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The transmission problem with
boundary conditions given by real measures

by DAGMAR MEDKOVA (Praha)

Abstract. The unique solvability of the problem Au=0in Gt UG™, uy —au_ = f
on IGT, nT - Vuy —bn™ - Vu_ = g on dG™ is proved. Here a, b are positive constants
and g is a real measure. The solution is constructed using the boundary integral equation
method.

1. Introduction. V. G. Maz’ya, J. Kral and their collaborators studied
the weak Neumann problem for the Laplace equation with boundary condi-
tion given by a real measure p using the integral equation method (see [§],
[9], [13]): The function u is a weak solution of the Neumann problem

Au=0 inG,
ou
8_n = on 3G,

if u is a harmonic function in G, |Vu| € L'(H) for each bounded open
subset H of GG, and for each infinitely differentiable function ¢ with compact
support we have

| Vu-VodH, = | pdp.

G oG
For a given open set G with compact boundary dG they looked for a solution
in the form of a single layer potential U/ corresponding to a real measure
v on JG. They proved that one obtains an integral equation Tv = u with
a bounded linear operator T' on the space of finite real measures on 0G if
and only if the set G has bounded cyclic variation. They restricted consid-
erations to this case. (Note that open sets with piecewise-smooth boundary
have bounded cyclic variation.) A necessary and sufficient condition for the
solvability of the equation Tv = 1 has been stated under the assumption
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that the essential spectral radius of the operator T - %I , where [ is the
identity operator, is smaller than 3 (see [14]). (Observe that this condition
is fulfilled for G with boundary of class C'*®, for convex domains, for do-
mains with piecewise-smooth boundary in R? and for some class of domains
with piecewise-smooth boundary in higher dimensional spaces; see [8], [22],
[26], [14], |[6]. We remark that such sets may not have Lipschitz boundary.)
The solution of the integral equation Tv = 1 was expressed in the form of a
Neumann series first for convex domains by J. Kral and I. Netuka (see [11],
[8]) and later for general open sets by D. Medkova (see [15], [16]). Similar
results have been proved for the Robin problem for the Laplace equation
(see |23]-25], [15]).

A solution of the weak Neumann problem with homogeneous boundary
condition may be nonconstant. This is evident for G unbounded because we
have no restriction on the behaviour of a solution at infinity. For G bounded
this is a bit surprising result, proved in |21, Example 2.1]. Uniqueness up
to an additive constant was proved under the condition that a solution u is
continuously extendible onto the closure of G and u(x) — 0 as |z| — oo (see
[18, Theorem 2| and [19, Lemma 3]).

In this paper, the following transmission problem is studied using the
integral equation method:

Au =0 in GtUG™,
up —au— = f on G,
Our ) Ou- on OG+.

ont  ont — K

Here p is a real measure on OG™, and a, b are positive constants. To en-
sure the uniqueness of the solution we will suppose that u is continuously
extendible onto the closure of G and onto the closure of G~ and that
u(z) — 0 as |z| — oo. Here u+ is the limit of u with respect to G*. The first
boundary condition is satisfied in the classical sense and the second one is
satisfied in the weak sense. We suppose that G is a bounded open set with
bounded cyclic variation, and G~ = R™ \ cIG*. (We do not suppose that
G" and G~ are connected.) We look for a solution in the form w = Df +Uv
in G, u= (Df+Uv)/ain G, where Df is the double layer potential with
density f and Uv is a single layer potential corresponding to an unknown
measure v on JGT. We get an integral equation Tv = [ (see §4). Under

the assumption that the essential spectral radius of the operator T — %I is

smaller than % necessary and sufficient conditions for the solvability of the

problem are stated and the uniqueness of the solution is proved. Moreover,
the solution of the equation Tv = 1 is expressed in the form of a Neumann

series. More precisely, if o > o, where ag is a constant depending on G,
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a and b (see Theorem 5.3), then
[ee)
v=at Z(I — o )"
n=0

This enables us to use the successive approximation method for obtaining
an approximate solution of the equation Tv = [.

2. Formulation of the problem. Suppose that Gt C R™ (m > 2) is
a bounded open set. Set G= = R™\ cl G, where cl GT is the closure of GT.
We suppose that 0GT = G~ where G is the boundary of GT. If u is a
function on R\ 0G* and x € OG' we denote by u, (z) the limit of u at x
with respect to G* and by u_ () the limit of u at z with respect to G~.

We study generalized solutions of the following transmission problem:

(1) Au =0 in G,
(2) Au=0 in G7,
(3) Uy —au_ = f on OG™,
(4) 8u_+_b8u_,:g on 0G™

on* on* ’
(5) \:c1|ii>noo u(x) = 0.

Here nt is the unit outer normal of G, and a, b are positive constants.
Denote by Hj the k-dimensional Hausdorff measure normalized so that

H}, is the Lebesgue measure in R¥. If Gt has a smooth boundary and u is a

classical solution of the above problem then Green’s formula yields

| Vu-VodHu+b | Vu-VodH, = | godHm

G+ G~ oG+
for each ¢ € D (= the space of all compactly supported infinitely differen-
tiable functions on R™).

Suppose that G C R™ is an open set with compact boundary. If u is a
harmonic function in G such that

(6) | [Vul dHy, < 00
H
for all bounded open subsets H of GG, we define the weak normal derivative
NSu of u as the distribution
(7) (N%u, ) = | Vu-VodH,, forpeD.
G

Suppose that G* has a smooth boundary and u is a classical solution of
the problem (1)-(5). Denote by H the restriction of H,,—; onto dG*. Then
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NG u4+bNCG 4 = gH. This motivates the following weak formulation of the
problem:

Let G be a bounded open set with H,,_1(0G') < oco. Denote by H
the restriction of H,, 1 onto GT. If K C R™ is a compact set denote by
C'(K) the Banach space of all finite real Borel measures with support in K,
with the total variation norm. Let a, b be positive constants, f € C(0G™T),
p € C'(OGT). We say that a function u defined in R™ \ G is a weak
solution of the transmission problem

(8) Au=0 in G,

(9) Au=0 in G7,

(10) uy —au_ = f ondGT,
8U+ ou_ o

(1) ot~ Vopt =1

(12) ‘ 1|im u(z) =0

if u € C*°(GTUG™), u is continuously extendible onto cl G* and onto cl G~
there are N u, NG u € C'(dG™), the relations (8), (9), (10), (12) hold and

NGy +bNG u = w. If 4 = gH we can say that u is a weak solution of the
problem (1)—(5).

3. Potentials. For z,y € R™ and r > 0 define 2(x;r) = {z € R™;
|z — x| < r} and
ha(y) = { (m = 2)" (Him-1(992(0; 1))~ Ha — y[>~™  for z # y,
o0 for x = y.
If v is a finite real Borel measure, write
Uv(z) = | ha(y)dv(y)
Rm
whenever this integral makes sense.
Suppose that G is an open subset of R™ with compact boundary and
v € C'(0G). Then the single layer potential Uv corresponding to v is a
harmonic function in R™\ G and |VUv/| is integrable in each bounded open

subset of G (see [8, Remark on p. 9|).
For z € R™ put

o6 (@) = sup{ [ Vo Vi, dHp; 6 € D, 6] <1, spt 6 < R™\ {a} ],
G

V= sup v% ().
x€dG

It was shown in [8] that N“Uv € C'(0G) for each v € C'(OG) if and only

if V¢ < oo. There are more geometrical characterizations of v (x) which
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ensure V& < oo for G convex or for G with 9G C Ule L;, where the L; are
(m — 1)-dimensional Lyapunov surfaces (i.e. of class C1*®). Denote by

aeG = {SC € Rm, C_lG(ﬁ) > 0, Csz\G(CC) > O}

the essential boundary of G where

5 . Hm(M 0 (3 7))

dpr(x) = limsup

r—04 m($2(x;7))
is the upper density of M at x. Then
(13) V(@) = Hm-1020; D) | n(0,2) dHpm-1(0),
802(0;1)

where n(6, z) is the number of points of 9.G N {xz + t0; t > 0} (see [2]). This
expression is a modification of a similar expression in [8]. As a consequence

we see that V¢ < 1/2 if G is convex. Since v%(z) < V& +1/2 by [8,
Theorem 2.16|, we see that if

n
oG c | JoG;
i=1
and G1,...,G, are convex then V& < n.

Let us recall another characterization of v(x) using the notion of an
exterior normal in Federer’s sense. If z € R™ and 6 is a unit vector such that
the symmetric difference of G and the half-space {x € R™; (z — 2) - 6 < 0}
has m-dimensional density zero at z then n%(z) = @ is termed the exterior
normal of G at z in Federer’s sense. (The symmetric difference of B and C
is (B\ C)U(C\ B).) If there is no exterior normal of G at z in this sense,
we denote by n®(z) the zero vector in R™. (Note that the exterior normal
in the classical sense is an exterior normal in Federer’s sense.)

If Hypm—1(0G) < oo then

(14) vi(@) = | [n%(y) - Vha(y)| dHm-1(y)
oG
for each x € R™ (see [8, Lemma 2.15]).
Suppose
VY < oo,

Then H,—1(0eG) < 0o and (14) holds (see [8, Chapter 2|). For each = € R™
the density of G at x,

_ Hon(G N Q2(w;7))
dg(z) = TIL%L Hpn (2(57))

exists (see |8, Lemma 2.9]). If v € C'(0G) and M is a Borel set then
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(15) NUv(M) = | dg(x)dv(z)

MNoG
+ 1 1 nC0) Vhe(y) dHom 1 (y) dv()
9G MNOG

(see [8, pp. 73-74]).
Denote by CL(OG) the set of all v € C'(OG) for which there is a bounded

and continuous function U.v in R™ such that Uy = Uy in R\ 0G. If v €

C'(0G) and there are constants & > m—2 and k > 0 such that |v|(2(z;r)) <

kre for all z € R™ and all 7 > 0 then v € CL(OG) (see [8, Lemma 2.18]).
For f € C(OG) define

(16)  DYf(x)=

°(

1 S n

y) - y—=)
Hom_1(2(0; 1)) F(y) dHm-1(y),

se Tyl
the double layer potential with density f. Then DE f is a harmonic function
in G which is continuously extendible onto clG. If x € G then
(17) lim  DYf(y) =D f(2) + da () f(2)
y—z,yel

(see 8, Theorem 2.19, Lemma 2.15, Proposition 2.8, Lemma 2.9]).

If L is a bounded linear operator on a Banach space X we denote by
|L||ess the essential norm of L, i.e. the distance of L from the space of all
compact linear operators on X. The essential spectral radius of L is defined

by
1/n

TessL = lim ”Ln”ess :
N—00

The operator N“U : v — NCUv is a bounded linear operator in C'(0G)
(see [8, Theorem 1.13]). We shall need the condition ress(N°U — 11) < 1.
(Here I denotes the identity operator.) It is well-known that it holds for
sets with a smooth boundary (of class C1*®) (see [9]) and for convex sets
(see [22]). A. Rathsfeld showed in [26], [27] that polyhedral cones in R? have
this property. (By a polyhedral cone in R® we mean an open set {2 whose
boundary is locally a hypersurface (i.e. every point of 92 has a neighbour-
hood in 92 which is homeomorphic to R?) and 92 is formed by a finite
number of plane angles. By a polyhedral open set with bounded boundary
in R? we mean an open set {2 whose boundary is locally a hypersurface
and 012 is formed by a finite number of polygons. (Observe that a polyhe-
dral open set may not have Lipschitz boundary.) In [14] it was shown that
the condition regs(INV Gy — %I ) < % has a local character. Hence it holds for
G C R3 such that for each x € G there are r(z) > 0, a domain D, which is
polyhedral or smooth or convex or a complement of a convex domain and a
diffeomorphism 1), : 2(z;7(x)) — R3 of class C1T%, where a > 0, such that
Yx(GN2(x;7(x))) = Dy N (2(z;7(x))). V. G. Maz’ya and N. V. Grachev
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proved this condition for several types of sets with piecewise-smooth bound-
ary in Euclidean space (see [6]).

LEMMA 3.1. Let G C R™ be an open set with compact boundary. Put
C =R™\ clG. Suppose 0G = OC, VE < 00 and ress(N°U — 11) < 1. Then
Him-1(0G) < 00, VY < 00, Tess(NU — 1) < 1,
0 < inf d < d <
Jnf dg(z) < sup a(@) < oo

and G U C has finitely many components. Denote by H the restriction of
Hum—1 onto OG. If f € L*(H) then

Tf(x) =do@)f(x) = | fyn®@) - Vha(y) dHpm 1 (y)
oG

makes sense for almost all z € G, and NCU(fH) = (Tf)YH. If G is bounded
then

Tf@)=— § (f@)n ) - Vha(y) + f ()0 (@) - Vhe(y)) dHim- 1 (y)-
oG

Proof. We have H,,_1(0G) < oo and

0 < inf dg(z) < sup dg(zr) < oo,
x€0G 2€dG

and G has finitely many components by [15, Corollary 1| and [18, Lemma 3|.
Since H,,—1(0G) < 0o we obtain 9eG = 9,C and thus V¢ < oo by (13). Since
Hin-1(8G) < 0o we deduce that NOU = I — NU. Hence ress(N°U — 31) =
ress(NCU—-L1) < L.1f f € L'(H) then Tf € L'(H) and NCU(fH) = (Tf)H
by [10]. Suppose that G is bounded and x € 9G. According to |8, Lemma 2.9
and Proposition 2.8] we have

do(@) = — | n9(y) - Vha(y) dHom1(y).
oG
LEMMA 3.2. Let G C R™ be an open set with compact boundary 0G =
I(R™\clG), VE < 00 and ress(NCU—31) < %. If H is a bounded component
of G then there is v € CL(OG) so that Uv =1 in H andUv =0 in G\ H.

Proof. The set G has finitely many components by Lemma 3.1. Let
G1,...,G, be all bounded components of G. The codimension of the range
of N9U is n by [14, Theorem 1.14|. Since ress(N“U — 1) < 5 the operator
N%U is a Fredholm operator with index 0 by [14, Lemma 1.2]. Therefore
the dimension of its kernel is n. If v is a real measure in this kernel then
v € CL(0G) and there are constants ci,...,cy41 such that Uv = ¢; in G,
i=1,...,n, and Uv = cp41 in G \ |JG; (see [14, Theorem 1.12] and [16,
Lemma 4|). Since Uv(xz) — 0 as |x| — oo we deduce that ¢,.1 = 0. If
¢1 =---=¢p, =0 then v = 0 by |14, Theorem 1.12|. Since the dimension of
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the kernel of NCU is n we have v € C.(0G) so that Uv = 1 in H and Uv = 0
in G\ H.

LEMMA 3.3. Let G C R™ be an open set with compact boundary. Put
C =R™\ clG. Suppose G = C, V& < 0o and ress(NU — 31) < 3. Let
w € C(R™) be a harmonic function in GUC' such that w(x) — 0 as |x| — oo.
If there is NCw € C'(0G) then there is N“w € C'(0G).

Proof. According to |19, Lemma 3| there is p > 1 such that w € LP(R™).
[19, Theorem 2] implies that N%w € C.(0G). [18, Theorem 2] and Lemma 3.2
show that there is v € C'(0G) such that w = Sv in G. According to [18,
Theorem 1] we have v € C.L(0G). The functions w and Ucv are harmonic
in C, continuous in clC, w = Ucv on 0G, and w(x) — 0 and Uev(z) — 0
as |z| — oo. The uniqueness of the Dirichlet problem implies that w = U.v
in C. Lemma 3.1 gives V¢ < 0co. Hence Nw = NCUv € C'(0G).

PROPOSITION 3.4. Let G C R™ be an open set with compact boundary.
Put C = R™\ clG. Suppose G = dC, VE < 00 and ress(NU — %I) < %
Let uw € C(clG) be a harmonic function in G. If G is unbounded, suppose
moreover that u(x) — 0 as |z| — oo. Then there is NSu € C'(0G) if and
only if there are N¢D%u € C'(0G) and N“D%u € C'(0G).

Proof. We have ress(NCU — %I) = Tess(NCU — %I) < % by Lemma 3.1.
According to |17, Theorem 1] the function u can be extended onto R™ so that
u € C(R™), u is a harmonic function in GUC and u(x) — 0 as |x| — oo. Since
there is N®u € C'(0G) if and only if there is N“u € C'(dG) by Lemma, 3.3
and D%u = —D%u we can suppose that G is bounded.

Put

(2) = {u(m) — D%u(z) forx € G,
v —DC%u(x) for z € C.

The function w is harmonic in G U C and w(z) — 0 as |z|] — oo. Let
x € 0G. Since Hp,(0G) = 0, using the boundary behaviour of the double
layer potential we get
. G .
yﬁlé’nyler(y) = (1 —dg)u(x) — D u(z) = yﬁlé’ng}ecw(y).
Thus w € C(R™).

Suppose first that there are N¢D% € C'(0G) and N®D% € C'(0G).
Since there is N®w € C'(0G) Lemma 3.3 shows that there is N¢w € C'(9G).
Therefore N¢u = NSw + NOD%, € C'(0G).

Suppose now that there is N¢u € C'(0G). Then u = U(N%u) —D%u in G
by [18, Lemma 4]. Since V¢ < 0o we have N9D% = NCU(N%u) — NCu €
C'(0G). Since Nw(x) = N%u(z) — N9D% € C'(0G) Lemma 3.3 gives
N¢DCy = —NCw € C'(0G).
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NoTATION 3.5. If G is an open subset of R™, 1 < p < o0, and k € N,
denote by W*P(G) the set of all functions u € LP(G) for which the partial
derivatives up to order k in the sense of distributions are in LP(G).

LEMMA 3.6. Let K C R™ be a compact set with Hpy,—1(K) < oco. Put
F={ycR™ Y {teRY; [t,y] € K} is infinite}. Then H,_1(F) = 0.

Proof. Denote by 7 the projection from R onto R™~! defined by 7(t,y)
= y. If n is a positive integer and j is an integer, set K, ; = K N {[t,y]; y €
R™1t € [j277, (j+1)27")} and Fj = m(Knj). As |7(t,y1) — 7(t2, y2)|
<|[t1, y1] — [t2, y2]| we have Hp,—1(F), ;) < Hm 1(K j)- If k, n are positive
integers denote by ¥ the set of y € R™~! which are in m sets F}, ;. Then

kHp— 1 <ZHm 1 TLj <2Hm 1 nj Hmfl(K)<Oo-
Since F C (= 1U°O FF and

'Hm_1<ﬂ UF];) < lim lim H,, (FF) < hm lim H,—1(K)/k=0

kel 1 k— o0 n—00 k—o00 Nn—00
=1 n=

we obtain H,,—1(F) = 0.

LEMMA 3.7. Let G C R™ be an open set with compact boundary. Put
C =R™\ clG. Suppose G = C, V& < 0o and ress(NU — 3I) < 5. Let
v € CL(OG) and ¢ € D be such that p =1 on a neighbourhood of OG. Then
Uy € WE2(R™) N C(R™) and |VU.v| € L?(R™).

Proof. For z € R™~! write V, = {t € R!; [t,2] € R™\ 0G} and v,(t) =
o(t, 2)Uev(t, 2) for t € RL. Since H,,—1(0G) < 0o by Lemma 3.1, we see from
Lemma 3.6 that there is F C R™~! with H,,_1(F) = 0 such that R!\ V is
finite for each z € R™~1\ F. We infer from [8, Lemma 5.8] that |Vifev| €
L2(R™ \ 0G). Since U.v € C(R™) N C®(R™ \ dG) and ¢ € D we deduce
that |V (eUcv)| € L2(]Rm \ 0G) N LY(R™ \ 0G). Using Fubini’s theorem we
conclude that there is F' C R™™ ! with H,,_ 1(#) = 0 such that v} € LY(Vv,)
for cach z € R™ 1\ F. If z € R™ 1\ (FUF) then v, € C(RI)HCOO(V)

v, € LY(V,) and R! \ V; is a finite set, which forces that v, is an absolutely
continuous function in R!. Similarly, goucl/ is absolutely continuous on almost
all lines parallel to the coordinate axes. Since its partial derivatives belong

to L?(R™), using |29, Theorem 2.1.4] we find that U € WLH2(R™).

PRrROPOSITION 3.8. Let G C R™ be an open set with compact boundary.
Put C =R™\ clG. Suppose 0G = 0C, VY < 0o and ress(N°U — 11) < 1.
Denote by Cy (0G) the set of all f € C(OG) for which there are NODC f €
C'(0G) and NYDCGf ¢ C'(0G). If f € C(OG) then f € Cy(0G) if and
only if f can be evtended to an f € C(R™) N WY2(R™) such that Af in
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the sense of distributions is a real measure. Thus C3(R™) C Cv(0G) and
C(R™) N WL2(R™) N W2LHR™) C Cy(0G).

Proof. Since VC < 0o and res(NCU — %I) < % by Lemma 3.1, and
D = —D%u, we can suppose that G is bounded.

Suppose first that f € C(R™) N W12(R™) and Af in the sense of distri-
butions is a real measure. Fix ¢ € D with ¢ = 1 on a neighbourhood of cl G.
Put v = fo. Since Oju = fOjo + @0;f and Au = fAp +2Vep -V + oAf
we can suppose that the support of f is compact. Set p = Af. Then f =Up
on R™\ F where F' = {z € R™; U|u|(z) = oo}. Since F' is a polar set, it has
zero Newton capacity (see [12, Chapters I, III and VI|; cf. also [4]). Since
Up € WEH2(R™) the real measure y has finite energy (see [12, Chapter VI]).

Let u = pu—p~ be the Jordan decomposition. The nonnegative measures
pt, 1~ have finite energy (see [12, Chapters I and VI|). The potentials Uy,
Up_ are lower semicontinuous in R™ (see [12, Theorem 1.3]) and finite on
R™\ F. Since Up™ — Uy~ is finite and continuous in R™ \ F' the functions
Up™, Up~ are continuous in R™ \ F.

Denote by gy, - the balayages of the measures py, p_ relative to
clG (see |7, Chapter 11, §3]). Then i, fi— are nonnegative measures from
C'(cl G) with finite energy such that Upy < Upy, Up— < Up— and Uy =
Ups, Up— = Up— in G (see |7, Theorem 11.16] and |1, Theorem VIIL.3|).
The functions Uy, Up_ are continuous with respect to the fine topology
(see |7, Chapter 10]). This topology is stronger than the ordinary topology.

Fix x € 0G\ F. Since dg(z) > 0 every fine neighbourhood of z intersects
G (see |7, Corollary 10.5] and [12, Theorem 5.11|) and the fine topology
is stronger than the ordinary topology, and Up, Up_ are continuous, we
deduce that Up(z) = Ups(z), Up—(x) = Up—(x). Thus U(py — p—) =
Up = fon GU(IG\ F). Since spt iy C cl G and spt i C cl G the functions
Uiy, Upi— are harmonic in R™ \ cl G.

Fix R > 0 so that clG C £2(0; R). Denote by fit, i— the balayages of
the measures i, ji— relative to ¢l £2(0; R) \ G. Then i, i are nonnegative
measures in C'(cl1$2(0; R) \ G) with finite energy such that Upny < Upy,
Uli— <Up— and Upiy =Upy and Ui = Up— in 2(0; R) \ cl G. In the same
way as above we prove that Uiy = Uy and Upi— = Up— on (cl 2(0; R) \
clG)U (OG \ F). Thus U(piy — pi—) = f on OG \ F. Since Uiy, Upiy are
harmonic functions in R™ \ ¢l £2(0; R), continuous in R \ £2(0; R), tending
to 0 at infinity, and Uiy = Uy on 082(0; R), the uniqueness of the solution
of the Dirichlet problem implies that Uy = Upy in R™ \ £2(0; R). Since
ULy = ULy in R™\cl G the potential Uiy is harmonic in R™\ JG. Therefore
p+ € C'(0G). Similarly, i € C'(0G).

Denote by u the classical solution of the Dirichlet problem for the Laplace
equation in G with the boundary condition f. Then uw = U(iiy — fi—) on
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OG\ F. Thus u = U(jiy — fi_) in G by [18, Lemma 1]. Since V¢ < 0o we
have NSu = NCU(jiy — [i_) € C'(0G). Proposition 3.4 shows that there
are N9D% € C'(0G) and N®D%u € C'(0G). Since u = f on OG we obtain
f € Cy(0G).

Suppose conversely that f € Cy(90G). Denote by u the classical solution
of the Dirichlet problem in G with the boundary condition f. Then there is
NCu € C'(0G) by Lemma 3.4. According to [18, Theorem 2] and Lemma 3.2,
there is v € C'(0G) such that u = Uv in G. Fix ¢ € D such that ¢ =1 on
a neighbourhood of 0G. Then U v is an extension of f such that ¢lU.v €
C(R™) N WH2(R™) (see Lemma 3.7). According to [8, Remark 5.7], we have
AUv = v in the sense of distributions. Since U.v and Uv differ on a set of
zero Lebesgue measure we obtain AU.v = v. Since ¢ € D, U.v € WH2(R™)
and A(pUcv) = (Ap)Ucv + 2V - VUv + o AUv we deduce that A(pU.v)

in the sense of distributions is a real measure.

REMARK 3.9. Let G C R™ be an open set with compact boundary. Put
C = R™\ clG. Suppose that 0G = OC is locally the graph of a Lipschitz
function, V& < 00, ress(NU — 11) < L and f € C(0G) N W'P(OG) with
1 < p < 00. The nontangential maximal functions of |VDG f| with respect to
G and C are from LP(OG) by |5, p. 149|. According to |3, Lemma 2.10| the
nontangential limits of VD f with respect to G and with respect to C' exist
on OG. Since DY f is an LP-solution of some Neumann problem in G and in C'
we conclude by [20, Lemma 4.1] that there are N¢DY f, NCDC f € C'(0G).
Thus f € Cy(0G).

PROPOSITION 3.10. Let G C R™ be an open set with compact boundary.
Put C = R™\ clG. Suppose 0G = 0C, VE < 00 and ress(NU — L1) < L.
If f € Cv(0G) then N6DCf = NCDCf = —NCDEF.

Proof. We can suppose that G is bounded. If x € G then
D f(z) = U(N“D f)(x) + DY (Df + daf)(z)

(see [18, Lemma 4| and (17)). Define C(r) = C N 2(0;r). Put f = 0 on
R™\ 0G. If z € C then

D f(z) = lim UNCDIDE ) (@) + DO (DCS + de)(x)]
= U(NCDC f)(z) + DE (DY f + do f) ().
Since
UNCDE f)(z) = D f(z) — DD f + daf)(x)
in G we have N¢DYf € CL(0G) (see [18, Theorem 1]) and
UNDEf)(x) = DY f(2) + da(a) f(x) = DD + daf)(x)
—dg(x) (DY f + da f)
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on G. Since dg = 1/2 a.e. on G (see [16, Lemma 2]),
UNSDEf) = 1 f - DO(DC )

a.e. on JG. Similarly, N¢DC f € C.(0G) and
UNCDEf) = [~ DO (D)

a.e. on 0G. Since U(NDCf) = UNEDEf) ae. on G and NCDCf €
C.(0G) and NODC f € C(0G), we deduce that NODE f — NODC f € C.(0G)
and U (NCDEf — NYDYf) = 0 on 0G. Since U, (N DEf — NODCf) is a
continuous function in R, harmonic in R™ \ 0G and vanishing at infinity
the maximum principle implies that U.(NCDCf — NCDCf) = 0 in R™.
Therefore

NEDCf — N¢DC ¢
= NCUNYDY f — NODC f) + NCUNYDY f — NODC f) = 0.

4. Reduction of the problem

PROPOSITION 4.1. Let V' < 00, ress(NC U — % ) < i, u be a weak
=1,

solution of the transmission problem (8)—(12) wzt and f = 0. Then
there is v € CL(OG™) such that u = Uv.

Proof. According to [19, Lemma 3], there is p > 1 such that u € LP(R™).
[18, Theorem 2] and Lemma 3.2 yield a v € C'(0G) such that v = Uv in G~.
[18, Theorem 1] shows that v € C.(0G). The function Uv is a solution of
the Dirichlet problem for the Laplace equation in Gt with the boundary
condition Uv = u_ = uy. The uniqueness of the solution of the Dirichlet
problem implies that v = Uv in GT.

We look for a solution of the problem (8)—(12) in the form of the sum of
a single layer potential and a double layer potential. For this we need

(18) VO <00, res(NCU-1I) <]

In the remainder of the paper we suppose that these conditions are satisfied.

If there is a weak solution of the problem (8)-(12) then u,u_ € Cy(9GT)
by Proposition 3.4. Hence f € Cy(0G™). So, we can suppose that f €
Cv(0G™). We look for a solution in the form

DY 4w in G,
DY fla+v/a in G

Then u is a weak solution of (8)—(12) if and only if v is a weak solution of
the problem
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(19) Av =10 in G,

(20) Av =0 in G™,

(21) vy —v_=0 ondGT,
vy ov_  _

(22) ot~ ot P

(23) | l‘im v(z) =0,

where ¢ = b/a and
(24) fi=p—NEDEf_eNCDC f=p—(1-c)N D
(see §3). According to Proposition 4.1 we can look for a solution of this

problem in the form v = Uv where v € C.(OGT). The problem (19)-(23)
reduces to the equation

(25) Tv=rp
where
(26) TV:NG+Z/[V+CNG7UV:CV—|—(1 —C)NG+UU.

Now, T is a bounded linear operator in C’(0G) such that T(CL(OG™T)) C
CL(OG™T). Since T(CL(OGT)) C CL(OGT) a necessary condition for the solv-
ability of the problem (19)-(23) is g € CL(OG™).

5. Solution of the problem

NoTATION 5.1. Let X be a real Banach space. Denote by compl X the
complexification of X, i.e. complX = {x +iy; 2z € X,y € X}. If Aisa
linear operator on X, we extend A onto compl X by A(x +iy) = Az + i Ay.
Denote by o(A) the spectrum of A and by r(A) the spectral radius of A.

LEMMA 5.2. Let VO < 00, ress(NCTU — %I) < %, and ¢ be a positive
constant. Let v € complCL(OG™T) and 3 € C be such that Tv = PBv. If
|v|(OGT) > 0 then 3 is real and min(1,c) < f < max(1,c).

Proof. Denote by Uv the complex conjugate of Uv. As v € compl C.(OGT),
using [8, Lemma 5.8] and [16, Lemma 7| we get

g\ VUvPdH, =8 | Uvdv= | Uvdlv
GTtUG— oG+ oG+
= | Uwd(N Uy + N Uv)
oG+
= | VU dtpm + ¢ | VUV dH,p.
G+ G~
If VUv = 0in R™\OG* then Uv is constant on each component of R™\JG™.
Since Ur(z) — 0 as |x| — oo we deduce that Yv = 0 on the unbounded
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component of R™\ dG. Since U.v € C(R™) is constant on each component
of R™\ G we infer that U.v = 0 in R™. Hence 0 = NS Uy + NG Uy = v,
which is a contradiction. Therefore

0< | |[VUv|*dH, < co.

GHuG—
Since
B = [S VUV dHo + c |vuyy2deH i |vuy|2der,
G+ G~ GHuG—

we get min(1,c) < < max(1,c).

THEOREM 5.3. Let VG < oo, ress(NG+Ll— %I) < %, and ¢ be a positive
constant. Define by

Vlle: o6+ = Wlleraay + UL leoa+)

the norm on CL(OG™). Then C.(OG™) is a Banach space. The operator T is a
bounded continuously invertible linear operator in C'(0G™) and in CL(OGT).
Fiz o > max(1,¢)/2. Then there are constants ¢ € (0,1) and M > 1 such
that

(27) |(I = 'T)"|| < Mg"

for each nonnegative integer n and
oo

(28) T '=a') (I-a'T)"
n=0

in C'(OG™) and in CL(OGT).

Proof. CL(OG™) is a Banach space and T is a bounded linear operator in
CL(OG™T) by |15, Corollary 2]. We have

Tess(T = (1 +¢)/2)I) = |1 — clress(NF U — 31).

If Be€o(T—((1+¢)/2)I) is a complex number such that

18] > 1 = clress(NS U — L1)
then [ is an eigenvalue of the operator T'— ((1+¢)/2)I by [14, Lemma 1.2].
According to [15, Lemmas 5 and 10| there is a nontrivial v € compl C.(0G™)
such that [T'— ((1+¢)/2)I]v = Bv. Since Tv = [ + (1 + ¢)/2]v Lemma 5.2
gives min(1,c) < S+ (14 ¢)/2 < max(1,¢c) and

o(T ~ ((1+¢)/D1) C {B € C;|8] < |1~ clreas(N U ~ 31}
U [min(1,¢) — (1 +¢)/2, max(1,¢c) — (1 +¢)/2]
c {0} u{B; 18] <le—1]/2}.
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The spectral mapping theorem (see |28, Theorem 9.5]) gives (T —al) C
{1+0)/2=a}U{B; B+ (c+1)/2—af <[e-1]/2} C{f € G|f] < a}
in C'(0GT). According to [15, Lemmas 5 and 8|, we have o(T — al) C
{B € C;|8| < a} in CL(OGT). Since r(a T —I) < 1 in C'(0GT) and in
CL(OG™T), there are constants ¢ € (0,1) and M > 1 such that (27) holds.
Since T = a[(a™'T — I) + I], an easy calculation yields (28).

THEOREM 5.4. Let VG’ < oo, reSS(NG+LI— %I) < %, and a, b be positive
constants. Let u € C'(0G™) and f € C(OGT). Then there is a weak solution
of the problem (8)—(12) if and only if p € CL(OGT) and f € Cy(OGT). In
that case, let i be given by (24), ¢ = b/a and T~ be given by Theorem 5.3.
Then w = Df + UT i is a unique weak solution of the problem (8)—(12).
This solution satisfies |Vu| € L>(GT UG™).

Proof. Suppose first that there is a weak solution u of (8)—(12). It was
shown in §4 that f € Cy(OG™). According to [19, Lemma 3| there is p > 1
such that v € LP(R™). [19, Theorem 2] shows that N u, N¢ v € C(dG™T).
Thus p € CL(OGT).

Let now pu € CL(0GT) and f € Cy(OG™T). Then u = Df +UT ‘i is a
weak solution of (8)-(12) by §4 and Theorem 5.3. We now show that |Vu| €
L*(GTUG™). It was proved in §4 that i € C.(0G™T). Since T~1ji € CL(OG™)
by Theorem 5.3, we have |VUT1j| € L?>(GT UG™) by [8, Lemma 5.8]. Ac-
cording to [19, Lemma 3| there is p > 1 such that Df € LP(R™). [19, Theo-
rem 2| shows that N6"Df e CL(dGT) and N Df e C.(dGT). [18, The-
orem 2| and Lemma 3.2 imply that there are v, v~ € C'(OG™T) such that
Df = Svt in Gt and Df = Sy~ in G~. According to [18, Theorem 1]
we have v+, v~ € C/(0GT). Thus |[VDf| € L>(GT UG™) by [8, Lemma 5.8].
This gives |Vu| € L2(GTUG ™). Now we show the uniqueness of a solution of
the problem (8)—(12). Let u be a solution of (8)—(12) with f =0 and u = 0.
Then there is v € CL(OG") such that u = Uv by Theorem 4.1. Theorem 5.3
and §4 imply that v = 0 and therefore u = 0.

REMARK 5.5. Let VO < o0, res(N U — 11) < 1, 1 € CLOGT),
f € Cv(0GT), and a, b be positive constants. Let 1 be given by (24) and
c=b/a.If v € C(OGT) is a solution of the equation Tv = fi then Df + Uv
is a weak solution of the problem (8)—(12). Fix a > max(1,c)/2. We can
rewrite the equation Tv = 1 as v = (I —a 'T)v+a 1. Fix 1y € C.(0G™).
Put

Upt1 = (I — a_lT)l/n +atp

for nonnegative integers n. Let M € [1,00) and ¢ € (0,1) be the constants
from Theorem 5.3. Then

st = vall = (I = @™ D)W = vis)l| = (I = @' T (01 = )]
< Mq" | - o
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in C'(0G™) and in CL(OGT). Since {1, } is a Cauchy sequence it has a limit
v in C'(0G™) (and in C.(OG™)) and Tv = pi. Moreover,
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