tν = µ̃ is expressed in the form of a Neumannseries. More pre
isely, if α > α0, where α0 is a 
onstant depending on G+,
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a and b (see Theorem 5.3), then

ν = α−1
∞∑

n=0

(I − α−1T )nµ̃.This enables us to use the su

essive approximation method for obtainingan approximate solution of the equation Tν = µ̃.2. Formulation of the problem. Suppose that G+ ⊂ R
m (m > 2) isa bounded open set. Set G− = R

m \ clG+, where clG+ is the 
losure of G+.We suppose that ∂G+ = ∂G− where ∂G+ is the boundary of G+. If u is afun
tion on R
m \ ∂G+ and x ∈ ∂G+ we denote by u+(x) the limit of u at xwith respe
t to G+ and by u−(x) the limit of u at x with respe
t to G−.We study generalized solutions of the following transmission problem:

∆u = 0 in G+,(1)
∆u = 0 in G−,(2)
u+ − au− = f on ∂G+,(3)
∂u+

∂n+
− b

∂u−
∂n+

= g on ∂G+,(4)
lim

|x|→∞
u(x) = 0.(5)Here n+ is the unit outer normal of G+, and a, b are positive 
onstants.Denote by Hk the k-dimensional Hausdor� measure normalized so that

Hk is the Lebesgue measure in R
k. If G+ has a smooth boundary and u is a
lassi
al solution of the above problem then Green's formula yields\

G+

∇u · ∇ϕdHm + b
\

G−

∇u · ∇ϕdHm =
\

∂G+

gϕ dHm−1for ea
h ϕ ∈ D (= the spa
e of all 
ompa
tly supported in�nitely di�eren-tiable fun
tions on R
m).Suppose that G ⊂ R

m is an open set with 
ompa
t boundary. If u is aharmoni
 fun
tion in G su
h that(6) \
H

|∇u| dHm <∞for all bounded open subsets H of G, we de�ne the weak normal derivative
NGu of u as the distribution(7) 〈NGu, ϕ〉 =

\
G

∇u · ∇ϕdHm for ϕ ∈ D.
Suppose that G+ has a smooth boundary and u is a 
lassi
al solution ofthe problem (1)�(5). Denote by H the restri
tion of Hm−1 onto ∂G+. Then
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NG+

u+bNG−

u = gH. This motivates the following weak formulation of theproblem:Let G+ be a bounded open set with Hm−1(∂G
+) < ∞. Denote by Hthe restri
tion of Hm−1 onto ∂G+. If K ⊂ R

m is a 
ompa
t set denote by
C′(K) the Bana
h spa
e of all �nite real Borel measures with support in K,with the total variation norm. Let a, b be positive 
onstants, f ∈ C(∂G+),
µ ∈ C′(∂G+). We say that a fun
tion u de�ned in R

m \ ∂G+ is a weaksolution of the transmission problem
∆u = 0 in G+,(8)
∆u = 0 in G−,(9)
u+ − au− = f on ∂G+,(10)
∂u+

∂n+
− b

∂u−
∂n+

= µ,(11)
lim

|x|→∞
u(x) = 0(12)if u ∈ C∞(G+∪G−), u is 
ontinuously extendible onto clG+ and onto clG−,there are NG+

u,NG−

u ∈ C′(∂G+), the relations (8), (9), (10), (12) hold and
NG+

u+ bNG−

u = µ. If µ = gH we 
an say that u is a weak solution of theproblem (1)�(5).3. Potentials. For x, y ∈ R
m and r > 0 de�ne Ω(x; r) = {z ∈ R

m;
|z − x| < r} and

hx(y) =

{
(m− 2)−1(Hm−1(∂Ω(0; 1)))−1|x− y|2−m for x 6= y,

∞ for x = y.If ν is a �nite real Borel measure, write
Uν(x) =

\
Rm

hx(y) dν(y)whenever this integral makes sense.Suppose that G is an open subset of R
m with 
ompa
t boundary and

ν ∈ C′(∂G). Then the single layer potential Uν 
orresponding to ν is aharmoni
 fun
tion in R
m \∂G and |∇Uν| is integrable in ea
h bounded opensubset of G (see [8, Remark on p. 9℄).For x ∈ R

m put
vG(x) = sup

{\
G

∇φ · ∇hx dHm; φ ∈ D, |φ| ≤ 1, sptφ ⊂ R
m \ {x}

}
,

V G = sup
x∈∂G

vG(x).It was shown in [8℄ that NGUν ∈ C′(∂G) for ea
h ν ∈ C′(∂G) if and onlyif V G < ∞. There are more geometri
al 
hara
terizations of vG(x) whi
h
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onvex or for G with ∂G ⊂
⋃k

i=1 Li, where the Li are
(m− 1)-dimensional Lyapunov surfa
es (i.e. of 
lass C1+α). Denote by

∂eG = {x ∈ R
m; dG(x) > 0, dRm\G(x) > 0}the essential boundary of G where

dM (x) = lim sup
r→0+

Hm(M ∩Ω(x; r))

Hm(Ω(x; r))is the upper density of M at x. Then(13) vG(x) = (Hm−1(∂Ω(0; 1)))−1
\

∂Ω(0;1)

n(θ, x) dHm−1(θ),

where n(θ, x) is the number of points of ∂eG∩{x+ tθ; t > 0} (see [2℄). Thisexpression is a modi�
ation of a similar expression in [8℄. As a 
onsequen
ewe see that V G ≤ 1/2 if G is 
onvex. Sin
e vG(x) ≤ V G + 1/2 by [8,Theorem 2.16℄, we see that if
∂G ⊂

n⋃

i=1

∂Giand G1, . . . , Gn are 
onvex then V G ≤ n.Let us re
all another 
hara
terization of vG(x) using the notion of anexterior normal in Federer's sense. If z ∈ R
m and θ is a unit ve
tor su
h thatthe symmetri
 di�eren
e of G and the half-spa
e {x ∈ R

m; (x− z) · θ < 0}has m-dimensional density zero at z then nG(z) = θ is termed the exteriornormal of G at z in Federer's sense. (The symmetri
 di�eren
e of B and Cis (B \ C) ∪ (C \ B).) If there is no exterior normal of G at z in this sense,we denote by nG(z) the zero ve
tor in Rm. (Note that the exterior normalin the 
lassi
al sense is an exterior normal in Federer's sense.)If Hm−1(∂G) <∞ then(14) vG(x) =
\

∂G

|nG(y) · ∇hx(y)| dHm−1(y)for ea
h x ∈ R
m (see [8, Lemma 2.15℄).Suppose

V G <∞.Then Hm−1(∂eG) <∞ and (14) holds (see [8, Chapter 2℄). For ea
h x ∈ R
mthe density of G at x,

dG(x) = lim
r→0+

Hm(G ∩Ω(x; r))

Hm(Ω(x; r))
,exists (see [8, Lemma 2.9℄). If ν ∈ C′(∂G) and M is a Borel set then
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NGUν(M) =

\
M∩∂G

dG(x) dν(x)(15)
+
\

∂G

\
M∩∂G

nG(y) · ∇hx(y) dHm−1(y) dν(x)(see [8, pp. 73�74℄).Denote by C′
c(∂G) the set of all ν ∈ C′(∂G) for whi
h there is a boundedand 
ontinuous fun
tion Ucν in R

m su
h that Uν = Ucν in R
m \ ∂G. If ν ∈

C′(∂G) and there are 
onstants α > m−2 and k > 0 su
h that |ν|(Ω(x; r)) ≤
krα for all x ∈ R

m and all r > 0 then ν ∈ C′
c(∂G) (see [8, Lemma 2.18℄).For f ∈ C(∂G) de�ne(16) DGf(x) =

1

Hm−1(Ω(0; 1))

\
∂G

nG(y) · (y − x)

|x− y|m
f(y) dHm−1(y),the double layer potential with density f . Then DGf is a harmoni
 fun
tionin G whi
h is 
ontinuously extendible onto clG. If x ∈ ∂G then(17) lim

y→x, y∈G
DGf(y) = DGf(x) + dG(x)f(x)(see [8, Theorem 2.19, Lemma 2.15, Proposition 2.8, Lemma 2.9℄).If L is a bounded linear operator on a Bana
h spa
e X we denote by

‖L‖ess the essential norm of L, i.e. the distan
e of L from the spa
e of all
ompa
t linear operators on X. The essential spe
tral radius of L is de�nedby
ressL = lim

n→∞
‖Ln‖1/n

ess .The operator NGU : ν 7→ NGUν is a bounded linear operator in C′(∂G)(see [8, Theorem 1.13℄). We shall need the 
ondition ress(N
GU − 1

2I) <
1
2 .(Here I denotes the identity operator.) It is well-known that it holds forsets with a smooth boundary (of 
lass C1+α) (see [9℄) and for 
onvex sets(see [22℄). A. Rathsfeld showed in [26℄, [27℄ that polyhedral 
ones in R

3 havethis property. (By a polyhedral 
one in R
3 we mean an open set Ω whoseboundary is lo
ally a hypersurfa
e (i.e. every point of ∂Ω has a neighbour-hood in ∂Ω whi
h is homeomorphi
 to R
2) and ∂Ω is formed by a �nitenumber of plane angles. By a polyhedral open set with bounded boundaryin R

3 we mean an open set Ω whose boundary is lo
ally a hypersurfa
eand ∂Ω is formed by a �nite number of polygons. (Observe that a polyhe-dral open set may not have Lips
hitz boundary.) In [14℄ it was shown thatthe 
ondition ress(NGU − 1
2I) <

1
2 has a lo
al 
hara
ter. Hen
e it holds for

G ⊂ R
3 su
h that for ea
h x ∈ ∂G there are r(x) > 0, a domain Dx whi
h ispolyhedral or smooth or 
onvex or a 
omplement of a 
onvex domain and adi�eomorphism ψx : Ω(x; r(x)) → R

3 of 
lass C1+α, where α > 0, su
h that
ψx(G∩Ω(x; r(x))) = Dx ∩ψx(Ω(x; r(x))). V. G. Maz'ya and N. V. Gra
hev



Transmission problem 249proved this 
ondition for several types of sets with pie
ewise-smooth bound-ary in Eu
lidean spa
e (see [6℄).Lemma 3.1. Let G ⊂ R
m be an open set with 
ompa
t boundary. Put

C = R
m \ clG. Suppose ∂G = ∂C, V G <∞ and ress(NGU − 1

2I) <
1
2 . Then

Hm−1(∂G) <∞, V C <∞, ress(NCU − 1
2I) <

1
2 ,

0 < inf
x∈∂G

dG(x) ≤ sup
x∈∂G

dG(x) <∞and G ∪ C has �nitely many 
omponents. Denote by H the restri
tion of
Hm−1 onto ∂G. If f ∈ L1(H) then

T̃ f(x) = dG(x)f(x) −
\

∂G

f(y)nG(x) · ∇hx(y) dHm−1(y)makes sense for almost all x ∈ ∂G, and NGU(fH) = (T̃ f)H. If G is boundedtheñ
Tf(x) = −

\
∂G

(f(x)nG(y) · ∇hx(y) + f(y)nG(x) · ∇hx(y)) dHm−1(y).Proof. We have Hm−1(∂G) <∞ and
0 < inf

x∈∂G
dG(x) ≤ sup

x∈∂G
dG(x) <∞,and G has �nitely many 
omponents by [15, Corollary 1℄ and [18, Lemma 3℄.Sin
eHm−1(∂G) <∞ we obtain ∂eG = ∂eC and thus V C <∞ by (13). Sin
e

Hm−1(∂G) <∞ we dedu
e that NCU = I−NGU . Hen
e ress(NCU − 1
2I) =

ress(N
GU−1

2I) <
1
2 . If f ∈ L1(H) then T̃ f ∈ L1(H) andNGU(fH) = (T̃ f)Hby [10℄. Suppose that G is bounded and x ∈ ∂G. A

ording to [8, Lemma 2.9and Proposition 2.8℄ we have
dG(x) = −

\
∂G

nG(y) · ∇hx(y) dHm−1(y).Lemma 3.2. Let G ⊂ R
m be an open set with 
ompa
t boundary ∂G =

∂(Rm\clG), V G <∞ and ress(NGU− 1
2I) <

1
2 . If H is a bounded 
omponentof G then there is ν ∈ C′

c(∂G) so that Uν = 1 in H and Uν = 0 in G \H.Proof. The set G has �nitely many 
omponents by Lemma 3.1. Let
G1, . . . , Gn be all bounded 
omponents of G. The 
odimension of the rangeof NGU is n by [14, Theorem 1.14℄. Sin
e ress(NGU − 1

2I) <
1
2 the operator

NGU is a Fredholm operator with index 0 by [14, Lemma 1.2℄. Thereforethe dimension of its kernel is n. If ν is a real measure in this kernel then
ν ∈ C′

c(∂G) and there are 
onstants c1, . . . , cn+1 su
h that Uν = ci in Gi,
i = 1, . . . , n, and Uν = cn+1 in G \

⋃
Gi (see [14, Theorem 1.12℄ and [16,Lemma 4℄). Sin
e Uν(x) → 0 as |x| → ∞ we dedu
e that cn+1 = 0. If

c1 = · · · = cn = 0 then ν = 0 by [14, Theorem 1.12℄. Sin
e the dimension of



250 D. Medkováthe kernel of NGU is n we have ν ∈ C′
c(∂G) so that Uν = 1 in H and Uν = 0in G \H.Lemma 3.3. Let G ⊂ R

m be an open set with 
ompa
t boundary. Put
C = R

m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 . Let

w ∈ C(Rm) be a harmoni
 fun
tion in G∪C su
h that w(x) → 0 as |x| → ∞.If there is NGw ∈ C′(∂G) then there is NCw ∈ C′(∂G).Proof. A

ording to [19, Lemma 3℄ there is p ≥ 1 su
h that w ∈ Lp(Rm).[19, Theorem 2℄ implies that NGw∈C′
c(∂G). [18, Theorem 2℄ and Lemma 3.2show that there is ν ∈ C′(∂G) su
h that w = Sν in G. A

ording to [18,Theorem 1℄ we have ν ∈ C′

c(∂G). The fun
tions w and Ucν are harmoni
in C, 
ontinuous in clC, w = Ucν on ∂G, and w(x) → 0 and Ucν(x) → 0as |x| → ∞. The uniqueness of the Diri
hlet problem implies that w = Ucνin C. Lemma 3.1 gives V C <∞. Hen
e NCw = NCUν ∈ C′(∂G).Proposition 3.4. Let G ⊂ R
m be an open set with 
ompa
t boundary.Put C = R

m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 .Let u ∈ C(clG) be a harmoni
 fun
tion in G. If G is unbounded , supposemoreover that u(x) → 0 as |x| → ∞. Then there is NGu ∈ C′(∂G) if andonly if there are NGDGu ∈ C′(∂G) and NCDGu ∈ C′(∂G).Proof. We have ress(NCU − 1

2I) = ress(N
GU − 1

2I) <
1
2 by Lemma 3.1.A

ording to [17, Theorem 1℄ the fun
tion u 
an be extended onto R

m so that
u ∈ C(Rm), u is a harmoni
 fun
tion in G∪C and u(x) → 0 as |x| → ∞. Sin
ethere is NGu ∈ C′(∂G) if and only if there is NCu ∈ C′(∂G) by Lemma 3.3and DGu = −DCu we 
an suppose that G is bounded.Put

w(x) =

{
u(x) −DGu(x) for x ∈ G,

−DGu(x) for x ∈ C.The fun
tion w is harmoni
 in G ∪ C and w(x) → 0 as |x| → ∞. Let
x ∈ ∂G. Sin
e Hm(∂G) = 0, using the boundary behaviour of the doublelayer potential we get

lim
y→x, y∈G

w(y) = (1 − dG)u(x) −DGu(x) = lim
y→x, y∈C

w(y).Thus w ∈ C(Rm).Suppose �rst that there are NGDGu ∈ C′(∂G) and NCDGu ∈ C′(∂G).Sin
e there is NCw ∈ C′(∂G) Lemma 3.3 shows that there is NGw ∈ C′(∂G).Therefore NGu = NGw +NGDGu ∈ C′(∂G).Suppose now that there is NGu ∈ C′(∂G). Then u = U(NGu)−DGu in Gby [18, Lemma 4℄. Sin
e V G <∞ we have NGDGu = NGU(NGu)−NGu ∈
C′(∂G). Sin
e NGw(x) = NGu(x) − NGDGu ∈ C′(∂G) Lemma 3.3 gives
NCDGu = −NCw ∈ C′(∂G).



Transmission problem 251Notation 3.5. If G is an open subset of R
m, 1 ≤ p ≤ ∞, and k ∈ N,denote by W k,p(G) the set of all fun
tions u ∈ Lp(G) for whi
h the partialderivatives up to order k in the sense of distributions are in Lp(G).Lemma 3.6. Let K ⊂ R

m be a 
ompa
t set with Hm−1(K) < ∞. Put
F = {y ∈ R

m−1; {t ∈ R
1; [t, y] ∈ K} is in�nite}. Then Hm−1(F ) = 0.Proof. Denote by π the proje
tion from R

m onto R
m−1 de�ned by π(t, y)

= y. If n is a positive integer and j is an integer, set Kn,j = K ∩ {[t, y]; y ∈
R

m−1, t ∈ [j2−n, (j + 1)2−n)} and Fn,j = π(Kn,j). As |π(t1, y1) − π(t2, y2)|
≤ |[t1, y1] − [t2, y2]| we have Hm−1(Fn,j) ≤ Hm−1(Kn,j). If k, n are positiveintegers denote by F k

n the set of y ∈ R
m−1 whi
h are in m sets Fn,j . Then

kHm−1(F
k
n ) ≤

∑

j

Hm−1(Fn,j) ≤
∑

j

Hm−1(Kn,j) = Hm−1(K) <∞.

Sin
e F ⊂
⋂∞

k=1

⋃∞
n=1 F

k
n and

Hm−1

( ∞⋂

k=1

∞⋃

n=1

F k
n

)
≤ lim

k→∞
lim

n→∞
Hm−1(F

k
n ) ≤ lim

k→∞
lim

n→∞
Hm−1(K)/k = 0we obtain Hm−1(F ) = 0.Lemma 3.7. Let G ⊂ R

m be an open set with 
ompa
t boundary. Put
C = R

m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 . Let

ν ∈ C′
c(∂G) and ϕ ∈ D be su
h that ϕ = 1 on a neighbourhood of ∂G. Then

ϕUcν ∈W 1,2(Rm) ∩ C(Rm) and |∇Ucν| ∈ L2(Rm).Proof. For z ∈ R
m−1 write Vz = {t ∈ R

1; [t, z] ∈ R
m \ ∂G} and vz(t) =

ϕ(t, z)Ucν(t, z) for t ∈ R
1. Sin
e Hm−1(∂G) <∞ by Lemma 3.1, we see fromLemma 3.6 that there is F ⊂ R

m−1 with Hm−1(F ) = 0 su
h that R
1 \ Vz is�nite for ea
h z ∈ R

m−1 \ F . We infer from [8, Lemma 5.8℄ that |∇Ucν| ∈
L2(Rm \ ∂G). Sin
e Ucν ∈ C(Rm) ∩ C∞(Rm \ ∂G) and ϕ ∈ D we dedu
ethat |∇(ϕUcν)| ∈ L2(Rm \ ∂G) ∩ L1(Rm \ ∂G). Using Fubini's theorem we
on
lude that there is F̃ ⊂ R

m−1 with Hm−1(F̃ ) = 0 su
h that v′z ∈ L1(Vz)for ea
h z ∈ R
m−1 \ F̃ . If z ∈ R

m−1 \ (F ∪ F̃ ) then vz ∈ C(R1) ∩ C∞(Vz),
v′z ∈ L1(Vz) and R

1 \ Vz is a �nite set, whi
h for
es that vz is an absolutely
ontinuous fun
tion in R
1. Similarly, ϕUcν is absolutely 
ontinuous on almostall lines parallel to the 
oordinate axes. Sin
e its partial derivatives belongto L2(Rm), using [29, Theorem 2.1.4℄ we �nd that ϕUcν ∈W 1,2(Rm).Proposition 3.8. Let G ⊂ R

m be an open set with 
ompa
t boundary.Put C = Rm \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 .Denote by C∇(∂G) the set of all f ∈ C(∂G) for whi
h there are NGDGf ∈

C′(∂G) and NCDGf ∈ C′(∂G). If f ∈ C(∂G) then f ∈ C∇(∂G) if andonly if f 
an be extended to an f ∈ C(Rm) ∩ W 1,2(Rm) su
h that ∆f in



252 D. Medkováthe sense of distributions is a real measure. Thus C2(Rm) ⊂ C∇(∂G) and
C(Rm) ∩W 1,2(Rm) ∩W 2,1(Rm) ⊂ C∇(∂G).Proof. Sin
e V C < ∞ and ress(N

CU − 1
2I) <

1
2 by Lemma 3.1, and

DCu = −DGu, we 
an suppose that G is bounded.Suppose �rst that f ∈ C(Rm) ∩W 1,2(Rm) and ∆f in the sense of distri-butions is a real measure. Fix ϕ ∈ D with ϕ = 1 on a neighbourhood of clG.Put u = fϕ. Sin
e ∂ju = f∂jϕ+ ϕ∂jf and ∆u = f∆ϕ+ 2∇ϕ · ∇f + ϕ∆fwe 
an suppose that the support of f is 
ompa
t. Set µ = ∆f . Then f = Uµon R
m \F where F = {x ∈ R

m; U|µ|(x) = ∞}. Sin
e F is a polar set, it haszero Newton 
apa
ity (see [12, Chapters I, III and VI℄; 
f. also [4℄). Sin
e
Uµ ∈W 1,2(Rm) the real measure µ has �nite energy (see [12, Chapter VI℄).Let µ = µ+−µ− be the Jordan de
omposition. The nonnegative measures
µ+, µ− have �nite energy (see [12, Chapters I and VI℄). The potentials Uµ+,
Uµ− are lower semi
ontinuous in R

m (see [12, Theorem 1.3℄) and �nite on
R

m \ F . Sin
e Uµ+ − Uµ− is �nite and 
ontinuous in R
m \ F the fun
tions

Uµ+, Uµ− are 
ontinuous in R
m \ F .Denote by µ̃+, µ̃− the balayages of the measures µ+, µ− relative to

clG (see [7, Chapter 11, �3℄). Then µ̃+, µ̃− are nonnegative measures from
C′(clG) with �nite energy su
h that U µ̃+ ≤ Uµ+, U µ̃− ≤ Uµ− and U µ̃+ =
Uµ+, U µ̃− = Uµ− in G (see [7, Theorem 11.16℄ and [1, Theorem VIII.3℄).The fun
tions U µ̃+, U µ̃− are 
ontinuous with respe
t to the �ne topology(see [7, Chapter 10℄). This topology is stronger than the ordinary topology.Fix x ∈ ∂G\F . Sin
e dG(x) > 0 every �ne neighbourhood of x interse
ts
G (see [7, Corollary 10.5℄ and [12, Theorem 5.11℄) and the �ne topologyis stronger than the ordinary topology, and Uµ+, Uµ− are 
ontinuous, wededu
e that U µ̃+(x) = Uµ+(x), U µ̃−(x) = Uµ−(x). Thus U(µ̃+ − µ̃−) =
Uµ = f on G∪(∂G\F ). Sin
e spt µ̃+ ⊂ clG and spt µ̃− ⊂ clG the fun
tions
U µ̃+, U µ̃− are harmoni
 in R

m \ clG.Fix R > 0 so that clG ⊂ Ω(0;R). Denote by µ̂+, µ̂− the balayages ofthe measures µ̃+, µ̃− relative to clΩ(0;R)\G. Then µ̂+, µ̂− are nonnegativemeasures in C′(clΩ(0;R) \ G) with �nite energy su
h that U µ̂+ ≤ U µ̃+,
U µ̂− ≤ U µ̃− and U µ̂+ = U µ̃+ and U µ̂− = U µ̃− in Ω(0;R)\clG. In the sameway as above we prove that U µ̂+ = U µ̃+ and U µ̂− = U µ̃− on (clΩ(0;R) \
clG) ∪ (∂G \ F ). Thus U(µ̂+ − µ̂−) = f on ∂G \ F . Sin
e U µ̂+, U µ̃+ areharmoni
 fun
tions in R

m \ clΩ(0;R), 
ontinuous in R
m \Ω(0;R), tendingto 0 at in�nity, and U µ̂+ = U µ̃+ on ∂Ω(0;R), the uniqueness of the solutionof the Diri
hlet problem implies that U µ̂+ = U µ̃+ in R

m \ Ω(0;R). Sin
e
U µ̂+ = U µ̃+ in R

m\clG the potential U µ̂+ is harmoni
 in R
m\∂G. Therefore

µ̂+ ∈ C′(∂G). Similarly, µ̂− ∈ C′(∂G).Denote by u the 
lassi
al solution of the Diri
hlet problem for the Lapla
eequation in G with the boundary 
ondition f . Then u = U(µ̂+ − µ̂−) on
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∂G \ F . Thus u = U(µ̂+ − µ̂−) in G by [18, Lemma 1℄. Sin
e V G < ∞ wehave NGu = NGU(µ̂+ − µ̂−) ∈ C′(∂G). Proposition 3.4 shows that thereare NGDGu ∈ C′(∂G) and NCDGu ∈ C′(∂G). Sin
e u = f on ∂G we obtain
f ∈ C∇(∂G).Suppose 
onversely that f ∈ C∇(∂G). Denote by u the 
lassi
al solutionof the Diri
hlet problem in G with the boundary 
ondition f . Then there is
NGu ∈ C′(∂G) by Lemma 3.4. A

ording to [18, Theorem 2℄ and Lemma 3.2,there is ν ∈ C′(∂G) su
h that u = Uν in G. Fix ϕ ∈ D su
h that ϕ = 1 ona neighbourhood of ∂G. Then ϕUcν is an extension of f su
h that ϕUcν ∈
C(Rm)∩W 1,2(Rm) (see Lemma 3.7). A

ording to [8, Remark 5.7℄, we have
∆Uν = ν in the sense of distributions. Sin
e Ucν and Uν di�er on a set ofzero Lebesgue measure we obtain ∆Ucν = ν. Sin
e ϕ ∈ D, Ucν ∈ W 1,2(Rm)and ∆(ϕUcν) = (∆ϕ)Ucν + 2∇ϕ · ∇Ucν + ϕ∆Ucν we dedu
e that ∆(ϕUcν)in the sense of distributions is a real measure.Remark 3.9. Let G ⊂ R

m be an open set with 
ompa
t boundary. Put
C = R

m \ clG. Suppose that ∂G = ∂C is lo
ally the graph of a Lips
hitzfun
tion, V G < ∞, ress(NGU − 1
2I) <

1
2 and f ∈ C(∂G) ∩W 1,p(∂G) with

1 < p <∞. The nontangential maximal fun
tions of |∇DGf | with respe
t to
G and C are from Lp(∂G) by [5, p. 149℄. A

ording to [3, Lemma 2.10℄ thenontangential limits of ∇DGf with respe
t to G and with respe
t to C existon ∂G. Sin
e DGf is an Lp-solution of some Neumann problem in G and in Cwe 
on
lude by [20, Lemma 4.1℄ that there are NGDGf,NCDGf ∈ C′(∂G).Thus f ∈ C∇(∂G).Proposition 3.10. Let G ⊂ R

m be an open set with 
ompa
t boundary.Put C = R
m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1

2I) <
1
2 .If f ∈ C∇(∂G) then NGDGf = NCDCf = −NCDGf .Proof. We 
an suppose that G is bounded. If x ∈ G then

DGf(x) = U(NGDGf)(x) + DG(DGf + dGf)(x)(see [18, Lemma 4℄ and (17)). De�ne C(r) = C ∩ Ω(0; r). Put f = 0 on
R

m \ ∂G. If x ∈ C then
DCf(x) = lim

r→∞
[U(NC(r)DCf)(x) + DC(r)(DCf + dCf)(x)]

= U(NCDCf)(x) + DC(DCf + dCf)(x).Sin
e
U(NGDGf)(x) = DGf(x) −DG(DGf + dGf)(x)in G we have NGDGf ∈ C′

c(∂G) (see [18, Theorem 1℄) and
U(NGDGf)(x) = DGf(x) + dG(x)f(x) −DG(DGf + dGf)(x)

− dG(x)(DGf + dGf)
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e dG = 1/2 a.e. on ∂G (see [16, Lemma 2℄),
U(NGDGf) =

1

4
f −DG(DGf)a.e. on ∂G. Similarly, NCDCf ∈ C′

c(∂G) and
U(NCDCf) =

1

4
f −DC(DCf)a.e. on ∂G. Sin
e U(NCDCf) = U(NGDGf) a.e. on ∂G and NCDCf ∈

C′
c(∂G) and NGDGf ∈ C′

c(∂G), we dedu
e that NGDGf−NCDCf ∈ C′
c(∂G)and Uc(N

GDGf − NCDCf) = 0 on ∂G. Sin
e Uc(N
GDGf − NCDCf) is a
ontinuous fun
tion in R

m, harmoni
 in R
m \ ∂G and vanishing at in�nitythe maximum prin
iple implies that Uc(N
GDGf − NCDCf) = 0 in R

m.Therefore
NGDGf −NCDCf

= NGU(NGDGf −NCDCf) +NCU(NGDGf −NCDCf) = 0.4. Redu
tion of the problemProposition 4.1. Let V G+

< ∞, ress(NG+

U − 1
2I) <

1
2 , u be a weaksolution of the transmission problem (8)�(12) with a = 1, and f ≡ 0. Thenthere is ν ∈ C′

c(∂G
+) su
h that u = Uν.Proof. A

ording to [19, Lemma 3℄, there is p ≥ 1 su
h that u ∈ Lp(Rm).[18, Theorem 2℄ and Lemma 3.2 yield a ν ∈ C′(∂G) su
h that u = Uν in G−.[18, Theorem 1℄ shows that ν ∈ C′

c(∂G). The fun
tion Uν is a solution ofthe Diri
hlet problem for the Lapla
e equation in G+ with the boundary
ondition Uν = u− = u+. The uniqueness of the solution of the Diri
hletproblem implies that u = Uν in G+.We look for a solution of the problem (8)�(12) in the form of the sum ofa single layer potential and a double layer potential. For this we need(18) V G+

<∞, ress(N
G+

U − 1
2I) <

1
2 .In the remainder of the paper we suppose that these 
onditions are satis�ed.If there is a weak solution of the problem (8)�(12) then u+, u−∈ C∇(∂G+)by Proposition 3.4. Hen
e f ∈ C∇(∂G+). So, we 
an suppose that f ∈

C∇(∂G+). We look for a solution in the form
u =

{
DG+

f + v in G+,

DG+

f/a+ v/a in G−.Then u is a weak solution of (8)�(12) if and only if v is a weak solution ofthe problem
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∆v = 0 in G+,(19)
∆v = 0 in G−,(20)
v+ − v− = 0 on ∂G+,(21)
∂v+
∂n+

− c
∂v−
∂n+

= µ̃,(22)
lim

|x|→∞
v(x) = 0,(23)where c = b/a and(24) µ̃ = µ−NG+

DG+

f − cNG−

DG+

f = µ− (1 − c)NG+

DG+

f(see �3). A

ording to Proposition 4.1 we 
an look for a solution of thisproblem in the form v = Uν where ν ∈ C′
c(∂G

+). The problem (19)�(23)redu
es to the equation(25) Tν = µ̃where(26) Tν = NG+

Uν + cNG−

Uν = cν + (1 − c)NG+

Uν.Now, T is a bounded linear operator in C′(∂G) su
h that T (C′
c(∂G

+)) ⊂
C′

c(∂G
+). Sin
e T (C′

c(∂G
+)) ⊂ C′

c(∂G
+) a ne
essary 
ondition for the solv-ability of the problem (19)�(23) is µ̃ ∈ C′

c(∂G
+).5. Solution of the problemNotation 5.1. Let X be a real Bana
h spa
e. Denote by complX the
omplexi�
ation of X, i.e. complX = {x + iy; x ∈ X, y ∈ X}. If A is alinear operator on X, we extend A onto complX by A(x+ iy) = Ax+ iAy.Denote by σ(A) the spe
trum of A and by r(A) the spe
tral radius of A.Lemma 5.2. Let V G+

< ∞, ress(NG+

U − 1
2I) <

1
2 , and c be a positive
onstant. Let ν ∈ compl C′

c(∂G
+) and β ∈ C be su
h that Tν = βν. If

|ν|(∂G+) > 0 then β is real and min(1, c) ≤ β ≤ max(1, c).Proof. Denote by Uν the 
omplex 
onjugate of Uν. As ν∈compl C′
c(∂G

+),using [8, Lemma 5.8℄ and [16, Lemma 7℄ we get
β

\
G+∪G−

|∇Uν|2 dHm = β
\

∂G+

Ucν dν =
\

∂G+

Ucν dTν

=
\

∂G+

Ucν d(N
G+

Uν + cNG−

Uν)

=
\

G+

|∇Uν|2 dHm + c
\

G−

|∇Uν|2 dHm.If∇Uν = 0 in R
m\∂G+ then Uν is 
onstant on ea
h 
omponent of R

m\∂G+.Sin
e Uν(x) → 0 as |x| → ∞ we dedu
e that Uν ≡ 0 on the unbounded
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omponent of R
m \ ∂G+. Sin
e Ucν ∈ C(Rm) is 
onstant on ea
h 
omponentof R

m \∂G+ we infer that Ucν ≡ 0 in R
m. Hen
e 0 = NG+

Uν+NG−

Uν = ν,whi
h is a 
ontradi
tion. Therefore
0 <

\
G+∪G−

|∇Uν|2 dHm <∞.Sin
e
β =

[ \
G+

|∇Uν|2 dHm + c
\

G−

|∇Uν|2 dHm

][ \
G+∪G−

|∇Uν|2 dHm

]−1
,we get min(1, c) ≤ β ≤ max(1, c).Theorem 5.3. Let V G+

<∞, ress(NG+

U − 1
2I) <

1
2 , and c be a positive
onstant. De�ne by

‖ν‖C′

c(∂G+) = ‖ν‖C′(∂G+) + ‖Ucν‖C(∂G+)the norm on C′
c(∂G

+). Then C′
c(∂G

+) is a Bana
h spa
e. The operator T is abounded 
ontinuously invertible linear operator in C′(∂G+) and in C′
c(∂G

+).Fix α > max(1, c)/2. Then there are 
onstants q ∈ (0, 1) and M > 1 su
hthat(27) ∥∥(I − α−1T )n
∥∥ ≤Mqnfor ea
h nonnegative integer n and(28) T−1 = α−1

∞∑

n=0

(I − α−1T )n

in C′(∂G+) and in C′
c(∂G

+).Proof. C′
c(∂G

+) is a Bana
h spa
e and T is a bounded linear operator in
C′

c(∂G
+) by [15, Corollary 2℄. We have

ress(T − ((1 + c)/2)I) = |1 − c|ress(N
G+

U − 1
2I).If β ∈ σ(T − ((1 + c)/2)I) is a 
omplex number su
h that

|β| > |1 − c|ress(N
G+

U − 1
2I)then β is an eigenvalue of the operator T − ((1+ c)/2)I by [14, Lemma 1.2℄.A

ording to [15, Lemmas 5 and 10℄ there is a nontrivial ν ∈ compl C′

c(∂G
+)su
h that [T − ((1 + c)/2)I]ν = βν. Sin
e Tν = [β + (1 + c)/2]ν Lemma 5.2gives min(1, c) ≤ β + (1 + c)/2 ≤ max(1, c) and

σ(T − ((1 + c)/2)I) ⊂ {β ∈ C; |β| ≤ |1 − c|ress(N
G+

U − 1
2I)}

∪ [min(1, c) − (1 + c)/2,max(1, c) − (1 + c)/2]

⊂ {0} ∪ {β; |β| < |c− 1|/2}.
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tral mapping theorem (see [28, Theorem 9.5℄) gives σ(T −αI) ⊂
{(1 + c)/2 − α} ∪ {β; |β + (c + 1)/2 − α| < |c − 1|/2} ⊂ {β ∈ C; |β| < α}in C′(∂G+). A

ording to [15, Lemmas 5 and 8℄, we have σ(T − αI) ⊂
{β ∈ C; |β| < α} in C′

c(∂G
+). Sin
e r(α−1T − I) < 1 in C′(∂G+) and in

C′
c(∂G

+), there are 
onstants q ∈ (0, 1) and M > 1 su
h that (27) holds.Sin
e T = α[(α−1T − I) + I], an easy 
al
ulation yields (28).Theorem 5.4. Let V G+

<∞, ress(NG+

U − 1
2I) <

1
2 , and a, b be positive
onstants. Let µ ∈ C′(∂G+) and f ∈ C(∂G+). Then there is a weak solutionof the problem (8)�(12) if and only if µ ∈ C′

c(∂G
+) and f ∈ C∇(∂G+). Inthat 
ase, let µ̃ be given by (24), c = b/a and T−1 be given by Theorem 5.3.Then u = Df + UT−1µ̃ is a unique weak solution of the problem (8)�(12).This solution satis�es |∇u| ∈ L2(G+ ∪G−).Proof. Suppose �rst that there is a weak solution u of (8)�(12). It wasshown in �4 that f ∈ C∇(∂G+). A

ording to [19, Lemma 3℄ there is p ≥ 1su
h that u ∈ Lp(Rm). [19, Theorem 2℄ shows that NG+

u,NG−

u ∈ C′
c(∂G

+).Thus µ ∈ C′
c(∂G

+).Let now µ ∈ C′
c(∂G

+) and f ∈ C∇(∂G+). Then u = Df + UT−1µ̃ is aweak solution of (8)�(12) by �4 and Theorem 5.3. We now show that |∇u| ∈
L2(G+∪G−). It was proved in �4 that µ̃ ∈ C′

c(∂G
+). Sin
e T−1µ̃ ∈ C′

c(∂G
+)by Theorem 5.3, we have |∇UT−1µ̃| ∈ L2(G+ ∪G−) by [8, Lemma 5.8℄. A
-
ording to [19, Lemma 3℄ there is p ≥ 1 su
h that Df ∈ Lp(Rm). [19, Theo-rem 2℄ shows that NG+

Df ∈ C′
c(∂G

+) and NG−

Df ∈ C′
c(∂G

+). [18, The-orem 2℄ and Lemma 3.2 imply that there are ν+, ν− ∈ C′(∂G+) su
h that
Df = Sν+ in G+ and Df = Sν− in G−. A

ording to [18, Theorem 1℄we have ν+, ν− ∈ C′

c(∂G
+). Thus |∇Df | ∈ L2(G+ ∪G−) by [8, Lemma 5.8℄.This gives |∇u| ∈ L2(G+∪G−). Now we show the uniqueness of a solution ofthe problem (8)�(12). Let u be a solution of (8)�(12) with f ≡ 0 and µ ≡ 0.Then there is ν ∈ C′

c(∂G
+) su
h that u = Uν by Theorem 4.1. Theorem 5.3and �4 imply that ν ≡ 0 and therefore u ≡ 0.Remark 5.5. Let V G+

< ∞, ress(NG+

U − 1
2I) < 1

2 , µ ∈ C′
c(∂G

+),
f ∈ C∇(∂G+), and a, b be positive 
onstants. Let µ̃ be given by (24) and
c = b/a. If ν ∈ C′

c(∂G
+) is a solution of the equation Tν = µ̃ then Df + Uνis a weak solution of the problem (8)�(12). Fix α > max(1, c)/2. We 
anrewrite the equation Tν = µ̃ as ν = (I−α−1T )ν+α−1µ̃. Fix ν0 ∈ Cc(∂G

+).Put
νn+1 = (I − α−1T )νn + α−1µ̃for nonnegative integers n. Let M ∈ [1,∞) and q ∈ (0, 1) be the 
onstantsfrom Theorem 5.3. Then

‖νn+1 − νn‖ = ‖(I − α−1T )(νn − νn+1)‖ = ‖(I − α−1T )n(ν1 − ν0)‖

≤Mqn‖ν1 − ν0‖



258 D. Medkováin C′(∂G+) and in C′
c(∂G

+). Sin
e {νn} is a Cau
hy sequen
e it has a limit
ν in C′(∂G+) (and in C′

c(∂G
+)) and Tν = µ̃. Moreover,

‖ν − νn‖ ≤
M‖ν1 − ν0‖

1 − q
qn.
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