Some uniqueness results on meromorphic functions sharing three sets

by Abhijit Banerjee (Kalyani)

Abstract

We discuss the uniqueness of meromorphic functions when they share three sets with the notion of weighted sharing and improve two results of Lahiri-Banerjee and Yi-Lin. We also improve a recent result of the present author and thus provide an answer to a question of Gross, in a new direction.

1. Introduction, definitions and results. Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbb{C}. We denote by $T(r)$ the maximum of $T(r, f)$ and $T(r, g)$. The notation $S(r)$ designates any quantity satisfying $S(r)=o(T(r))$ as $r \rightarrow \infty$, outside a possible exceptional set of finite linear measure.

If for some $a \in \mathbb{C} \cup\{\infty\}, f$ and g have the same set of a-points with the same multiplicities then we say that f and g share the value a $C M$ (counting multiplicities). If we do not take the multiplicities into account, f and g are said to share the value a $I M$ (ignoring multiplicities).

Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and $E_{f}(S)=\bigcup_{a \in S}\{z$: $f(z)-a=0\}$, where each zero is counted according to its multiplicity. If we do not count multiplicities the set $E_{f}(S)$ is denoted by $\bar{E}_{f}(S)$.

If $E_{f}(S)=E_{g}(S)$ we say that f and g share the set $S C M$. On the other hand if $\bar{E}_{f}(S)=\bar{E}_{g}(S)$, we say that f and g share the set $S I M$.

In [3] Gross posed the following question:
Can one find two finite sets $S_{j}(j=1,2)$ such that any two nonconstant entire functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$ must be identical?

Fang and $\mathrm{Xu}[2]$ considered the case of meromorphic functions and proved the following result.

[^0]Theorem A ([2]). Let $S_{1}=\left\{z: z^{3}-z^{2}-1=0\right\}, S_{2}=\{0\}$ and $S_{3}=$ $\{\infty\}$. Suppose that f and g are two nonconstant meromorphic functions satisfying $\Theta(\infty ; f)>1 / 2$ and $\Theta(\infty ; g)>1 / 2$. If $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=$ $1,2,3$ then $f \equiv g$.

Dealing with the question of Gross, Qiu and Fang [12] proved the following theorem.

Theorem B ([12]). Let $n \geq 3$ be a positive integer, $S_{1}=\left\{z: z^{n}-\right.$ $\left.z^{n-1}-1=0\right\}, S_{2}=\{0\}$, and let f and g be two nonconstant meromorphic functions whose poles are of multiplicities at least 2. If $E_{f}(\{\infty\})=E_{g}(\{\infty\})$ and $E_{f}\left(S_{i}\right)=E_{g}\left(S_{i}\right)$ for $i=1,2$ then $f \equiv g$.

They also gave an example to show that the condition that the poles of f and g are of multiplicities at least 2 cannot be removed in Theorem B.

It should be noted that if two meromorphic functions f and g have no simple pole then clearly $\Theta(\infty ; f) \geq 1 / 2$ and $\Theta(\infty ; g) \geq 1 / 2$.

Lahiri and Banerjee [9] investigated the situation for $\Theta(\infty ; f) \leq 1 / 2$ and $\Theta(\infty, g) \leq 1 / 2$ in Theorem A and proved the following result.

Theorem C ([9]). Let $S_{1}=\left\{z: z^{n}+a z^{n-1}+b=0\right\}, S_{2}=\{0\}$ and $S_{3}=$ $\{\infty\}$, where a, b are nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root and $n(\geq 4)$ is an integer. If for two nonconstant meromorphic functions f and $g, E_{f}\left(S_{i}\right)=E_{g}\left(S_{i}\right)$ for $i=1,2,3$ and $\Theta(\infty ; f)+\Theta(\infty ; g)$ >0, then $f \equiv g$.

In 2004 Yi and Lin [17] independently proved Theorem C assuming $\Theta(\infty ; f)>0$ instead of $\Theta(\infty ; f)+\Theta(\infty ; g)>0$. They remarked that the assumption $E_{f}\left(S_{2}\right)=E_{g}\left(S_{2}\right)$ in the above result can be relaxed to $\bar{E}_{f}\left(S_{2}\right)=\bar{E}_{g}\left(S_{2}\right)$.

Recently the present author [1] has investigated the relaxation of the nature of sharing the set S_{1} in Theorem C using the idea of gradation of sharing of values and sets, known as weighted sharing, introduced in [6, 7]; it consists in measuring how close a shared value is to being shared IM or to being shared CM. We now give the definition.

Definition $1.1([6,7])$. Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer p with $0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition $1.2([6])$. Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and k be a nonnegative integer or ∞. Let

$$
E_{f}(S, k)=\bigcup_{a \in S} E_{k}(a ; f)
$$

Clearly $E_{f}(S)=E_{f}(S, \infty)$ and $\bar{E}_{f}(S)=E_{f}(S, 0)$.
Improving the result of Lahiri-Banerjee [9] and Yi-Lin [17] the present author has recently proved the following result.

Theorem D ([1]). Let $S_{1}=\left\{z: z^{n}+a z^{n-1}+b=0\right\}, S_{2}=\{0\}$ and $S_{3}=\{\infty\}$, where a, b are nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root and $n(\geq 4)$ is an integer. If for two nonconstant meromorphic functions f and $g, E_{f}\left(S_{1}, 4\right)=E_{g}\left(S_{1}, 4\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$ and $E_{f}\left(S_{3}, \infty\right)=E_{g}\left(S_{3}, \infty\right)$ and $\Theta(\infty ; f)+\Theta(\infty ; g)>0$, then $f \equiv g$.

Now considering all the above theorems it is natural to ask the following question which is one of the motivations of the paper.
(i) What happens in Theorem D if f and g share the set S_{1} with weight 2 and 3 respectively?
Also note that to deal with the question of Gross none of the previous authors considered any further relaxation of the nature of sharing the set S_{3} in Theorem C; they have all confined their investigations to the relaxation of the nature of sharing the sets S_{1} and S_{2} of Theorem C.

In this paper we concentrate our attention on relaxation of sharing S_{3}. We now state the following three theorems which are the main results of the paper.

Theorem 1.1. Let $S_{1}=\left\{z: z^{n}+a z^{n-1}+b=0\right\}, S_{2}=\{0\}$ and $S_{3}=\{\infty\}$, where a, b are nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root and $n(\geq 4)$ is an integer. If for two nonconstant meromorphic functions f and $g, E_{f}\left(S_{1}, 3\right)=E_{g}\left(S_{1}, 3\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$ and $E_{f}\left(S_{3}, \infty\right)=E_{g}\left(S_{3}, \infty\right)$ and $\Theta(\infty ; f)+\Theta(\infty ; g)>\max \left\{0, \frac{20-4 n}{7 n-11}\right\}$, then $f \equiv g$.

REMARK 1.1. If $n \geq 5$ then the assertion of Theorem 1.1 is true for $\Theta(\infty ; f)+\Theta(\infty ; g)>0$.

Theorem 1.2. Let S_{1}, S_{2} and S_{3} be defined as in Theorem 1.1 and $n(\geq 4)$ be an integer. If for two nonconstant meromorphic functions f and $g, E_{f}\left(S_{1}, 2\right)=E_{g}\left(S_{1}, 2\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$ and $E_{f}\left(S_{3}, \infty\right)=E_{g}\left(S_{3}, \infty\right)$ and $\Theta(\infty ; f)+\Theta(\infty ; g)>\max \left\{0, \frac{32-4 n}{5 n-4}\right\}$, then $f \equiv g$.

Remark 1.2. If $n \geq 8$ then Theorem 1.2 is true for $\Theta(\infty ; f)+\Theta(\infty ; g)>0$.
Theorem 1.3. Let S_{1}, S_{2} and S_{3} be defined as in Theorem 1.1 and $n(\geq 4)$ be an integer. If for two nonconstant meromorphic functions f and g,
$E_{f}\left(S_{1}, 4\right)=E_{g}\left(S_{1}, 4\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$ and $E_{f}\left(S_{3}, 6\right)=E_{g}\left(S_{3}, 6\right)$, and $\Theta(\infty ; f)+\Theta(\infty ; g)>0$, then $f \equiv g$.

Remark 1.3. Clearly Theorem 1.3 improves Theorem D.
The following example shows that the condition $\Theta(\infty ; f)+\Theta(\infty ; g)>0$ is not only sharp in Theorem 1.3 but also in Theorems 1.1 and 1.2 when $n \geq 5$ and $n \geq 8$ respectively.

Example 1.1. Let

$$
g(z)=-a \frac{e^{(n-1) z}-1}{e^{n z}-1}, \quad f(z)=e^{z} g(z)
$$

and S_{i} be as in Theorem 1.1. Then $E_{f}\left(S_{i}, \infty\right)=E_{g}\left(S_{i}, \infty\right)$ for $i=1,2,3$ because $f^{n-1}(f+a) \equiv g^{n-1}(g+a)$ and $f \equiv e^{z} g$. Also $\Theta(\infty ; f)+\Theta(\infty ; g)=0$ and $f \not \equiv g$.

For the standard definitions and notations of value distribution theory we refer to [4]; we now explain some specific notations used in this paper.

Definition 1.3 ([5]). For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid=1)$ the counting function of simple a-points of f. For a positive integer m we denote by $N(r, a ; f \mid \leq m)(\operatorname{resp} . N(r, a ; f \mid \geq m))$ the counting function of those a-points of f whose multiplicities are not greater (resp. less) than m where each a-point is counted according to its multiplicity.
$\bar{N}(r, a ; f \mid \leq m)$ and $\bar{N}(r, a ; f \mid \geq m)$ are defined similarly, where in counting the a-points of f we ignore the multiplicities.

Also $N(r, a ; f \mid<m), N(r, a ; f \mid>m), \bar{N}(r, a ; f \mid<m)$ and $\bar{N}(r, a ; f \mid>m)$ are defined analogously.

Definition 1.4. We denote by $\bar{N}(r, a ; f \mid=k)$ the reduced counting function of those a-points of f whose multiplicity is exactly k, where $k \geq 2$ is an integer.

Definition 1.5. Let f and g be two nonconstant meromorphic functions such that f and g share (a, k) where $a \in \mathbb{C} \cup\{\infty\}$. Let z_{0} be an a-point of f with multiplicity p and an a-point of g with multiplicity q. We denote by $\bar{N}_{L}(r, a ; f)$ the counting function of those a-points of f and g where $p>q$, and by $\bar{N}_{E}^{(k+1}(r, a ; f)$ the counting function of those a-points of f and g where $p=q \geq k+1$; each point in these counting functions is counted only once. In the same way we can define $\bar{N}_{L}(r, a ; g)$ and $\bar{N}_{E}^{(k+1}(r, a ; g)$.

Definition 1.6 ([7]). We set

$$
N_{2}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2) .
$$

Definition 1.7 ([6, 7]). Let f, g share a value a IM. We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.

Clearly $\bar{N}_{*}(r, a ; f, g) \equiv \bar{N}_{*}(r, a ; g, f)$ and $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+$ $\bar{N}_{L}(r, a ; g)$.

Definition $1.8([10])$. Let $a, b \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid$ $g=b$) the counting function of those a-points of f, counted according to multiplicity, which are b-points of g.

Definition $1.9([10])$. Let $a, b_{1}, \ldots, b_{q} \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a$; $\left.f \mid g \neq b_{1}, \ldots, b_{q}\right)$ the counting function of those a-points of f, counted according to multiplicity, which are not b_{i}-points of g for $i=1, \ldots, q$.
2. Lemmas. Let F and G be two nonconstant meromorphic functions defined as follows:

$$
\begin{equation*}
F=\frac{f^{n-1}(f+a)}{-b}, \quad G=\frac{g^{n-1}(g+a)}{-b} \tag{2.1}
\end{equation*}
$$

We shall denote by H, Φ and V the following three functions:

$$
\begin{aligned}
H & =\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \\
\Phi & =\frac{F^{\prime}}{F-1}-\frac{G^{\prime}}{G-1} \\
V & =\left(\frac{F^{\prime}}{F-1}-\frac{F^{\prime}}{F}\right)-\left(\frac{G^{\prime}}{G-1}-\frac{G^{\prime}}{G}\right)=\frac{F^{\prime}}{F(F-1)}-\frac{G^{\prime}}{G(G-1)}
\end{aligned}
$$

Lemma 2.1 ([7, Lemma 1]). Let F, G share $(1,1)$ and $H \not \equiv 0$. Then

$$
N(r, 1 ; F \mid=1)=N(r, 1 ; G \mid=1) \leq N(r, H)+S(r, F)+S(r, G)
$$

Lemma 2.2. Let S_{1}, S_{2} and S_{3} be as in Theorem 1.1 and F, G be given by (2.1). If for two nonconstant meromorphic functions f and $g, E_{f}\left(S_{1}, 0\right)=$ $E_{g}\left(S_{1}, 0\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right), E_{f}\left(S_{3}, 0\right)=E_{g}\left(S_{3}, 0\right)$ and $H \not \equiv 0$, then

$$
\begin{aligned}
N(r, H) \leq & \bar{N}_{*}(r, 0, f, g)+\bar{N}(r, 0 ; f+a \mid \geq 2)+\bar{N}(r, 0 ; g+a \mid \geq 2) \\
& +\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)$ is the reduced counting function of those zeros of F^{\prime} which are not the zeros of $F(F-1)$, and $\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)$ is similarly defined.

Proof. Since $E_{f}\left(S_{1}, 0\right)=E_{g}\left(S_{1}, 0\right)$ it follows that F and G share $(1,0)$. We can easily verify that possible poles of H occur at (i) those zeros of f and g whose multiplicities differ from the multiplicities of the corresponding zeros of g and f respectively, (ii) multiple zeros of $f+a$ and $g+a$, (iii) those poles of f and g whose multiplicities differ from the multiplicities of the corresponding poles of g and f respectively, (iv) 1-points of F and G with different multiplicities, (v) zeros of F^{\prime} which are not the zeros of $F(F-1)$, (v) zeros of G^{\prime} which are not the zeros of $G(G-1)$. Since H has only simple poles, the lemma follows from the above.

Lemma 2.3 ([13]). Let f be a nonconstant meromorphic function and $P(f)=a_{0}+a_{1} f+a_{2} f^{2}+\cdots+a_{n} f^{n}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants and $a_{n} \neq 0$. Then $T(r, P(f))=n T(r, f)+O(1)$.

Lemma 2.4. Let F and G be given by (2.1). If f, g share $(0,0)$ and 0 is not a Picard exceptional value of f and g, then $\Phi \equiv 0$ implies $F \equiv G$.

Proof. Suppose $\Phi \equiv 0$. Then by integration we obtain $F-1 \equiv C(G-1)$. It is clear that if z_{0} is a zero of f then it is a zero of g. So from (2.1) it follows that $F\left(z_{0}\right)=0$ and $G\left(z_{0}\right)=0$. So $C=1$ and hence $F \equiv G$.

Lemma 2.5. Let F and G be given by $(2.1), n \geq 3$ an integer and $\Phi \not \equiv 0$. If F, G share $(1, m)$ and f, g share $(0, p)$ and (∞, k), where $0 \leq p<\infty$, then

$$
\begin{aligned}
{[(n-1) p+n-2] \bar{N}(r, 0 ; f \mid \geq p+1) \leq } & \bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{*}(r, \infty ; F, G) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Proof. If 0 is an e.v.P. (Picard exceptional value) of f and g then the assertion follows immediately.

Next suppose 0 is not an e.v.P. of f and g. Let z_{0} be a zero of f with multiplicity q and a zero of g with multiplicity r. From (2.1) we know that z_{0} is a zero of F with multiplicity $(n-1) q$ and a zero of G with multiplicity $(n-1) r$. We note that F and G have no zero of multiplicity t where $(n-1) p<$ $t<(n-1)(p+1)$. So from the definition of Φ it is clear that z_{0} is a zero of Φ with multiplicity at least $(n-1)(p+1)-1$. So we have

$$
\begin{aligned}
& {[(n-1) p+n-2] \bar{N}(r, 0 ; f \mid \geq p+1) } \\
&=[(n-1) p+n-2] \bar{N}(r, 0 ; g \mid \geq p+1) \\
&=[(n-1) p+n-2] \bar{N}(r, 0 ; F \mid \geq(n-1)(p+1)) \\
& \leq N(r, 0 ; \Phi) \leq N(r, \infty ; \Phi)+S(r, f)+S(r, g) \\
& \leq \bar{N}_{*}(r, \infty ; F, G)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{aligned}
$$

Lemma 2.6. Let F and G be given by (2.1), and suppose f, g share $(\infty, 0)$ and ∞ is not an Picard exceptional value of f and g. Then $V \equiv 0$ implies $F \equiv G$.

Proof. Suppose $V \equiv 0$. Then by integration we obtain

$$
1-\frac{1}{F} \equiv A\left(1-\frac{1}{G}\right)
$$

It is clear that if z_{0} is a pole of f then it is a pole of g. Hence from the definition of F and G we have $1 / F\left(z_{0}\right)=0$ and $1 / G\left(z_{0}\right)=0$. So $A=1$ and hence $F \equiv G$.

Lemma 2.7. Let F, G be given by (2.1) and $V \not \equiv 0$. If f, g share $(0,0)$ and (∞, k), where $0 \leq k<\infty$, and F, G share $(1, m)$, then the poles of F and G are the zeros of V and

$$
\begin{aligned}
(n k+n-1) \bar{N}(r, \infty ; f \mid \geq k+1)= & (n k+n-1) \bar{N}(r, \infty ; g \mid \geq k+1) \\
\leq & \bar{N}_{*}(r, 0 ; f, g)+\bar{N}(r, 0 ; f+a) \\
& +\bar{N}(r, 0 ; g+a)+\bar{N}_{L}(r, 1 ; F) \\
& +\bar{N}_{L}(r, 1 ; G)+S(r, f)+S(r, g)
\end{aligned}
$$

Proof. If ∞ is an e.v.P. of f and g then the assertion follows immediately.
Next suppose ∞ is not an e.v.P. of f and g. Since f, g share (∞, k), it follows that F, G share $(\infty, n k)$ and so a pole of F with multiplicity $p(\geq n k+1)$ is a pole of G with multiplicity $r(\geq n k+1)$ and vice versa. We note that F and G have no pole of multiplicity q where $n k<q<n k+n$. So using Lemma 2.3 and noting that f, g share $(0,0)$ and F, G share $(1, m)$ we get, from the definition of V,

$$
\begin{aligned}
(n k+n-1) \bar{N}(r, \infty ; & f \mid \geq k+1) \\
= & (n k+n-1) \bar{N}(r, \infty ; g \mid \geq k+1) \\
= & (n k+n-1) \bar{N}(r, \infty ; F \mid \geq n k+n) \\
\leq & N(r, 0 ; V) \leq N(r, \infty ; V)+S(r, f)+S(r, g) \\
\leq & \bar{N}_{*}(r, 0 ; f, g)+\bar{N}(r, 0 ; f+a)+\bar{N}(r, 0 ; g+a) \\
& \quad+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) .
\end{aligned}
$$

Lemma 2.8 ([1, Lemma 3]). Let f and g be two nonconstant meromorphic functions sharing $(1, m)$, where $2 \leq m<\infty$. Then

$$
\begin{array}{r}
\bar{N}(r, 1 ; f \mid=2)+2 \bar{N}(r, 1 ; f \mid=3)+\cdots+(m-1) \bar{N}(r, 1 ; f \mid=m) \\
+m \bar{N}_{L}(r, 1 ; f)+(m+1) \bar{N}_{L}(r, 1 ; g)+m \bar{N}_{E}^{(m+1}(r, 1 ; f) \\
\leq N(r, 1 ; g)-\bar{N}(r, 1 ; g)
\end{array}
$$

Lemma 2.9. Let F, G be given by (2.1) and suppose they share $(1, m)$, where $2 \leq m<\infty$. If f, g share $(0, p)$ and (∞, k), and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F) \leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}_{*}(r, 0 ; f, g)+N_{2}(r, 0 ; f+a) \\
& +N_{2}(r, 0 ; g+a)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g) \\
& +\bar{N}_{*}(r, \infty ; f, g)-m(r, 1 ; G)-\bar{N}(r, 1 ; F \mid=3) \\
& -\cdots-(m-2) \bar{N}(r, 1 ; F \mid=m)-(m-2) \bar{N}_{L}(r, 1 ; F) \\
& -(m-1) \bar{N}_{L}(r, 1 ; G)-(m-1) \bar{N}_{E}^{(m+1}(r, 1 ; F) \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

Proof. By the second fundamental theorem we get

$$
\begin{align*}
T(r, F)+T(r, G) \leq & \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G) \tag{2.2}\\
& +\bar{N}(r, \infty ; G)+\bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G) \\
& -N_{0}\left(r, 0 ; F^{\prime}\right)-N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F)+S(r, G)
\end{align*}
$$

In view of Definition 1.7, using Lemmas 2.1, 2.2 and 2.8 we see that

$$
\begin{align*}
& \bar{N}(r, 1 ;F)+\bar{N}(r, 1 ; G) \tag{2.3}\\
& \leq N(r, 1 ; F \mid=1)+\bar{N}(r, 1 ; F \mid=2)+\bar{N}(r, 1 ; F \mid=3) \\
&+\cdots+\bar{N}(r, 1 ; F \mid=m)+\bar{N}_{E}^{(m+1}(r, 1 ; F) \\
&+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}(r, 1 ; G) \\
& \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}(r, 0 ; f+a \mid \geq 2) \\
&+\bar{N}(r, 0 ; g+a \mid \geq 2)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{L}(r, 1 ; F) \\
&+\bar{N}_{L}(r, 1 ; G)+\bar{N}(r, 1 ; F \mid=2)+\cdots \\
&+\bar{N}^{(r, 1 ; F \mid=m)+\bar{N}_{E}^{(m+1}(r, 1 ; F)} \\
&+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+T(r, G)-m(r, 1 ; G) \\
&+O(1)-\bar{N}(r, 1 ; F \mid=2)-2 \bar{N}(r, 1 ; F \mid=3) \\
&-(m-1) \bar{N}(r, 1 ; F \mid=m)-\cdots-m \bar{N}_{E}^{(m+1}(r, 1 ; F) \\
&-m \bar{N}_{L}(r, 1 ; F)-(m+1) \bar{N}_{L}(r, 1 ; G)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right) \\
&+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F)+S(r, G) \\
& \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}^{\prime}(r, 0 ; f+a \mid \geq 2)+\bar{N}(r, 0 ; g+a \mid \geq 2) \\
&+\bar{N}_{*}(r, \infty ; f, g)+T(r, G)-m(r, 1 ; G)-\bar{N}(r, 1 ; F \mid=3) \\
&-2 \bar{N}(r, 1 ; F \mid=4)-\cdots-(m-2) \bar{N}(r, 1 ; F \mid=m) \\
&-(m-2) \bar{N} \\
& L(r, 1 ; F)-(m-1) \bar{N} \\
& L
\end{align*}(r, 1 ; G)
$$

From (2.2) and (2.3) in view of Definition 1.6 the lemma follows.
Lemma 2.10 ([9, Lemma 3]). Let f, g be two nonconstant meromorphic functions sharing $(0, \infty)$ and (∞, ∞), and $\Theta(\infty ; f)+\Theta(\infty ; g)>0$. Then $f^{n-1}(f+a) \equiv g^{n-1}(g+a)$ implies $f \equiv g$, where $n(\geq 2)$ is an integer and a is a nonzero finite constant.

Lemma 2.11 ([8, Lemma 5]). If two nonconstant meromorphic functions f, g share $(\infty, 0)$, then for $n \geq 2$,

$$
f^{n-1}(f+a) g^{n-1}(g+a) \not \equiv b^{2}
$$

where a, b are finite nonzero constants.
Lemma 2.12 ([16, Lemma 6]). If $H \equiv 0$, then F, G share $(1, \infty)$. If further F, G share $(\infty, 0)$, then they share (∞, ∞).

Lemma $2.13([11])$. If $N\left(r, 0 ; f^{(k)} \mid f \neq 0\right)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity, then

$$
\begin{array}{r}
N\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \leq k \bar{N}(r, \infty ; f)+N(r, 0 ; f \mid<k) \\
+k \bar{N}(r, 0 ; f \mid \geq k)+S(r, f)
\end{array}
$$

Lemma 2.14. Let F, G be given by (2.1) and suppose F, G share $(1, m)$, $0 \leq m<\infty$ and $\omega_{1}, \ldots, \omega_{n}$ are the distinct roots of the equation $z^{n}+a z^{n-1}$ $+b=0$ and $n \geq 3$. Then

$$
\bar{N}_{L}(r, 1 ; F) \leq \frac{1}{m+1}\left[\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)-N_{\otimes}\left(r, 0 ; f^{\prime}\right)\right]+S(r, f)
$$

where $N_{\otimes}\left(r, 0 ; f^{\prime}\right)=N\left(r, 0 ; f^{\prime} \mid f \neq 0, \omega_{1}, \ldots, \omega_{n}\right)$.
Proof. Using Lemmas 2.3 and 2.13 we see that

$$
\begin{aligned}
\bar{N}_{L}(r, 1 ; F) & \leq \bar{N}(r, 1 ; F \mid \geq m+2) \\
& \leq \frac{1}{m+1}(N(r, 1 ; F)-\bar{N}(r, 1 ; F)) \\
& \leq \frac{1}{m+1} \sum_{j=1}^{n}\left(N\left(r, \omega_{j} ; f\right)-\bar{N}\left(r, \omega_{j} ; f\right)\right) \\
& \leq \frac{1}{m+1}\left(N\left(r, 0 ; f^{\prime} \mid f \neq 0\right)-N_{\otimes}\left(r, 0 ; f^{\prime}\right)\right) \\
& \leq \frac{1}{m+1}\left[\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)-N_{\otimes}\left(r, 0 ; f^{\prime}\right)\right]+S(r, f)
\end{aligned}
$$

Lemma 2.15. Under the assumptions of Lemma 2.14,

$$
\bar{N}_{*}(r, 1 ; F, G) \leq \frac{1}{m}\left[\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)-N_{\otimes}\left(r, 0 ; f^{\prime}\right)\right]+S(r, f)
$$

Proof. Since

$$
\bar{N}_{*}(r, 1 ; F, G) \leq \bar{N}(r, 1 ; F \mid \geq m+1) \leq \frac{1}{m}(N(r, 1 ; F)-\bar{N}(r, 1 ; F))
$$

the proof can be carried out along the lines of the proof of Lemma 2.14.

Lemma 2.16 ([14]). Let F , G be two nonconstant meromorphic functions sharing $(1, \infty)$ and (∞, ∞). If

$$
N_{2}(r, 0 ; F)+N_{2}(r, 0 ; F)+2 \bar{N}(r, \infty ; F)<\lambda T_{1}(r)+S_{1}(r)
$$

where $\lambda<1$ and $T_{1}(r)=\max \{T(r, F), T(r, G)\}$ and $S_{1}(r)=o\left(T_{1}(r)\right)$, $r \rightarrow \infty$, outside a possible exceptional set of finite linear measure, then $F \equiv G$ or $F G \equiv 1$.

LEMmA 2.17. Let F, G be given by (2.1) and $n \geq 4$, and suppose that F, G share $(1, m)$, where $2 \leq m<\infty$. If f, g share $(0,0)$ and (∞, k), and $\Theta(\infty ; f)+\Theta(\infty ; g)>0$ and $H \equiv 0$, then $f \equiv g$.

Proof. Since $H \equiv 0$, Lemma 2.12 shows that F, G share $(1, \infty)$ and (∞, ∞). If possible, suppose $F \not \equiv G$. Then from Lemmas 2.4 and 2.5 we have

$$
\bar{N}(r, 0 ; f)=\bar{N}(r, 0 ; g)=S(r)
$$

Again from Lemmas 2.6 and 2.7 we obtain

$$
\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g) \leq \frac{4}{n-1} T(r)+S(r)
$$

Therefore

$$
\begin{align*}
N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G) & +2 \bar{N}(r, \infty ; F) \tag{2.4}\\
\leq & 2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+N_{2}(r, 0 ; f+a) \\
& \quad+N_{2}(r, 0 ; g+a)+2 \bar{N}(r, \infty ; f) \\
\leq & N_{2}(r, 0 ; f+a)+N_{2}(r, 0 ; g+a) \\
& \quad+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)+S(r)
\end{align*}
$$

Using Lemma 2.3 we obtain

$$
\begin{equation*}
T_{1}(r)=n \max \{T(r, f), T(r, g)\}+O(1)=n T(r)+O(1) \tag{2.5}
\end{equation*}
$$

So again using Lemma 2.3 we get from (2.4) and (2.5),

$$
N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+2 \bar{N}(r, \infty ; F) \leq \frac{2+\frac{4}{n-1}}{n} T_{1}(r)+S_{1}(r)
$$

Since $\frac{2+\frac{4}{n-1}}{n}<1$ for $n \geq 4$, Lemma 2.16 yields $F G \equiv 1$, which is impossible by Lemma 2.11. Hence $F \equiv G$, i.e. $f^{n-1}(f+a) \equiv g^{n-1}(g+a)$. This together with the assumption that f and g share $(0,0)$ implies that f and g share $(0, \infty)$. Now the lemma follows from Lemma 2.10.

3. Proofs of the theorems

Proof of Theorem 1.1. Let F, G be given by (2.1). Then F and G share $(1,3)$ and (∞, ∞). We consider the following cases.

Case 1: $H \not \equiv 0$. Then $F \not \equiv G$. Suppose 0 is not an e.v.P. of f and g. Then by Lemma 2.4 we get $\Phi \not \equiv 0$. Noting that f and g sharing $(0,0)$ implies $\bar{N}_{*}(r, 0 ; f, g) \leq \bar{N}(r, 0 ; f)=\bar{N}(r, 0 ; g)$, from Lemmas 2.3, 2.5, 2.9 and 2.14 we obtain, for $\varepsilon>0$,

$$
\begin{align*}
n T(r, f) \leq & 3 \bar{N}(r, 0 ; f)+N_{2}(r, 0 ; f+a)+N_{2}(r, 0 ; g+a) \tag{3.1}\\
& +\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)-\bar{N}_{L}(r, 1 ; F) \\
& -2 \bar{N}_{L}(r, 1 ; G)+S(r, f)+S(r, g) \\
\leq & 3 \bar{N}(r, 0 ; f)+T(r, f)+T(r, g)+\bar{N}(r, \infty ; f) \\
& +\bar{N}(r, \infty ; g)-\bar{N}{ }_{L}(r, 1 ; F)-2 \bar{N}_{L}(r, 1 ; G) \\
& +S(r, f)+S(r, g) \\
\leq & \frac{3}{n-2}\left[\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)\right]+2 T(r) \\
& +\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)-\bar{N}_{L}(r, 1 ; F) \\
& -2 \bar{N}_{L}(r, 1 ; G)+S(r, f)+S(r, g) \\
\leq & \frac{5-n}{4(n-2)}[\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)]+2 T(r) \\
& +\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \\
\leq & \frac{5-n}{4(n-2)} T(r, f)+2 T(r)+\left(2+\frac{5-n}{4(n-2)}\right) \bar{N}(r, \infty ; f) \\
& +S(r) \\
\leq & {\left[4+\frac{5-n}{2(n-2)}-\frac{7 n-11}{8(n-2)}\{\Theta(\infty ; f)+\Theta(\infty ; g)-2 \varepsilon\}\right] T(r) } \\
& +S(r)
\end{align*}
$$

If 0 is an e.v.P. of f and g then (3.1) holds automatically.
In the same way we can obtain

$$
\begin{align*}
n T(r, g) \leq & {\left[4+\frac{5-n}{2(n-2)}-\frac{7 n-11}{8(n-2)}\{\Theta(\infty ; f)+\Theta(\infty ; g)-2 \varepsilon\}\right] T(r) } \tag{3.2}\\
& +S(r)
\end{align*}
$$

Combining (3.1) and (3.2) we see that

$$
\left[n-4-\frac{5-n}{2(n-2)}+\frac{7 n-11}{8(n-2)}\{\Theta(\infty ; f)+\Theta(\infty ; g)-2 \varepsilon\}\right] T(r) \leq S(r)
$$

Since $\Theta(\infty ; f)+\Theta(\infty ; g)>\max \left\{0, \frac{20-4 n}{7 n-11}\right\}$, there exists a $\delta>0$ such that

$$
\Theta(\infty ; f)+\Theta(\infty ; g)=\max \left\{0, \frac{20-4 n}{7 n-11}\right\}+\delta
$$

If we choose $0<\varepsilon<\delta / 2$ then (3.2) leads to a contradiction.

CASE 2: $H \equiv 0$. Then the assertion follows from Lemma 2.17. -
Proof of Theorem 1.2. Let F, G be given by (2.1). Then F and G share $(1,2)$ and (∞, ∞). We consider the following cases.

CASE 1: $H \not \equiv 0$. Then $F \not \equiv G$. Suppose 0 is not an e.v.P. of f and g. Then by Lemma 2.4 we get $\Phi \not \equiv 0$. So from Lemmas 2.3, 2.5, 2.9 and 2.14 we obtain, for $\varepsilon>0$,

$$
\begin{align*}
n T(r, f) \leq & 3 \bar{N}(r, 0 ; f)+N_{2}(r, 0 ; f+a)+N_{2}(r, 0 ; g+a) \tag{3.3}\\
& +\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)-\bar{N}_{L}(r, 1 ; G) \\
& +S(r, f)+S(r, g) \\
\leq & \frac{3}{n-2} \bar{N}_{L}(r, 1 ; F)+\frac{5-n}{n-2} \bar{N}_{L}(r, 1 ; G)+2 T(r) \\
& +\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \\
\leq & \left(2+\frac{8-n}{3(n-2)}\right) T(r)+\left(2+\frac{8-n}{3(n-2)}\right) \bar{N}(r, \infty ; f)+S(r) \\
\leq & {\left[4+\frac{16-2 n}{3(n-2)}-\frac{5 n-4}{6(n-2)}\{\Theta(\infty ; f)+\Theta(\infty ; g)-2 \varepsilon\}\right] T(r) } \\
& +S(r) .
\end{align*}
$$

If 0 is an e.v.P. of f and g then (3.3) holds automatically.
In the same manner we can obtain

$$
\begin{align*}
n T(r, g) \leq & {\left[4+\frac{16-2 n}{3(n-2)}-\frac{5 n-4}{6(n-2)}\{\Theta(\infty ; f)+\Theta(\infty ; g)-2 \varepsilon\}\right] T(r) } \tag{3.4}\\
& +S(r)
\end{align*}
$$

Combining (3.3) and (3.4) we see that

$$
\left[n-4-\frac{16-2 n}{3(n-2)}+\frac{5 n-4}{6(n-2)}\{\Theta(\infty ; f)+\Theta(\infty ; g)-2 \varepsilon\}\right] T(r) \leq S(r),
$$

which leads to a contradiction for arbitrary $\varepsilon>0$.
Case 2: $H \equiv 0$. Then the assertion follows from Lemma 2.17.
Proof of Theorem 1.3. Let F, G be given by (2.1). Then F and G share $(1,4)$ and $(\infty, 6 n)$. We consider the following cases.

Case 1: $H \not \equiv 0$. Then $F \not \equiv G$. Suppose $0, \infty$ are not Picard exceptional values of f and g. Then by Lemmas 2.4 and 2.6 we get $\Phi \not \equiv 0$ and $V \not \equiv 0$. Noting that f, g sharing $(0,0)$ and $(\infty, 6)$ implies $\bar{N}_{*}(r, 0 ; f, g) \leq$ $\bar{N}(r, 0 ; f)=\bar{N}(r, 0 ; g)$ and $\bar{N}_{*}(r, \infty ; f, g) \leq \bar{N}(r, \infty ; f \mid \geq 7)=\bar{N}(r, \infty ; g \mid \geq 7)$, from Lemmas 2.3, 2.5 and 2.9 we obtain

$$
\begin{align*}
n T(r, f) & +n T(r, g) \tag{3.5}\\
\leq & 6 \bar{N}(r, 0 ; f)+2 T(r, f)+2 T(r, g)+4 \bar{N}(r, \infty ; f) \\
& +2 \bar{N}(r, \infty ; f \mid \geq 7)-5 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leq & 2 T(r, f)+2 T(r, g)+\left\{2+\frac{6}{n-2}\right\} \bar{N}(r, \infty ; f \mid \geq 7) \\
& +\frac{6}{n-2} \bar{N}_{*}(r, 1 ; F, G)+4 \bar{N}(r, \infty ; f) \\
& -5 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{align*}
$$

So using respectively Lemma 2.7 for $k=6$ and $k=0$, Lemma 2.5 for $p=0$ and Lemma 2.15 we deduce from (3.5) that

$$
\begin{align*}
& n T(r, f)+n T(r, g) \tag{3.6}\\
\leq & \left(2+\frac{3(n+1)}{(n-2)(7 n-1)}\right)\{T(r, f)+T(r, g)\} \\
& +\left(\frac{6}{n-2}+\frac{2(n+1)}{(n-2)(7 n-1)}\right) \bar{N}_{*}(r, 1 ; F, G) \\
& +\frac{4}{n-1}\left[T(r, f)+T(r, g)+\bar{N}(r, 0 ; f)+\bar{N}_{*}(r, 1 ; F, G)\right] \\
& -5 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leq & \left(2+\frac{4}{n-1}+\frac{3(n+1)}{(n-2)(7 n-1)}\right)\{T(r, f)+T(r, g)\} \\
& +\left(\frac{6}{n-2}+\frac{4}{n-1}+\frac{2(n+1)}{(n-2)(7 n-1)}\right) \bar{N}_{*}(r, 1 ; F, G) \\
& +\frac{4}{(n-1)(n-2)}\left[\bar{N}(r, \infty ; f \mid \geq 7)+\bar{N}_{*}(r, 1 ; F, G)\right]-5 \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g) \\
\leq & \left(2+\frac{4 n-6}{(n-1)(n-2)}+\frac{3(n+1)}{(n-2)(7 n-1)}\right)\{T(r, f)+T(r, g)\} \\
& +\left(\frac{10}{n-2}+\frac{2(n+1)}{(n-2)(7 n-1)}-5\right) \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g) \\
\leq & \left(2+\frac{(4 n-6)}{(n-1)(n-2)}+\frac{7(n+1)}{2(n-2)(7 n-1)}\right)\{T(r, f)+T(r, g)\} \\
& +S(r, f)+S(r, g)
\end{align*}
$$

From (3.6) we get a contradiction for $n \geq 4$.
If $0, \infty$ are e.v.P. of f and g then (3.6) holds automatically.

CASE 2: $H \equiv 0$. Now the assertion follows from Lemma 2.17.

References

[1] A. Banerjee, On a question of Gross, J. Math. Anal. Appl. 327 (2007) 1273-1283.
[2] M. Fang and W. Xu, A note on a problem of Gross, Chinese J. Contemp. Math. 18 (1997), 395-402.
[3] F. Gross, Factorization of meromorphic functions and some open problems, in: Complex Analysis (Lexington, KY, 1976), Lecture Notes in Math. 599, Springer, Berlin, 51-67.
[4] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[5] I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci. 28 (2001), 83-91.
[6] -, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.
[7] -, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl. 46 (2001), 241-253.
[8] -, On a question of Hong Xun Yi, Arch. Math. (Brno) 38 (2002), 119-128.
[9] I. Lahiri and A. Banerjee, Uniqueness of meromorphic functions with deficient poles, Kyungpook Math. J. 44 (2004), 575-584.
[10] -, —, Weighted sharing of two sets, ibid. 46 (2006), 79-87.
[11] I. Lahiri and S. Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J. 26 (2003), 95-100.
[12] H. Qiu and M. Fang, A unicity theorem for meromorphic functions, Bull. Malaysian Math. Sci. Soc. 25 (2002), 31-38.
[13] C. C. Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107-112.
[14] H. X. Yi, Meromorphic functions that share one or two values, Complex Var. Theory Appl. 28 (1995), 1-11.
[15] -, Meromorphic functions that share three sets, Kodai Math. J. 20 (1997), 22-32.
[16] -, Meromorphic functions that share one or two values II, ibid. 22 (1999), 264-272.
[17] H. X. Yi and W. C. Lin, Uniqueness theorems concerning a question of Gross, Proc. Japan Acad. Ser. A 80 (2004), 136-140.
[18] H. X. Yi and L. Z. Yang, Meromorphic functions that share two sets, Kodai Math. J. 20 (1997), 127-134.

Department of Mathematics
Kalyani Government Engineering College
West Bengal 741235, India
E-mail: abanerjee_kal@yahoo.co.in
abanerjee_kal@rediffmail.com
abanerjee@mail15.com

Received 23.5.2007
and in final form 3.8.2007

[^0]: 2000 Mathematics Subject Classification: Primary 30D35.
 Key words and phrases: meromorphic functions, uniqueness, weighted sharing, shared set.

