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Some uniqueness results on

meromorphic functions sharing three sets

by Abhijit Banerjee (Kalyani)

Abstract. We discuss the uniqueness of meromorphic functions when they share
three sets with the notion of weighted sharing and improve two results of Lahiri–Banerjee
and Yi–Lin. We also improve a recent result of the present author and thus provide an
answer to a question of Gross, in a new direction.

1. Introduction, definitions and results. Let f and g be two non-
constant meromorphic functions defined in the open complex plane C. We
denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) des-
ignates any quantity satisfying S(r) = o(T (r)) as r → ∞, outside a possible
exceptional set of finite linear measure.

If for some a ∈ C∪{∞}, f and g have the same set of a-points with the
same multiplicities then we say that f and g share the value a CM (counting
multiplicities). If we do not take the multiplicities into account, f and g are
said to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of C ∪ {∞} and Ef (S) =
⋃

a∈S{z :
f(z)−a = 0}, where each zero is counted according to its multiplicity. If we
do not count multiplicities the set Ef (S) is denoted by Ef (S).

If Ef (S) = Eg(S) we say that f and g share the set S CM. On the other
hand if Ef (S) = Eg(S), we say that f and g share the set S IM.

In [3] Gross posed the following question:

Can one find two finite sets Sj (j = 1, 2) such that any two noncon-

stant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2
must be identical?

Fang and Xu [2] considered the case of meromorphic functions and proved
the following result.
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Theorem A ([2]). Let S1 = {z : z3 − z2 − 1 = 0}, S2 = {0} and S3 =
{∞}. Suppose that f and g are two nonconstant meromorphic functions

satisfying Θ(∞; f) > 1/2 and Θ(∞; g) > 1/2. If Ef (Sj) = Eg(Sj) for j =
1, 2, 3 then f ≡ g.

Dealing with the question of Gross, Qiu and Fang [12] proved the fol-
lowing theorem.

Theorem B ([12]). Let n ≥ 3 be a positive integer , S1 = {z : zn −
zn−1 − 1 = 0}, S2 = {0}, and let f and g be two nonconstant meromorphic

functions whose poles are of multiplicities at least 2. If Ef ({∞}) = Eg({∞})
and Ef (Si) = Eg(Si) for i = 1, 2 then f ≡ g.

They also gave an example to show that the condition that the poles of
f and g are of multiplicities at least 2 cannot be removed in Theorem B.

It should be noted that if two meromorphic functions f and g have no
simple pole then clearly Θ(∞; f) ≥ 1/2 and Θ(∞; g) ≥ 1/2.

Lahiri and Banerjee [9] investigated the situation for Θ(∞; f) ≤ 1/2 and
Θ(∞, g) ≤ 1/2 in Theorem A and proved the following result.

Theorem C ([9]). Let S1 = {z : zn+azn−1+b = 0}, S2 = {0} and S3 =
{∞}, where a, b are nonzero constants such that zn + azn−1 + b = 0 has no

multiple root and n (≥ 4) is an integer. If for two nonconstant meromorphic

functions f and g, Ef (Si) = Eg(Si) for i = 1, 2, 3 and Θ(∞; f) + Θ(∞; g)
> 0, then f ≡ g.

In 2004 Yi and Lin [17] independently proved Theorem C assuming
Θ(∞; f) > 0 instead of Θ(∞; f) + Θ(∞; g) > 0. They remarked that
the assumption Ef (S2) = Eg(S2) in the above result can be relaxed to
Ef (S2) = Eg(S2).

Recently the present author [1] has investigated the relaxation of the
nature of sharing the set S1 in Theorem C using the idea of gradation of
sharing of values and sets, known as weighted sharing, introduced in [6, 7];
it consists in measuring how close a shared value is to being shared IM or
to being shared CM. We now give the definition.

Definition 1.1 ([6, 7]). Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times
if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with

weight k.

We write f , g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer p
with 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only
if f, g share (a, 0) or (a,∞) respectively.
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Definition 1.2 ([6]). Let S be a set of distinct elements of C ∪ {∞}
and k be a nonnegative integer or ∞. Let

Ef (S, k) =
⋃

a∈S

Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

Improving the result of Lahiri–Banerjee [9] and Yi–Lin [17] the present
author has recently proved the following result.

Theorem D ([1]). Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and

S3 = {∞}, where a, b are nonzero constants such that zn + azn−1 + b = 0
has no multiple root and n (≥ 4) is an integer. If for two nonconstant mero-

morphic functions f and g, Ef (S1, 4) = Eg(S1, 4), Ef (S2, 0) = Eg(S2, 0)
and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 0, then f ≡ g.

Now considering all the above theorems it is natural to ask the following
question which is one of the motivations of the paper.

(i) What happens in Theorem D if f and g share the set S1 with weight

2 and 3 respectively?

Also note that to deal with the question of Gross none of the previous
authors considered any further relaxation of the nature of sharing the set S3

in Theorem C; they have all confined their investigations to the relaxation
of the nature of sharing the sets S1 and S2 of Theorem C.

In this paper we concentrate our attention on relaxation of sharing S3.
We now state the following three theorems which are the main results of the
paper.

Theorem 1.1. Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and

S3 = {∞}, where a, b are nonzero constants such that zn + azn−1 + b = 0
has no multiple root and n (≥ 4) is an integer. If for two nonconstant mero-

morphic functions f and g, Ef (S1, 3) = Eg(S1, 3), Ef (S2, 0) = Eg(S2, 0)
and Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f)+Θ(∞; g) > max

{

0, 20−4n
7n−11

}

, then

f ≡ g.

Remark 1.1. If n ≥ 5 then the assertion of Theorem 1.1 is true for
Θ(∞; f) + Θ(∞; g) > 0.

Theorem 1.2. Let S1, S2 and S3 be defined as in Theorem 1.1 and

n (≥ 4) be an integer. If for two nonconstant meromorphic functions f and

g, Ef (S1, 2) = Eg(S1, 2), Ef (S2, 0) = Eg(S2, 0) and Ef (S3,∞) = Eg(S3,∞)
and Θ(∞; f) + Θ(∞; g) > max

{

0, 32−4n
5n−4

}

, then f ≡ g.

Remark 1.2. If n≥8 then Theorem 1.2 is true for Θ(∞; f)+Θ(∞; g)>0.

Theorem 1.3. Let S1, S2 and S3 be defined as in Theorem 1.1 and

n (≥ 4) be an integer. If for two nonconstant meromorphic functions f and g,
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Ef (S1, 4) = Eg(S1, 4), Ef (S2, 0) = Eg(S2, 0) and Ef (S3, 6) = Eg(S3, 6), and

Θ(∞; f) + Θ(∞; g) > 0, then f ≡ g.

Remark 1.3. Clearly Theorem 1.3 improves Theorem D.

The following example shows that the condition Θ(∞; f) + Θ(∞; g) > 0
is not only sharp in Theorem 1.3 but also in Theorems 1.1 and 1.2 when
n ≥ 5 and n ≥ 8 respectively.

Example 1.1. Let

g(z) = −a
e(n−1)z − 1

enz − 1
, f(z) = ezg(z)

and Si be as in Theorem 1.1. Then Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3
because fn−1(f +a) ≡ gn−1(g+a) and f ≡ ezg. Also Θ(∞; f)+Θ(∞; g) = 0
and f 6≡ g.

For the standard definitions and notations of value distribution theory
we refer to [4]; we now explain some specific notations used in this paper.

Definition 1.3 ([5]). For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1)
the counting function of simple a-points of f . For a positive integer m we
denote by N(r, a; f |≤ m) (resp. N(r, a; f |≥ m)) the counting function of
those a-points of f whose multiplicities are not greater (resp. less) than m
where each a-point is counted according to its multiplicity.

N(r, a; f |≤m) and N(r, a; f |≥ m) are defined similarly, where in count-
ing the a-points of f we ignore the multiplicities.

Also N(r, a; f |<m), N(r, a; f |> m), N(r, a; f |<m) and N(r, a; f |>m)
are defined analogously.

Definition 1.4. We denote by N(r, a; f |= k) the reduced counting func-
tion of those a-points of f whose multiplicity is exactly k, where k ≥ 2 is an
integer.

Definition 1.5. Let f and g be two nonconstant meromorphic functions
such that f and g share (a, k) where a ∈ C ∪ {∞}. Let z0 be an a-point of
f with multiplicity p and an a-point of g with multiplicity q. We denote by
NL(r, a; f) the counting function of those a-points of f and g where p > q,

and by N
(k+1
E (r, a; f) the counting function of those a-points of f and g

where p = q ≥ k + 1; each point in these counting functions is counted only

once. In the same way we can define NL(r, a; g) and N
(k+1
E (r, a; g).

Definition 1.6 ([7]). We set

N2(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2).

Definition 1.7 ([6, 7]). Let f , g share a value a IM. We denote by
N∗(r, a; f, g) the reduced counting function of those a-points of f whose
multiplicities differ from the multiplicities of the corresponding a-points of g.
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Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).

Definition 1.8 ([10]). Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f |
g = b) the counting function of those a-points of f , counted according to
multiplicity, which are b-points of g.

Definition 1.9 ([10]). Let a, b1, . . . , bq ∈ C∪{∞}. We denote by N(r, a;
f | g 6= b1, . . . , bq) the counting function of those a-points of f , counted
according to multiplicity, which are not bi-points of g for i = 1, . . . , q.

2. Lemmas. Let F and G be two nonconstant meromorphic functions
defined as follows:

(2.1) F =
fn−1(f + a)

−b
, G =

gn−1(g + a)

−b
.

We shall denote by H, Φ and V the following three functions:

H =

(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G − 1

)

,

Φ =
F ′

F − 1
−

G′

G − 1
,

V =

(

F ′

F − 1
−

F ′

F

)

−

(

G′

G − 1
−

G′

G

)

=
F ′

F (F − 1)
−

G′

G(G − 1)
.

Lemma 2.1 ([7, Lemma 1]). Let F , G share (1, 1) and H 6≡ 0. Then

N(r, 1; F |= 1) = N(r, 1; G |= 1) ≤ N(r, H) + S(r, F ) + S(r, G).

Lemma 2.2. Let S1, S2 and S3 be as in Theorem 1.1 and F , G be given

by (2.1). If for two nonconstant meromorphic functions f and g, Ef (S1, 0) =
Eg(S1, 0), Ef (S2, 0) = Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0) and H 6≡ 0, then

N(r, H) ≤ N∗(r, 0, f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)

+N∗(r, 1; F, G) + N∗(r,∞; f, g) + N0(r, 0; F ′) + N0(r, 0; G′),

where N0(r, 0; F ′) is the reduced counting function of those zeros of F ′ which

are not the zeros of F (F − 1), and N0(r, 0; G′) is similarly defined.

Proof. Since Ef (S1, 0) = Eg(S1, 0) it follows that F and G share (1, 0).
We can easily verify that possible poles of H occur at (i) those zeros of f
and g whose multiplicities differ from the multiplicities of the corresponding
zeros of g and f respectively, (ii) multiple zeros of f +a and g+a, (iii) those
poles of f and g whose multiplicities differ from the multiplicities of the
corresponding poles of g and f respectively, (iv) 1-points of F and G with
different multiplicities, (v) zeros of F ′ which are not the zeros of F (F − 1),
(v) zeros of G′ which are not the zeros of G(G−1). Since H has only simple
poles, the lemma follows from the above.
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Lemma 2.3 ([13]). Let f be a nonconstant meromorphic function and

P (f) = a0 + a1f + a2f
2 + · · · + anfn, where a0, a1, a2, . . . , an are constants

and an 6= 0. Then T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.4. Let F and G be given by (2.1). If f , g share (0, 0) and 0 is

not a Picard exceptional value of f and g, then Φ ≡ 0 implies F ≡ G.

Proof. Suppose Φ ≡ 0. Then by integration we obtain F −1 ≡ C(G−1).
It is clear that if z0 is a zero of f then it is a zero of g. So from (2.1) it
follows that F (z0) = 0 and G(z0) = 0. So C = 1 and hence F ≡ G.

Lemma 2.5. Let F and G be given by (2.1), n ≥ 3 an integer and Φ 6≡ 0.
If F , G share (1, m) and f , g share (0, p) and (∞, k), where 0 ≤ p < ∞,
then

[(n − 1)p + n − 2]N(r, 0; f |≥ p + 1) ≤ N∗(r, 1; F, G) + N∗(r,∞; F, G)

+S(r, f) + S(r, g).

Proof. If 0 is an e.v.P. (Picard exceptional value) of f and g then the
assertion follows immediately.

Next suppose 0 is not an e.v.P. of f and g. Let z0 be a zero of f with
multiplicity q and a zero of g with multiplicity r. From (2.1) we know that
z0 is a zero of F with multiplicity (n− 1)q and a zero of G with multiplicity
(n−1)r. We note that F and G have no zero of multiplicity t where (n−1)p <
t < (n− 1)(p + 1). So from the definition of Φ it is clear that z0 is a zero of
Φ with multiplicity at least (n − 1)(p + 1) − 1. So we have

[(n − 1)p + n − 2]N(r, 0; f |≥ p + 1)

= [(n − 1)p + n − 2]N(r, 0; g |≥ p + 1)

= [(n − 1)p + n − 2]N(r, 0; F |≥ (n − 1)(p + 1))

≤ N(r, 0; Φ) ≤ N(r,∞; Φ) + S(r, f) + S(r, g)

≤ N∗(r,∞; F, G) + N∗(r, 1; F, G) + S(r, f) + S(r, g).

Lemma 2.6. Let F and G be given by (2.1), and suppose f , g share

(∞, 0) and ∞ is not an Picard exceptional value of f and g. Then V ≡ 0
implies F ≡ G.

Proof. Suppose V ≡ 0. Then by integration we obtain

1 −
1

F
≡ A

(

1 −
1

G

)

.

It is clear that if z0 is a pole of f then it is a pole of g. Hence from the
definition of F and G we have 1/F (z0) = 0 and 1/G(z0) = 0. So A = 1 and
hence F ≡ G.
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Lemma 2.7. Let F , G be given by (2.1) and V 6≡ 0. If f , g share (0, 0)
and (∞, k), where 0 ≤ k < ∞, and F , G share (1, m), then the poles of F
and G are the zeros of V and

(nk + n − 1)N(r,∞; f |≥ k + 1) = (nk + n − 1)N(r,∞; g |≥ k + 1)

≤ N∗(r, 0; f, g) + N(r, 0; f + a)

+N(r, 0; g + a) + NL(r, 1; F )

+NL(r, 1; G) + S(r, f) + S(r, g).

Proof. If ∞ is an e.v.P. of f and g then the assertion follows immediately.

Next suppose ∞ is not an e.v.P. of f and g. Since f , g share (∞, k),
it follows that F , G share (∞, nk) and so a pole of F with multiplicity
p (≥ nk +1) is a pole of G with multiplicity r (≥ nk +1) and vice versa. We
note that F and G have no pole of multiplicity q where nk < q < nk + n.
So using Lemma 2.3 and noting that f , g share (0, 0) and F , G share (1, m)
we get, from the definition of V ,

(nk + n − 1)N(r,∞; f |≥ k + 1)

= (nk + n − 1)N(r,∞; g |≥ k + 1)

= (nk + n − 1)N(r,∞; F |≥ nk + n)

≤ N(r, 0; V ) ≤ N(r,∞; V ) + S(r, f) + S(r, g)

≤ N∗(r, 0; f, g) + N(r, 0; f + a) + N(r, 0; g + a)

+ N∗(r, 1; F, G) + S(r, f) + S(r, g).

Lemma 2.8 ([1, Lemma 3]). Let f and g be two nonconstant meromor-

phic functions sharing (1, m), where 2 ≤ m < ∞. Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + · · · + (m − 1)N(r, 1; f |= m)

+mNL(r, 1; f) + (m + 1)NL(r, 1; g) + mN
(m+1
E (r, 1; f)

≤ N(r, 1; g) − N(r, 1; g).

Lemma 2.9. Let F , G be given by (2.1) and suppose they share (1, m),
where 2 ≤ m < ∞. If f , g share (0, p) and (∞, k), and H 6≡ 0, then

T (r, F ) ≤ N(r, 0; f) + N(r, 0; g) + N∗(r, 0; f, g) + N2(r, 0; f + a)

+N2(r, 0; g + a) + N(r,∞; f) + N(r,∞; g)

+N∗(r,∞; f, g) − m(r, 1; G) − N(r, 1; F |= 3)

− · · · − (m − 2)N(r, 1; F |= m) − (m − 2) NL(r, 1; F )

− (m − 1)NL(r, 1; G) − (m − 1)N
(m+1
E (r, 1; F )

+S(r, F ) + S(r, G).



268 A. Banerjee

Proof. By the second fundamental theorem we get

T (r, F ) + T (r, G) ≤ N(r, 0; F ) + N(r,∞; F ) + N(r, 0; G)(2.2)

+N(r,∞; G) + N(r, 1; F ) + N(r, 1; G)

−N0(r, 0; F ′) − N0(r, 0; G′) + S(r, F ) + S(r, G).

In view of Definition 1.7, using Lemmas 2.1, 2.2 and 2.8 we see that

(2.3) N(r, 1; F ) + N(r, 1; G)

≤ N(r, 1; F |= 1) + N(r, 1; F |= 2) + N(r, 1; F |= 3)

+ · · · + N(r, 1; F |= m) + N
(m+1
E (r, 1; F )

+ NL(r, 1; F ) + NL(r, 1; G) + N(r, 1; G)

≤ N∗(r, 0; f, g) + N(r, 0; f + a |≥ 2)

+ N(r, 0; g + a |≥ 2) + N∗(r,∞; f, g) + NL(r, 1; F )

+ NL(r, 1; G) + N(r, 1; F |= 2) + · · ·

+ N(r, 1; F |= m) + N
(m+1
E (r, 1; F )

+ NL(r, 1; F ) + NL(r, 1; G) + T (r, G) − m(r, 1; G)

+ O(1) − N(r, 1; F |= 2) − 2N(r, 1; F |= 3)

− (m − 1)N(r, 1; F |= m) − · · · − mN
(m+1
E (r, 1; F )

− mNL(r, 1; F ) − (m + 1)NL(r, 1; G) + N0(r, 0; F ′)

+ N0(r, 0; G′) + S(r, F ) + S(r, G)

≤ N∗(r, 0; f, g) + N(r, 0; f + a |≥ 2) + N(r, 0; g + a |≥ 2)

+ N∗(r,∞; f, g) + T (r, G) − m(r, 1; G) − N(r, 1; F |= 3)

− 2N(r, 1; F |= 4) − · · · − (m − 2)N(r, 1; F |= m)

− (m − 2)NL(r, 1; F ) − (m − 1)NL(r, 1; G)

− (m − 1)N
(m+1
E (r, 1; F ) + N0(r, 0; F ′) + N0(r, 0; G′)

+ S(r, F ) + S(r, G).

From (2.2) and (2.3) in view of Definition 1.6 the lemma follows.

Lemma 2.10 ([9, Lemma 3]). Let f , g be two nonconstant meromorphic

functions sharing (0,∞) and (∞,∞), and Θ(∞; f) + Θ(∞; g) > 0. Then

fn−1(f + a) ≡ gn−1(g + a) implies f ≡ g, where n (≥ 2) is an integer and

a is a nonzero finite constant.
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Lemma 2.11 ([8, Lemma 5]). If two nonconstant meromorphic functions

f , g share (∞, 0), then for n ≥ 2,

fn−1(f + a)gn−1(g + a) 6≡ b2,

where a, b are finite nonzero constants.

Lemma 2.12 ([16, Lemma 6]). If H ≡ 0, then F , G share (1,∞). If

further F , G share (∞, 0), then they share (∞,∞).

Lemma 2.13 ([11]). If N(r, 0; f (k) | f 6= 0) denotes the counting function

of those zeros of f (k) which are not the zeros of f , where a zero of f (k) is

counted according to its multiplicity , then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f |< k)

+ kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.14. Let F , G be given by (2.1) and suppose F , G share (1, m),
0 ≤ m < ∞ and ω1, . . . , ωn are the distinct roots of the equation zn + azn−1

+ b = 0 and n ≥ 3. Then

NL(r, 1; F ) ≤
1

m + 1
[N(r, 0; f) + N(r,∞; f) − N⊗(r, 0; f ′)] + S(r, f),

where N⊗(r, 0; f ′) = N(r, 0; f ′ | f 6= 0, ω1, . . . , ωn).

Proof. Using Lemmas 2.3 and 2.13 we see that

NL(r, 1; F ) ≤ N(r, 1; F |≥ m + 2)

≤
1

m + 1
(N(r, 1; F ) − N(r, 1; F ))

≤
1

m + 1

n
∑

j=1

(N(r, ωj ; f) − N(r, ωj ; f))

≤
1

m + 1
(N(r, 0; f ′ | f 6= 0) − N⊗(r, 0; f ′))

≤
1

m + 1
[N(r, 0; f) + N(r,∞; f) − N⊗(r, 0; f ′)] + S(r, f).

Lemma 2.15. Under the assumptions of Lemma 2.14,

N∗(r, 1; F, G) ≤
1

m
[N(r, 0; f) + N(r,∞; f) − N⊗(r, 0; f ′)] + S(r, f).

Proof. Since

N∗(r, 1; F, G) ≤ N(r, 1; F |≥ m + 1) ≤
1

m
(N(r, 1; F ) − N(r, 1; F )),

the proof can be carried out along the lines of the proof of Lemma 2.14.
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Lemma 2.16 ([14]). Let F , G be two nonconstant meromorphic functions

sharing (1,∞) and (∞,∞). If

N2(r, 0; F ) + N2(r, 0; F ) + 2N(r,∞; F ) < λT1(r) + S1(r),

where λ < 1 and T1(r) = max{T (r, F ), T (r, G)} and S1(r) = o(T1(r)),
r → ∞, outside a possible exceptional set of finite linear measure, then

F ≡ G or FG ≡ 1.

Lemma 2.17. Let F , G be given by (2.1) and n ≥ 4, and suppose that

F , G share (1, m), where 2 ≤ m < ∞. If f , g share (0, 0) and (∞, k), and

Θ(∞; f) + Θ(∞; g) > 0 and H ≡ 0, then f ≡ g.

Proof. Since H ≡ 0, Lemma 2.12 shows that F , G share (1,∞) and
(∞,∞). If possible, suppose F 6≡ G. Then from Lemmas 2.4 and 2.5 we
have

N(r, 0; f) = N(r, 0; g) = S(r).

Again from Lemmas 2.6 and 2.7 we obtain

N(r,∞; f) + N(r,∞; g) ≤
4

n − 1
T (r) + S(r).

Therefore

(2.4) N2(r, 0; F ) + N2(r, 0; G) + 2N(r,∞; F )

≤ 2N(r, 0; f) + 2N(r, 0; g) + N2(r, 0; f + a)

+ N2(r, 0; g + a) + 2N(r,∞; f)

≤ N2(r, 0; f + a) + N2(r, 0; g + a)

+ N(r,∞; f) + N(r,∞; g) + S(r).

Using Lemma 2.3 we obtain

(2.5) T1(r) = n max{T (r, f), T (r, g)} + O(1) = nT (r) + O(1).

So again using Lemma 2.3 we get from (2.4) and (2.5),

N2(r, 0; F ) + N2(r, 0; G) + 2N(r,∞; F ) ≤
2 + 4

n−1

n
T1(r) + S1(r).

Since
2+ 4

n−1

n
< 1 for n ≥ 4, Lemma 2.16 yields FG ≡ 1, which is impossible

by Lemma 2.11. Hence F ≡ G, i.e. fn−1(f +a) ≡ gn−1(g+a). This together
with the assumption that f and g share (0, 0) implies that f and g share
(0,∞). Now the lemma follows from Lemma 2.10.

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share
(1, 3) and (∞,∞). We consider the following cases.



Meromorphic functions sharing three sets 271

Case 1: H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g.
Then by Lemma 2.4 we get Φ 6≡ 0. Noting that f and g sharing (0, 0) implies
N∗(r, 0; f, g) ≤ N(r, 0; f) = N(r, 0; g), from Lemmas 2.3, 2.5, 2.9 and 2.14
we obtain, for ε > 0,

nT (r, f)≤ 3N(r, 0; f) + N2(r, 0; f + a) + N2(r, 0; g + a)(3.1)

+N(r,∞; f) + N(r,∞; g) − NL(r, 1; F )

− 2NL(r, 1; G) + S(r, f) + S(r, g)

≤ 3N(r, 0; f) + T (r, f) + T (r, g) + N(r,∞; f)

+N(r,∞; g) − NL(r, 1; F ) − 2NL(r, 1; G)

+S(r, f) + S(r, g)

≤
3

n − 2
[NL(r, 1; F ) + NL(r, 1; G)] + 2T (r)

+N(r,∞; f) + N(r,∞; g) − NL(r, 1; F )

− 2NL(r, 1; G) + S(r, f) + S(r, g)

≤
5 − n

4(n − 2)
[N(r, 0; f) + N(r,∞; f)] + 2T (r)

+N(r,∞; f) + N(r,∞; g) + S(r, f) + S(r, g)

≤
5 − n

4(n − 2)
T (r, f) + 2T (r) +

(

2 +
5 − n

4(n − 2)

)

N(r,∞; f)

+S(r)

≤

[

4+
5 − n

2(n − 2)
−

7n − 11

8(n − 2)
{Θ(∞; f)+Θ(∞; g) − 2ε}

]

T (r)

+S(r).

If 0 is an e.v.P. of f and g then (3.1) holds automatically.

In the same way we can obtain

(3.2) nT (r, g) ≤

[

4+
5−n

2(n−2)
−

7n−11

8(n−2)
{Θ(∞; f)+Θ(∞; g)−2ε}

]

T (r)

+S(r).

Combining (3.1) and (3.2) we see that
[

n − 4 −
5 − n

2(n − 2)
+

7n − 11

8(n − 2)
{Θ(∞; f) + Θ(∞; g) − 2ε}

]

T (r) ≤ S(r).

Since Θ(∞; f) + Θ(∞; g) > max
{

0, 20−4n
7n−11

}

, there exists a δ > 0 such that

Θ(∞; f) + Θ(∞; g) = max

{

0,
20 − 4n

7n − 11

}

+ δ.

If we choose 0 < ε < δ/2 then (3.2) leads to a contradiction.
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Case 2: H ≡ 0. Then the assertion follows from Lemma 2.17.

Proof of Theorem 1.2. Let F , G be given by (2.1). Then F and G share
(1, 2) and (∞,∞). We consider the following cases.

Case 1: H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g.
Then by Lemma 2.4 we get Φ 6≡ 0. So from Lemmas 2.3, 2.5, 2.9 and 2.14
we obtain, for ε > 0,

nT (r, f) ≤ 3N(r, 0; f) + N2(r, 0; f + a) + N2(r, 0; g + a)(3.3)

+N(r,∞; f) + N(r,∞; g) − NL(r, 1; G)

+S(r, f) + S(r, g)

≤
3

n − 2
NL(r, 1; F ) +

5 − n

n − 2
NL(r, 1; G) + 2T (r)

+N(r,∞; f) + N(r,∞; g) + S(r, f) + S(r, g)

≤

(

2 +
8 − n

3(n − 2)

)

T (r) +

(

2 +
8 − n

3(n − 2)

)

N(r,∞; f) + S(r)

≤

[

4+
16 − 2n

3(n − 2)
−

5n − 4

6(n − 2)
{Θ(∞; f)+Θ(∞; g)−2ε}

]

T (r)

+S(r).

If 0 is an e.v.P. of f and g then (3.3) holds automatically.

In the same manner we can obtain

nT (r, g) ≤

[

4+
16 − 2n

3(n − 2)
−

5n − 4

6(n − 2)
{Θ(∞; f) + Θ(∞; g) − 2ε}

]

T (r)(3.4)

+S(r).

Combining (3.3) and (3.4) we see that
[

n − 4 −
16 − 2n

3(n − 2)
+

5n − 4

6(n − 2)
{Θ(∞; f) + Θ(∞; g) − 2ε}

]

T (r) ≤ S(r),

which leads to a contradiction for arbitrary ε > 0.

Case 2: H ≡ 0. Then the assertion follows from Lemma 2.17.

Proof of Theorem 1.3. Let F , G be given by (2.1). Then F and G share
(1, 4) and (∞, 6n). We consider the following cases.

Case 1: H 6≡ 0. Then F 6≡ G. Suppose 0, ∞ are not Picard excep-
tional values of f and g. Then by Lemmas 2.4 and 2.6 we get Φ 6≡ 0 and
V 6≡ 0. Noting that f , g sharing (0, 0) and (∞, 6) implies N∗(r, 0; f, g) ≤
N(r, 0; f) = N(r, 0; g) and N∗(r,∞; f, g) ≤ N(r,∞; f |≥7) = N(r,∞; g |≥7),
from Lemmas 2.3, 2.5 and 2.9 we obtain
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(3.5) nT (r, f) + nT (r, g)

≤ 6N(r, 0; f) + 2T (r, f) + 2T (r, g) + 4N(r,∞; f)

+ 2N(r,∞; f |≥ 7) − 5N∗(r, 1; F, G) + S(r, f) + S(r, g)

≤ 2T (r, f) + 2T (r, g) +

{

2 +
6

n − 2

}

N(r,∞; f |≥ 7)

+
6

n − 2
N∗(r, 1; F, G) + 4N(r,∞; f)

− 5N∗(r, 1; F, G) + S(r, f) + S(r, g).

So using respectively Lemma 2.7 for k = 6 and k = 0, Lemma 2.5 for p = 0
and Lemma 2.15 we deduce from (3.5) that

nT (r, f) + nT (r, g)(3.6)

≤

(

2 +
3(n + 1)

(n − 2)(7n − 1)

)

{T (r, f) + T (r, g)}

+

(

6

n − 2
+

2(n + 1)

(n − 2)(7n − 1)

)

N∗(r, 1; F, G)

+
4

n − 1
[T (r, f) + T (r, g) + N(r, 0; f) + N∗(r, 1; F, G)]

− 5N∗(r, 1; F, G) + S(r, f) + S(r, g)

≤

(

2 +
4

n − 1
+

3(n + 1)

(n − 2)(7n − 1)

)

{T (r, f) + T (r, g)}

+

(

6

n − 2
+

4

n − 1
+

2(n + 1)

(n − 2)(7n − 1)

)

N∗(r, 1; F, G)

+
4

(n − 1)(n − 2)
[N(r,∞; f |≥ 7) + N∗(r, 1; F, G)] − 5N∗(r, 1; F, G)

+S(r, f) + S(r, g)

≤

(

2 +
4n − 6

(n − 1)(n − 2)
+

3(n + 1)

(n − 2)(7n − 1)

)

{T (r, f) + T (r, g)}

+

(

10

n − 2
+

2(n + 1)

(n − 2)(7n − 1)
− 5

)

N∗(r, 1; F, G)

+S(r, f) + S(r, g)

≤

(

2 +
(4n − 6)

(n − 1)(n − 2)
+

7(n + 1)

2(n − 2)(7n − 1)

)

{T (r, f) + T (r, g)}

+S(r, f) + S(r, g).

From (3.6) we get a contradiction for n ≥ 4.

If 0, ∞ are e.v.P. of f and g then (3.6) holds automatically.
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Case 2: H ≡ 0. Now the assertion follows from Lemma 2.17.
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