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On strong tracts of subharmonic functions

of infinite lower order

by I. I. Marchenko and A. Szkibiel (Szczecin)

Abstract. The notion of a strong asymptotic tract for subharmonic functions is
defined. Eremenko’s value b(∞, u) for subharmonic functions is introduced and it is used to
provide an exact upper estimate of the number of strong tracts of subharmonic functions
of infinite lower order. It is also shown that b(∞, u) ≤ π for subharmonic functions of
infinite lower order.

1. Introduction. Let u(z) be a function subharmonic in the plane and
with infinite lower order, which means that

lim inf
r→∞

log max{u(z) : |z| = r}
log r

= ∞.

Let us consider the sets E(n) = {z ∈ C : u(z) ≥ n} for n ∈ N. Let C(n) be
a thick component of E(n), which means that u(z) 6≡ n on C(n) (see [7]).
There is k ∈ N such that for every n ≥ k the function u(z) is unbounded
on all thick components C(n). We call a thick component C(n) an n-tract

of u(z). Let n2 > n1 > k. Then every n1-tract contains at least one n2-tract.
If q(n) is the number of different n-tracts C(n), then q(n2) ≥ q(n1). We call
q = limn→∞ q(n) the number of tracts of the function u(z).

If C(n) is an n-tract of u(z), then (see [11]) there exists a continuous
curve Γ ⊂ C(n) given by the equation z = z(t), where 0 ≤ t < ∞ and
z(t) → ∞ as t → ∞, such that

lim
z→∞
z∈Γ

u(z) = lim
t→∞

u(z(t)) = ∞.

Theorem A ([7]). Every subharmonic function in the plane has at least

one tract.

Definition. We call an n-tract C(n) of a subharmonic function u(z)
a strong n-tract if there is a continuous curve Γ ⊂ C(n), z = z(t), 0 ≤ t < ∞,
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such that z(t) → ∞ as t → ∞ and

lim
t→∞

u(z(t))

max{u(z) : |z| = |z(t)|} = 1.

Let p(n) be the number of strong n-tracts of the function u(z). We call
p = limn→∞ p(n) the number of strong tracts of the function u(z).

In [10] we provided a similar definition of strong tracts for subharmonic
functions of finite lower order and estimated, in that case, the number of
strong tracts.

In this paper we are going to estimate the number of strong tracts of sub-
harmonic functions of infinite lower order. To state our results, we introduce
Eremenko’s value for a subharmonic function u(z) (see [3]) as

b(∞, u) = lim inf
r→∞

max{u(z) : |z| = r}
rT ′

−(r, u)
,

where T (r, u) is the Nevanlinna characteristic of u(z) and T ′
−(r, u) is its left

derivative (see [7]).
We prove the following results.

Theorem 1. For a subharmonic function u(z) of infinite lower order

we have

b(∞, u) ≤ π.

This result was obtained for u(z) = log |f(z)|, where f(z) is a mero-
morphic function, by Bergweiler and Bock in [2]. The estimate given in
Theorem 1 is exact (see [6]).

Theorem 2. Let u(z) be a subharmonic function with infinite lower

order and with p different strong tracts. Then

p ≤
[

π

b(∞, u)

]
.

In the case u(z) = log |f(z)|, where f(z) is an entire function, the theo-
rem was proved by one of the authors ([9]). The estimate of Theorem 2 is
exact (see [9]).

Corollary. If u(z) is a subharmonic function satisfying b(∞, u) > 0,
then the number of different strong tracts of u(z) is finite.

The condition b(∞, u) > 0 is essential for the Corollary, because for the
function u(z) = log |eez |, b(∞, u) = 0 and u(z) has infinitely many strong
tracts.

2. Auxiliary results. Let u(z) be a subharmonic function. Let

m∗(r, θ, u) =
1

2π
sup

|E|=2θ

\
E

u+(reiϕ) dϕ,
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where |E| is the Lebesgue measure of the set E and u+(z) = max{u(z), 0},
be the function defined by Baernstein (see [1]). According to Baernstein’s
theorem the function m∗(r, θ, u) is subharmonic in K = {reiθ : 0 < r < ∞,
0 < θ < π}, continuous on K∪(R\{0})×{0} and convex in log r for any fixed
θ ∈ [0, π]. Also the function defined above is nondecreasing with respect to
r for any fixed θ. Moreover

m∗(r, θ, u) =
1

π

θ\
0

ũ(reiϕ) dϕ,
∂m∗

∂θ
(r, θ, u) =

1

π
ũ(reiθ), 0 < θ < π,

where ũ(reiθ) is the circular rearrangement of the function u+(reiθ) ([5]).

Every subharmonic function u(z) is a pointwise limit of a nonincreasing
sequence {vk(z)} of subharmonic functions with continuous partial deriva-
tives of second order ([7]).

Lemma A ([10]). The sequence {m∗(r, θ, vk)} converges to m∗(r, θ, u)
uniformly on the set {reiθ : 1 ≤ r ≤ R, 0 ≤ θ ≤ π} for every R > 1.

For a real function ϕ(r), we consider the operator

Lϕ(r) = lim inf
h→0

ϕ(reh) + ϕ(re−h) − 2ϕ(r)

h2
.

If the function ϕ(r) is twice differentiable in r, then

Lϕ(r) = r
d

dr
r

d

dr
ϕ(r).

Since m∗(r, θ, uj) is convex in log r, for all r > 0 and θ ∈ [0, π] we have

Lm∗(r, θ, uj) ≥ 0.

Lemma B ([10, 9]). Let u(z) be a subharmonic function with continuous

partial derivatives of second order. For all r > 0 and for almost all θ ∈ (0, π)
we have

Lm∗(r, θ, uj) ≥ − 1

π

∂ũj(re
iϕ)

∂ϕ

∣∣∣∣
ϕ=θ

.

Bergweiler and Bock introduced in [2] the sequences of Pólya peaks for
meromorphic functions of infinite lower order. Such sequences can also be
constructed for subharmonic functions, so let us recall the basic facts. For
any sequences Mn → ∞ and εn → 0 there are sequences ̺n → ∞ and
µn → ∞ such that, for every r satisfying log(r/̺n) ≤ Mn/µn, we have

(1) T (r, u) ≤ (1 + εn)

(
r

̺n

)µn

T (̺n, u).
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We put Pn = ̺ne−Mn/µn and Qn = ̺neMn/µn . Then inequality (1) holds
for all r ∈ [Pn, Qn]. We assume that Mn > 1. Consider the sets

An =

{
r ∈ [̺n, Qn] : T (r, u) ≤ 1√

Mn

(
r

̺n

)µn

T (̺n, u)

}
,

Bn =

{
r ∈ [Pn, ̺n] : T (r, u) ≤ 1√

Mn

(
r

̺n

)µn

T (̺n, u)

}
.

We put

Rn =

{
minAn if An 6= ∅,
Qn if An = ∅, tn =

{
maxBn if Bn 6= ∅,
Pn if Bn = ∅,

Tn = e−2/µnRn.

Then tn < ̺n < Tn < Rn. We may achieve that Mn → ∞ as slowly as we
please, so we have the following lemma.

Lemma C ([2]). For a subharmonic function of infinite lower order and

the sequences defined above,

T (Rn, u)

Rµn
n

+
T (Tn, u)

Tµn
n

+
T (tn, u)

tµn
n

= o

(
µn

Tn\
tn

T (r, u)

rµn+1
dr

)
, n → ∞.

We need one more lemma.

Lemma D ([8]). Let a function f(x) be nondecreasing on an interval

[a, b] and let ϕ(x) be a nonnegative function having a bounded derivative on

[a, b]. Then

b\
a

f ′(x)ϕ(x) dx ≤ f(x)ϕ(x)
∣∣b
a
−

b\
a

ϕ′(x)f(x) dx.

Now let {vk(z)} be a nonincreasing sequence of subharmonic functions
with continuous partial derivatives of second order, pointwise converging
to u(z). For every k and for every n we put (see [4])

(2) σk,n(r) =

π/2µn\
0

m∗(r, θ, vk) cos µnθ dθ.

Lemma 1. For every ε > 0 and sequences {µn} and {Tn} defined above,
there exist N(ε) ∈ N and K(ε, n) ∈ N such that

(σk,n)′−(Tn)

Tµn−1
n

+
µnσk,n(Tn)

Tµn
n

< εµn

Tn\
tn

T (r, u)

rµn+1
dr

for n > N(ε) and k > K(ε, n).
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Proof. Let ε > 0 be given. Let {Tn}, {Rn} and {µn} be the sequences
defined above. By Lemma C there exists N ∈ N such that for n > N ,

(3)
T (Rn, u)

Rµn
n

+
T (Tn, u)

Tµn
n

<
ε

8
µn

Tn\
tn

T (r, u)

rµn+1
dr.

Let us choose N(ε) ≥ N so that

ε < T (Tn, u).

Applying Lemma A, for k > K(ε, n), we get

m∗(r, θ, vk) ≤ m∗(r, θ, u) + ε ≤ T (r, u) + ε

on the set {reiθ : 1 ≤ r ≤ Rn, 0 ≤ θ ≤ π}. Hence

σk,n(r) =

π/2µn\
0

m∗(r, θ, vk) cos µnθ dθ ≤
π/2µn\

0

(T (r, u) + ε) cos µnθ dθ

=
1

µn
(T (r, u) + ε).

Therefore

(4)
µnσk,n(Tn)

Tµn
n

≤ T (Tn, u) + ε

Tµn
n

≤ 2T (Tn, u)

Tµn
n

.

Now, because m∗(r, θ, vk) is a nondecreasing function of r,

(σk,n)′−(r) =

π/2µn\
0

∂m∗(r, θ, vk)

∂r
cos µnθ dθ.

Since m∗(r, θ, vk) is convex in log r if θ is fixed, r∂m∗(r, θ, vk)/∂r is nonde-
creasing and from Lemma D for x > r, we get

m∗(x, θ, vk) ≥ m∗(x, θ, vk) − m∗(r, θ, vk) ≥
x\
r

∂m∗(t, θ, vk)

∂t
dt

=

x\
r

t ∂
∂tm

∗(t, θ, vk)

t
dt =

x\
r

t
∂m∗(t, θ, vk)

∂t
d(log t)

≥ r
∂m∗(r, θ, vk)

∂r
log

x

r
.

Hence

∂m∗(r, θ, vk)

∂r
≤ 1

r log x
r

m∗(x, θ, vk) ≤ 1

r log x
r

(T (x, u) + ε),

so, using Tn = e−2/µnRn, we have

∂m∗(r, θ, vk)

∂r

∣∣∣∣
r=Tn

≤ 1

Tn log Rn

Tn

(T (Rn, u) + ε) ≤ µn

Tn
T (Rn, u).
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Thus

(σk,n)′−(Tn)

Tµn−1
n

=
1

Tµn−1
n

π/2µn\
0

∂m∗(r, θ, vk)

∂r

∣∣∣∣
r=Tn

cosµnθ dθ(5)

≤ 1

Tµn
n

T (Rn, u) =
e2T (Rn, u)

Rµn
n

< 8
T (Rn, u)

Rµn
n

.

Lemma 1 follows from (3), (4) and (5).

3. Proof of Theorem 1. Applying the definition of σk,n(r) and Lem-
ma B, we get

Lσk,n(r) ≥ − 1

π

π/2µn\
0

∂ṽk(reiθ)

∂θ
cos µnθ dθ.

Integrating by parts we obtain

Lσk,n(r) ≥ − 1

π
ṽk(reiθ) cosµnθ

∣∣∣∣
π/2µn

0

− µn

π

π/2µn\
0

ṽk(reiθ) sinµnθ dθ(1)

=
1

π
ṽk(r) − µnm∗

(
r,

π

2µn
, vk

)
+µ2

n

π/2µn\
0

m∗(r, θ, vk) cos µnθ dθ

=
1

π
ṽk(r) − µnm∗

(
r,

π

2µn
, vk

)
+ µ2

nσk,n(r)

≡ hk,n(r) + µ2
nσk,n(r).

Since Lm∗(r, θ, vk) ≥ 0, from Fatou’s lemma we get

Lσk,n(r) ≥
π/2µn\

0

Lm∗(r, θ, vk) cosµnθ dθ ≥ 0

and σk,n(r) is convex in log r. It follows that r(σk,n)′−(r) is an increasing
function on (0,∞). Thus, for almost all r > 0 we have

Lσk,n(r) = r
d

dr
r(σk,n)′−(r).

We now divide the inequality (1) by rµn+1 and integrate it over
the interval [tn, Tn] to obtain

Tn\
tn

d
drr(σk,n)′−(r)

rµn
dr ≥

Tn\
tn

hk,n(r)

rµn+1
dr + µ2

n

Tn\
tn

σk,n(r)

rµn+1
dr,

where the numbers tn and Tn are defined just before Lemma C. Since
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the function r(σk,n)′−(r) is increasing, by Lemma A we have

Tn\
tn

d
drr(σk,n)′−(r)

rµn
dr ≤

(
r(σk,n)′−(r)

rµn
+ µn

σk,n(r)

rµn

)∣∣∣∣
Tn

tn

+ µ2
n

Tn\
tn

σk,n(r)

rµn+1
dr.

Hence
Tn\
tn

hk,n(r)

rµn+1
dr ≤

(
(σk,n)′−(r)

rµn−1
+ µn

σk,n(r)

rµn

)∣∣∣∣
Tn

tn

.

Let ε > 0 be given. By Lemma 1, for n > N(ε) and k > K(ε, n), we have

Tn\
tn

hk,n(r)

rµn+1
dr < εµn

Tn\
tn

T (r, u)

rµn+1
dr.

Now, if {vk(z)} is a nonincreasing sequence tending to u(z), then {ṽk(z)}
is a nonincreasing sequence tending to ũ(z). By Lemma A, m∗(r, π/2µn, vk)
converges to m∗(r, π/2µn, u). Hence, using the monotone convergence theo-
rem, we get

(2)

Tn\
tn

hn(r)

rµn+1
dr < εµn

Tn\
tn

T (r, u)

rµn+1
dr,

where

(3) hn(r) =
1

π
ũ(r) − µnm∗

(
r,

π

2µn
, u

)
≥ 1

π
ũ(r) − µnT (r, u).

Applying Lemma C, we have

µn

Tn\
tn

T (r, u)

rµn+1
dr = −T (r, u)

rµn

∣∣∣∣
Tn

tn

+

Tn\
tn

rT ′
−(r, u)

rµn+1
dr(4)

≤ o

(
µn

Tn\
tn

T (r, u)

rµn+1
dr

)
+

Tn\
tn

rT ′
−(r, u)

rµn+1
dr

≤ 1

1 − ε

Tn\
tn

rT ′
−(r, u)

rµn+1
dr.

Now, using (2), (3) and (4) we get

Tn\
tn

ũ(r)

rµn+1
dr < π

1 + ε

1 − ε

Tn\
tn

rT ′
−(r, u)

rµn+1
dr.

Hence there is a sequence rn ∈ [tn, Tn] such that

ũ(rn) < π
1 + ε

1 − ε
rnT ′

−(rn, u)
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for large enough n’s. Since ũ(rn) ≥ max{u(z) : |z| = rn}, using the definition
of b(∞, u), we get

ũ(rn) > (1 − ε)b(∞, u)rnT ′
−(rn, u).

Therefore

(1 − ε)b(∞, u) < π
1 + ε

1 − ε
,

or

b(∞, u) < π
1 + ε

(1 − ε)2
.

Since ε > 0 is arbitrary we obtain Theorem 1.

4. Proof of Theorem 2. Let u(z) be a subharmonic function and let p
be the number of strong tracts of u(z). Let q ≤ p be a natural number. Then
there exists n0 ∈ N such that for all n ≥ n0, E(n) has at least q connected
components. Consider the functions (see [7])

uj(z) =

{
u(z) if z ∈ Cj(n0),

n0 if z /∈ Cj(n0),

for j = 1, . . . , q. The functions uj(z) are subharmonic in C. Also, for ev-
ery j ∈ {1, . . . , q}, uj(z) is the pointwise limit of a nonincreasing sequence
{vk

j (z)} of subharmonic functions with continuous partial derivatives of sec-
ond order.

Now, we define the function

m∗
0(r, θ, u) =

q∑

j=1

m∗(r, θ, uj).

The function m∗
0(r, θ, u), being the sum of m∗(r, θ, uj) for j ∈ {1, . . . , q},

is subharmonic in K = {reiθ : 0 < r < ∞, 0 < θ < π}, continuous on
K ∪ (R \ {0}) × {0} and convex in log r for any fixed θ ∈ [0, π]. It is also
nondecreasing with respect to r for any fixed θ.

For every k and for every n we put

σk,n(r) =

π/2µn\
0

(mk)
∗
0
(r, θ) cosµnθ dθ,

where (mk)
∗
0
(r, θ) =

∑q
j=1

m∗(r, θ, vk
j ).

It is easy to see that Lemma 1 also holds for σk,n(r) defined above.

Now, using the definition of σk,n(r) and Lemma B, we have

Lσk,n(r) ≥ − 1

π

q∑

j=1

π/2µn\
0

∂ṽk
j (reiθ)

∂θ
cos µnθ dθ.
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Proceeding analogously to the proof of Theorem 1 we get

hk,n(r) =
1

π

q∑

j=1

ṽk
j (r) − µn(mk)

∗
0

(
r,

π

2µn

)

and

hn(r) =
1

π

q∑

j=1

ũj(r) − µnm∗
0

(
r,

π

2µn
, u

)
.

Then

hn(r) ≥ 1

π

q∑

j=1

ũj(r) − µn(T (r, u) + qn0) ≥
1

π

q∑

j=1

ũj(r) − µn(1 + ε)T (r, u).

Finally, we get

Tn\
tn

∑q
j=1

ũj(r)

rµn+1
dr < π

1 + 2ε

1 − ε

Tn\
tn

rT ′
−(r, u)

rµn+1
dr.

Hence there is a sequence rn ∈ [tn, Tn] such that
q∑

j=1

ũj(rn) < π
1 + 2ε

1 − ε
rnT ′

−(rn, u)

for large enough n’s. Since our tracts are strong,

ũj(rn) = max
|z|=rn

uj(z) ≥ max
|z|=rn

z∈Γj

uj(z) = max
|z|=rn

z∈Γj

u(z) > (1 − ε) max
|z|=rn

u(z).

From the definition of b(∞, u) we get

ũj(rn) > (1 − ε)2b(∞, u)rnT ′
−(rn, u).

Hence

q(1 − ε)2b(∞, u) < π
1 + 2ε

1 − ε
,

or

q <
π

b(∞, u)
· 1 + 2ε

(1 − ε)3
.

Since ε > 0 is arbitrary and q is an arbitrary natural number such that
q ≤ p, we have proved Theorem 2.
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