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Proper holomorphi
 mappings in the spe
ial
lass of Reinhardt domainsby Łukasz Kosiński (Kraków)
Abstra
t. A 
omplete 
hara
terization of proper holomorphi
 mappings betweendomains from the 
lass of all pseudo
onvex Reinhardt domains in C2 with the logarithmi
image equal to a strip or a half-plane is given.1. Statement of results. We adopt the standard notations of 
omplexanalysis. Given γ = (γ1, γ2) ∈ R2 and z = (z1, z2) ∈ C2 we put |zγ | =

|z1|
γ1 |z2|

γ2 whenever it makes sense. The unit dis
 in C is denoted by Dand the set of proper holomorphi
 mappings between domains D,G ⊂ Cn isdenoted by Prop(D,G).In this paper we deal with those pseudo
onvex Reinhardt domains in C2whose logarithmi
 image is equal to a strip or a half-plane. Observe thatsu
h domains are always algebrai
ally equivalent to domains of the form
Dα,r−,r+ := {z ∈ C2 : r− < |zα| < r+},where α = (α1, α2) ∈ (R2)∗, 0 < r+ <∞, −∞ < r− < r+.We say that Dα,r−,r+ is of the irrational type if α1/α2 ∈ R \ Q. In theother 
ase it is of the rational type.Re
all that if r− < 0 < r+ and α ∈ (R2)∗, then Dα,r−,r+ are so-
alledelementary Reinhardt domains.Below we shall give a 
omplete des
ription of all proper holomorphi
mappings from Dα,r−1 ,r

+
1

to Dβ,r−2 ,r
+
2

for arbitrary α, β ∈ (R2)∗ and 0 <

r+i < ∞, −∞ < r−i < r+i , i = 1, 2. Similar problems have been studied inthe literature. In [Shi1℄ and [Shi2℄ the problem of holomorphi
 equivalen
e ofelementary Reinhardt domains was 
onsidered. Those results were partiallyextended by A. Edigarian and W. Zwonek [Edi-Zwo℄ who gave a 
hara
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286 �. Kosi«skiterization of proper holomorphi
 mappings between elementary Reinhardtdomains of the rational type.Set A(̺−, ̺+) := {z ∈ C : ̺− < |z| < ̺+} for ̺+ > 0, ̺− < ̺+ and
A̺ := A(1/̺, ̺), ̺ > 1. Moreover, put

Dγ,r := {z ∈ C2 : 1/r < |z1| |z2|
γ < r}, γ ∈ R∗, r > 1,

Dγ := {z ∈ C2 : |z1| |z2|
γ < 1}, γ ∈ R∗,

D∗
γ := {z ∈ C2 : 0 < |z1| |z2|

γ < 1}, γ ∈ R∗.Note that if γ is rational, i.e. γ = p/q for some relatively prime p, q ∈ Z,
q > 0, then Dγ,r is biholomorphi
ally equivalent to Arq × C∗ and D∗

γ isbiholomorphi
ally equivalent to D∗ × C. Indeed, put
ψ(z1, z2) := (zq1z

p
2 , z

m
1 z

n
2 ) for (z1, z2) ∈ C2,where m,n ∈ Z are su
h that pm−qn = 1. One 
an 
he
k that the mappings

ψ|Dγ,r : Dγ,r → Arq × C∗ and ψ|D∗

γ
: D∗

γ → D∗ × C∗ are biholomorphi
.Moreover, one may easily prove that Dα,r−,r+ is algebrai
ally equivalentto a domain of one of the following types:(i) If r− > 0:(a) A̺ × C, α1α2 = 0,(b) A̺ × C∗, α1/α2 ∈ Q∗,(
) Dγ,̺, γ = α2/α1 ∈ R \ Q.(ii) If r− = 0:(a) D∗ × C, α1α2 = 0,(b) D∗ × C∗, α1/α2 ∈ Q∗,(
) D∗
γ , γ = α2/α1 ∈ R \ Q.(iii) If r− < 0:(a) D × C, α1α2 = 0,(b) Dγ , γ = α2/α1 6= 0.Our main result is the following:Theorem 1.(a) If α ∈ R \ Q, then the set of proper holomorphi
 mappings from Dα,rto Dβ,R is non-empty if and only if(1) logR

log r
∈ Z + βZ, α

logR

log r
∈ Z + βZ.(b) Let α, β ∈ R\Q and let r,R > 1 be su
h that logR

log r = k1 + l1β and
α logR

log r = k2 + l2β for some integers ki, li, i = 1, 2. Then any properholomorphi
 mapping f : Dα,r → Dβ,R is of one of the followingforms:
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(2) {

f(z) = (azk11 z
k2
2 , bz

l1
1 z

l2
2 ),

f(z) = (az−k11 z−k22 , bz−l11 z−l22 ),
z = (z1, z2) ∈ Dα,r,where a, b ∈ C satisfy |a| |b|β = 1. Moreover , any of the mappingsgiven by (2) is proper.Noti
e that in Theorem 1(a) we do not demand β to be irrational.Using Theorem 1 we will easily obtain analogous results for domains ofthe forms (ii) and (iii) of the irrational type.Theorem 2. Let α, β ∈ R \ Q. The set of proper holomorphi
 mappingsfrom D∗

α to D∗
β is non-empty if and only if α = (k2 + βl2)/(k1 + βl1) forsome ki, li ∈ Z, i = 1, 2. Moreover , in that 
ase, if k1 + l1β > 0, then anyproper holomorphi
 mapping f : D∗

α → D∗
β is of the form(3) f(z1, z2) = (azk11 z

k2
2 , bz

l1
1 z

l2
2 ), (z1, z2) ∈ D∗

α,where a, b ∈ C satisfy |a| |b|β = 1.Theorem 3. Let α, β ∈ R \ Q. Then the set Prop(Dα, Dβ) is non-emptyif and only if α = (k2 + βl2)/(k1 + βl1) for some ki, li ∈ Z≥0, i = 1, 2.Moreover , in that 
ase any proper holomorphi
 mapping f : Dα → Dβ is ofthe form(4) f(z1, z2) = (azk11 z
k2
2 , bz

l1
1 z

l2
2 ), (z1, z2) ∈ Dα,where a, b ∈ C are su
h that |a| |b|β = 1.Next we prove the followingTheorem 4. Let α, β ∈ (R2)∗, r

+
i > 0, r−i < r+i , i = 1, 2. Assumethat the sets Dα,r−1 ,r

+
1
, Dβ,r−2 ,r

+
2

are of the same type (either rational orirrational). If there exists a proper holomorphi
 mapping between them, theneither r−1 r−2 > 0 or r−1 = r−2 = 0.For domains of di�erent types we have the following result:Theorem 5. Let α, β ∈ (R2)∗, r
+
i > 0, r−i < r+i , i = 1, 2. If thesets Dα,r−1 ,r

+
1

and Dβ,r−2 ,r
+
2

are of di�erent types, then there is no properholomorphi
 mapping between them.Finally, we dis
uss the rational 
ase. As already mentioned, the set ofproper holomorphi
 mappings between elementary Reinhardt domains ofthe rational type was des
ribed in [Edi-Zwo℄. Thus, in order to obtain thedesired 
hara
terization, it su�
es to prove the following three theorems.Theorem 6. Let r,R > 1. If R 6= rm for any natural number m, then
Prop(Ar ×C,AR×C), Prop(Ar ×C∗,AR×C) and Prop(Ar ×C∗,AR×C∗)are empty. Moreover , for any m ∈ N :



288 �. Kosi«ski(a) Prop(Ar × C,Arm × C) 
onsists of the mappings of the form
Ar × C ∋ (z, w) 7→ (eiθzεm, aN (z)wN + · · · + a0(z)) ∈ Arm × C,where θ ∈ R, N ∈ N, ε = ±1 and a0, . . . , aN ∈ O(Ar) are su
h that

|a0(z)| + · · · + |aN (z)| > 0, z ∈ Ar.(b) Prop(Ar × C∗,Arm × C) 
onsists of the mappings of the form
Ar × C∗ ∋ (z, w) 7→

(
eiθzεm,

aN (z)wN + · · · + a0(z)

wk

)
∈ Arm × C,where θ ∈ R, k,N ∈ N, 0 < k < N , ε = ±1 and ai ∈ O(Ar),

i = 1, . . . , N , satisfy |a0(z)| + · · · + |ak−1(z)| > 0 and |ak+1(z)| +
· · · + |aN (z)| > 0 for z ∈ Ar.(
) Prop(Ar × C∗,Arm × C∗) 
onsists of the mappings of the form

Ar × C∗ ∋ (z, w) 7→ (eiθzm, a(z)wk) ∈ Arm × C∗,where ε = ±1, θ ∈ R, k ∈ N and a ∈ O(Ar,C∗).Theorem 7. There are no proper holomorphi
 mappings from Ar × Cto AR × C∗ for any r,R > 1.Theorem 8.(a) Prop(D∗ × C,D∗ × C) 
onsists of the mappings of the form
D∗ × C ∋ (z, w) 7→ (eiθzm, aN (z)wN + · · · + a0(z)) ∈ D∗ × C,where θ ∈ R, N ∈ N, m ∈ N and a0, . . . , aN ∈ O(D∗) are su
h that

|a0(z)| + · · · + |aN (z)| > 0, z ∈ D∗.(b) Prop(D∗ × C∗,D∗ × C) 
onsists of the mappings of the form
D∗ × C∗ ∋ (z, w) 7→

(
eiθzm,

aN (z)wN + · · · + a0(z)

wk

)
∈ D∗ × C,where θ ∈ R, m ∈ N, k,N ∈ N, 0 < k < N and ai ∈ O(D∗),

i = 1, . . . , N satisfy |a0(z)| + · · · + |ak−1(z)| > 0 and |ak+1(z)| +
· · · + |aN (z)| > 0 for z ∈ D∗.(
) Prop(D∗ × C∗,D∗ × C∗) 
onsists of the mappings of the form

D∗ × C∗ ∋ (z, w) 7→ (eiθzm, a(z)wk) ∈ D∗ × C∗,where θ ∈ R, k ∈ N and a ∈ O(D∗,C∗).(d) Prop(D∗ × C,D∗ × C∗) = ∅.2. Proofs. The following result is probably known. However, we 
ouldnot �nd it in the literature, so we present a proof.Lemma 9. Let D ⊂ Cn be a domain, α ∈ R \ Q and let f, g : D → Cbe holomorphi
 mappings with |f(z)| = |g(z)|α, z ∈ D. Then either f =
g = 0 on D or there exists a holomorphi
 bran
h of the logarithm of g, i.e.
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h that eψ = g on D. In parti
ular , there exists a
θ ∈ R su
h that f = eiθ+αψ on D.Proof. Comparing multipli
ities of the roots of the fun
tions f and g
omposed with a�ne mappings we may redu
e our 
onsiderations to the
ase when f, g : D → C∗. Moreover, we may assume that g(x′) ∈ R>0 forsome x′ ∈ D.Obviously, there exists an η ∈ R su
h that the set Gη := {z ∈ D :
eiηf(z) ∈ g(z)α} is non-empty. Considering, if ne
essary, a mapping eiηfinstead of f we may assume that η = 0.It is easy to see that G0 is an open-and-
losed subset ofD, and soG0 = D.Thus, there exists a holomorphi
 bran
h of gα (also denoted by gα) su
h that
gα(x′) ∈ R>0. It follows that there exist gt for any t ∈ Q := {k+lα : k, l ∈ Z}.Fix a sequen
e (tm)∞m=1 ⊂ Q 
onverging to 0. In virtue of Montel's theorem,it is 
lear that gtm → 1 lo
ally uniformly.Put ψm := (gtm − 1)/tm. Then limm→∞ ψm(x′) = log g(x′) and thesequen
e (ψ′

m)∞m=1 = (gtm−1g′)∞m=1 is lo
ally uniformly 
onvergent withlimit (1/g)g′. Thus (ψm)∞m=1 
onverges lo
ally uniformly on D. Denote itslimit by ψ. By the Weierstrass theorem, ψ is holomorphi
 on D and ψ′ =
limm→∞ ψ′

m = (1/g)g′.Let D̃ ⊂ D be any simply 
onne
ted neighborhood of x′. Let ψ̃ be a holo-morphi
 mapping on D̃ su
h that g|
D̃

= eψ̃ and ψ̃(x′) = log g(x′). It is easyto see that ψ̃ = ψ on D̃, and so, by the identity prin
iple, g = eψ on D.Lemma 10. Let 0 < r+i , −∞ < r−i < r+i , i = 1, 2, α, β ∈ R. Let
(λn)

∞
n=1 ⊂ A(r−1 , r

+
1 ). Let φ ∈ Prop(D(1,α),r−1 ,r

+
1
, D(1,β),r−2 ,r

+
2
). Put

v(λ) := |φ1(λ, 1)| |φ2(λ, 1)|β, λ ∈ A(r−1 , r
+
1 ).If the sequen
e (λn)

∞
n=1 has no a

umulation points in A(r−1 , r

+
1 ), then

(v(λn))
∞
n=1 has no a

umulation points in A(r−2 , r

+
2 ).Proof. Assume that v(λn) → q. It su�
es to show that q ∈ ∂A(r−2 , r

+
2 ).Otherwise q ∈ A(r−2 , r

+
2 ). Note that for any λ ∈ A(r−1 , r

+
1 ) the fun
tion(5) uλ : C ∋ z 7→ |φ1(λe

−αz, ez)| |φ2(λe
−αz, ez)|βis bounded and subharmoni
, so uλ is 
onstant.Sin
e φ is proper, the mapping C ∋ z 7→ φ2(λne

−αz, ez) ∈ C is non-
onstant for any n ∈ N. Pi
ard's theorem implies that there is a sequen
e
(zn)

∞
n=0 ⊂ C su
h that |φ2(λne

−αzn , ezn)|β = 1. Obviously uλ(z) = uλ(1) =
v(λ) for all z ∈ C and v(λn) → q, so |φ1(λne

−αzn , ezn)| → q. In parti
ular, theset {φ(λne
−αzn , ezn) : n ∈ N} is relatively 
ompa
t in D(1,β),r−2 ,r

+
2
; however,

((λne
−αzn , ezn))∞n=1 has no a

umulation points in D(1,α),r−1 ,r

+
1
, a 
ontradi
-tion.



290 �. Kosi«skiCorollary 11. Let φ = (φ1, φ2) : Dα,r → Dβ,R be a proper holomorphi
mapping and let α, β ∈ R>0, r, R > 1. Put v(λ) := |φ1(λ, 1)| |φ2(λ, 1)|β,
λ ∈ Ar. Then either

lim
|λ|→1/r

v(λ) = 1/R, lim
|λ|→r

v(λ) = R or lim
|λ|→1/r

v(λ) = R, lim
|λ|→r

v(λ) = 1/R.Lemma 12. Let α ∈ R \ Q, β ∈ R, −∞ < r−i < r+i < ∞, 0 < r+i , i =
1, 2, and let φ : D(1,α),r−1 ,r

+
1
→ D(1,β),r−2 ,r

+
2
be a holomorphi
 mapping. Thenfor any λ ∈ A(r−1 , r

+
1 ),

φ({(z1, z2) ∈ C2 : |z1| |z2|
α = |λ|})

⊂ {(w1, w2) ∈ C2 : |w1| |w2|
β = |φ1(λ, 1)| |φ2(λ, 1)|β}.Proof. Note that for any λ ∈ A(r−1 , r

+
1 ) the fun
tion

u : C ∋ z 7→ |φ1(λe
αz, e−z)| |φ2(λe

αz, e−z)|βis subharmoni
 and bounded. Hen
e u is 
onstant.In virtue of Krone
ker's theorem, the set {(|λ|eαz, e−z) : z ∈ C} is densein {(z1, z2) ∈ C2 : |z1| |z2|
α = |λ|}. Thus, there is t ∈ R su
h that

φ({(z1, z2) ∈ C2 : |z1| |z2|
α = |λ|}) ⊂ {(w1, w2) ∈ C2 : |w1| |w2|

β = t}.It is easy to see that t = |φ1(λ, 1)| |φ2(λ, 1)|β.Proof of Theorem 1(a). Let φ : Dα,r → Dβ,R be a proper holomorphi
mapping. Put v(λ) := |φ1(λ, 1)| |φ2(λ, 1)|β, λ ∈ Ar. Obviously, log v is aharmoni
 fun
tion. Applying Corollary 11 and Hadamard's theorem we inferthat
v(λ) = |λ|

log R
log r , λ ∈ Ar or v(λ) = |λ|−

log R
log r , λ ∈ Ar.From this and Lemma 12 we easily 
on
lude that there is ε = ±1 su
h that(6) |φ1(z)| |φ2(z)|

β = |z1|
ε log R

log r |z2|
εα log R

log r , z ∈ Dα,r.Let z2 = 1, z1 = z ∈ Ar, ψi(z) := φi(z, 1), i = 1, 2. Then
log(ψ1(z)ψ1(z)) + β log(ψ2(z)ψ2(z)) = ε

logR

log r
log(zz).Di�erentiating with respe
t to z we get(7) ψ′

1(z)

ψ1(z)
+ β

ψ′
2(z)

ψ2(z)
= ε

logR

log r
·
1

z
, z ∈ Ar.It follows that

Ind(ψ1 ◦ γ; 0) + β Ind(ψ2 ◦ γ; 0) = ε
logR

log r
,where γ is the unit 
ir
le. Hen
e logR

log r ∈ Z + βZ. The same argument withrespe
t to the se
ond variable shows that α logR
log r ∈ Z + βZ.
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onverse, assume that
logR

log r
= k1 + l1β, α

logR

log r
= k2 + l2β,where ki, li ∈ Z, i = 1, 2. De�ne φ1(z) := zk11 z
k2
2 , φ2(z) := zl11 z

l2
2 for z =

(z1, z2) ∈ C2, and φ := (φ1, φ2). Observe that φ|Dα,r ∈ Prop(Dα,r, Dβ,R).Indeed, it is easy to 
he
k that(8) |φ1(z)| |φ2(z)|
β = |z1|

logR/log r|z2|
α logR/log r, (z1, z2) ∈ Dα,r,so φ|Dα,r ∈ O(Dα,r, Dβ,R). Sin
e k1l2 6= k2l1, φ is a proper holomorphi
mapping from (C∗)

2 into itself (see [Zwo, Theorem 2.1℄). Now we immediately
on
lude from (8) that φ|Dα,r is a proper holomorphi
 mapping from Dα,rto Dβ,R.Lemma 9 and (6) lead to the followingCorollary 13. Let α, β ∈ R \ Q and φ ∈ Prop(Dα,r, Dβ,R). Assumethat logR
log r = k1 + l1β and α logR

log r = k2 + l2β for some ki, li ∈ Z, i = 1, 2. Thenthere are θ ∈ R, ψ ∈ O(Dα,r) and ε ∈ {1,−1} su
h that
φ(z) = (zεk11 zεk22 eiθe−βψ(z), zεl11 zεl22 eψ(z)), z ∈ Dα,r.

Remark 14. We may always assume that ε in Corollary 13 is equalto 1 (repla
ing if ne
essary φ by φ ◦ h, where h ∈ Aut(Dα,r), h(z1, z2) :=
(z−1

1 , z−1
2 )).To prove Theorem 1(b) we need the following notation. Put Xα,r :=

{z ∈ C2 : − log r < Re z1 + αRe z2 < log r} and Π(z1, z2) := (ez1, ez2) for
(z1, z2) ∈ C2. It is 
lear that (Xα,r, Π) is the universal 
overing of Dα,r.Lemma 15. Let α, β ∈ R \ Q, r, R > 1 and assume that logR

log r = k1 +

l1β, α
logR
log r = k2 + l2β, where ki, li ∈ Z, i = 1, 2. Let f : Dα,r → Dβ,R be aproper holomorphi
 mapping. Then every 
ontinuous lifting of the mapping

f ◦Π : Xα,r → Dβ,R is proper and holomorphi
.Proof. By Corollary 13 and Remark 14 we may assume that f(z) =
(zk11 z

k2
2 e

−βψ(z)+iθ, zl11 z
l2
2 e

ψ(z)) (z ∈ Dα,r), where θ ∈ R and ψ ∈ O(Dα,r).Let f̃ be any 
ontinuous lifting of f ◦ Π : Xα,r → Dβ,R, that is, f̃ :

Xα,r → Xβ,R and f ◦Π = Π ◦ f̃ . It is obvious that f̃ is holomorphi
. Thenby the identity prin
iple(9) {
f̃1(z) = k1z1 + k2z2 − βψ(ez1, ez2) + iθ + 2µ1πi,

f̃2(z) = l1z1 + l2z2 + ψ(ez1, ez2) + 2µ2πi,
z ∈ Xα,r,for some µi ∈ Z, i = 1, 2.



292 �. Kosi«skiSuppose that f̃ is not proper, i.e. there is a sequen
e (zm)∞m=1 ⊂ Xα,r,
zm = (zm1 , z

m
2 ), m ∈ N, without any a

umulation points in Xα,r su
h that

(f̃(zm))∞m=1 is 
onvergent in Xβ,R. Put y0 := limm→∞ f̃(zm) ∈ Xβ,R.Obviously, f(Π(zm1 , z
m
2 )) = Π(f̃(zm1 , z

m
2 )) → Π(y0). Sin
e f is proper,the set {Π(zm) : m ≥ 1} is relatively 
ompa
t in Dα,r. Thus we may assumethat (Π(zm))∞m=1 is 
onvergent, say to w0 ∈ Dα,r. From (9) we dedu
e that

(k1z
m
1 +k2z

m
2 )∞m=1 and (l1z

m
1 +l2z

m
2 )∞m=1 are 
onvergent in C2. Thus (zm)∞m=1is also 
onvergent.Put z0 := limm→∞ zm. Now it su�
es to observe that Π(z0) = w0 ∈

Dα,r, so z0 ∈ Xα,r; a 
ontradi
tion.Now we are able to give a des
ription of the set of proper holomorphi
mappings between the domains Dα,r and Dβ,R of the irrational type.Proof of Theorem 1(b). Let f ∈ Prop(Dα,r, Dβ,R). In virtue of Corollary13 and Remark 14 we may assume that
f(z) = (zk11 z

k2
2 e

−βψ(z)+iθ, zl11 z
l2
2 e

ψ(z)), z = (z1, z2) ∈ Dα,r,for some θ ∈ R and ψ ∈ O(Dα,r). Our aim is to show that ψ is 
onstant.To simplify notation, for γ ∈ R put
Λγ : C2 ∋ (z1, z2) 7→ (z1 + γz2, z2) ∈ C2.It is 
lear that Λγ(Xγ,̺) = S̺ × C, ̺ > 1, where S̺ := {z ∈ C : − log r <

Re z < log r}. Moreover, Λγ is biholomorphi
 with inverse Λ−1
γ = Λ−γ .Note that the mapping f̃ : Xα,r → Xβ,R given by

f̃(z) = (k1z1 + k2z2 − βψ(ez1, ez2) + iθ, l1z1 + l2z2 + ψ(ez1, ez2))is a lifting of f◦Π. Thus Lemma 15 implies that f̃ is proper and holomorphi
.Put H := (H1, H2) := Λβ ◦ f̃ ◦ Λ−1
α : Sr × C → SR × C. Obviously, H isproper and holomorphi
.Applying the relations logR

log r = k1 + l1β, α logR
log r = k2 + l2β we see that

(10) H(z) = (z1(k1 + βl1) + iθ, l1z1 + z2(l2 − l1α) + ψ(ez1−αz2 , ez2)),

z ∈ Sr × C.Hen
e for any z1 ∈ Sr the mapping C ∋ z 7→ H2(z1, z) ∈ C is properand holomorphi
. Consequently, due to the form of proper holomorphi
 self-mappings of C, there is a polynomial p = pz1 ∈ P(C) su
h that H2(z1, z) =
p(z). Therefore, the polynomial q(z) := qz1(z) := p(z) − l1z1 − z(l2 − l1α)satis�es the equation(11) ψ(ez1e−αz, ez) = q(z), z ∈ C.Noti
e that {(ez1e−α2πim, e2πim) : m ∈ N} is a relatively 
ompa
t subsetof Dα,r and the sequen
e {q(2πim)}∞m=1 is bounded. Thus the polynomial qis 
onstant.
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 mappings of Reinhardt domains 293Put c(z1) := ψ(ez1−αz2 , ez2), z1 ∈ Sr. Fix any 1 < ̺ < R and takea 
onstantM = M(̺) > 0 su
h that |c(x)| < M for every x ∈ [− log ̺, log ̺].Let λ ∈ ̺D \ (1/̺)D be arbitrary. Note that for any z2 ∈ C we have
|ψ(|λ|e−αz2, ez2)| = |c(log |λ|)| < M. Applying Krone
ker's theorem we inferthat the set {(|λ|e−αz, ez) : z ∈C} is dense in {(z1, z2) ∈ C2 : |z1| |z2|

α = |λ|}.Consequently, ψ|Dα,̺ is bounded.Now it su�
es to repeat the proof of Lemma 2.7.1 of [Jar-P�1℄ in orderto show that every bounded holomorphi
 mapping on Dα,̺ (in parti
ular, ψ)is 
onstant.On the other hand, we have already mentioned in the proof of Theo-rem 1(a) that any mapping given by (2) is proper.Proof of Theorems 2 and 3. We prove both theorem simultaneously. Let
f : Dα → Dβ (respe
tively, f : D∗

α → D∗
β) be a proper holomorphi
 fun
tion.We aim at redu
ing the situation to that of Theorem 1. Take any r > 1.From Lemma 12 we see that for any t ∈ [0, 1) (resp. t ∈ (0, 1)) there isan s(t) ∈ [0, 1) (resp. s(t) ∈ (0, 1)) su
h that

f({(z1, z2) ∈ C2 : |z1| |z2|
α = t}) ⊂ {(w1, w2) ∈ C2 : |w1| |w2|

β = s(t)}.Note that s(|λ|) = |f1(λ, 1)| |f2(λ, 1)|β and the fun
tion v given by v : D ∋
λ 7→ s(|λ|) ∈ [0, 1] (resp. v : D∗ ∋ λ 7→ s(|λ|) ∈ [0, 1]) is radial andsubharmoni
 on D (in the se
ond 
ase we may remove the singularity at 0).The maximum prin
iple applied to v implies that s is in
reasing.In parti
ular, f |D(1,α),1/r2,1

: D(1,α),1/r2,1 → D(1,β),1/R2,1 is proper forsome R > 1. For ̺ > 1 put Λ̺̃ : C2 ∋ (z1, z2) 7→ (̺z1, z2) ∈ C2 andde�ne ψ := Λ̃R ◦ f ◦ Λ̃−1
r |Dα,r . Note that ψ ∈ Prop(Dα,r, Dβ,R). ApplyingTheorem 1 we �nd that logR

log r = k1 + l1β, α
logR
log r = k2 + l2β and ψ(z1, z2) =

(azεk11 zεk22 , bzεl11 zεl22 ) for some ki, li ∈ Z, i = 1, 2, ε = ±1 and a, b ∈ Csatisfying |a| |b|β = 1.Oviously α = (k2 + l2β)/(k1 + l1β) and by the identityprin
iple we obtain
(12) f(z1, z2) = (arεl1βzεk11 zεk22 , br−εl1zεl11 zεl22 ),

(z1, z2) ∈ Dα (resp. (z1, z2) ∈ D∗
α).If f : D∗

α → D∗
β, then it su�
es to noti
e that |f1(z)| |f2(z)|

β =

(|z1| |z2|
α)εk1+εl1β, z = (z1, z2) ∈ D∗

α, hen
e ε(k1 + l1β) > 0.When f : Dα → Dβ, we 
on
lude that εki, εli ≥ 0, i = 1, 2.Hen
e we easily get the required formulas.On the other hand, one 
an 
he
k that any of the mappings given inTheorem 3 is proper (sin
e α is irrational, k1l2 − k2l1 6= 0).Lemma 16. Let r+ > 0, r− < r+, t ∈ R. Suppose that the fun
tion
v : A(r−, r+) → [−∞, t) is subharmoni
, radial (i.e. v(|λ|) = v(λ), λ ∈
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A(r−, r+)) and harmoni
 on the set {z ∈ A(r−, r+) : v(z) 6= −∞}. Thenthere exist a, b ∈ R su
h that

v(λ) = a log |λ| + b, λ ∈ A(r−, r+).Proof. It su�
es to observe that sin
e v is radial, A(r−, r+)\{0} ⊂ {z ∈
A(r−, r+) : v(z) 6= −∞} (and next one may pro
eed in a standard way, i.e.solve an easy di�erential equation).Proof of Theorem 4. First, 
onsider the 
ase when Dα,r−1 ,r

+
1
and Dβ,r−2 ,r

+
2are of the irrational type. Then we may assume that α = (1, α1) for some

α1 ∈ R \ Q. Let
v : A(r−1 , r

+
1 ) ∋ λ 7→ log |ψ1(λ, 1)|β1|ψ2(λ, 1)|β2 ∈ R.By Lemma 12 we see that ψ({(z1, z2) ∈ C2 : |z1| |z2|

α = |λ|} ⊂ {(w1, w2) ∈
C2 : |w1|

β1 |w2|
β2 = ev(λ)}. Therefore, v is radial. Observe moreover that v issubharmoni
 on A(r−1 , r

+
1 ) and harmoni
 on {λ ∈ A(r−1 , r

+
1 ) : v(λ) > −∞}.Sin
e ψ is surje
tive, we 
on
lude that(13) v(A(r−1 , r

+
1 )) =

{
(log r−2 , log r+2 ) if r−2 ≥ 0,

[−∞, log r+2 ) if r−2 < 0(we put log 0 := −∞). However, by Lemma 16, v(λ) = a log |λ| + b, λ ∈
A(r−1 , r

+
1 ), for some a, b ∈ R, whi
h easily �nishes the proof in this 
ase.Now suppose that Dα,r−1 ,r

+
1
and Dβ,r−2 ,r

+
2
are of the rational type; we mayassume that β = (p, q) ∈ Z2 and α = (1, α1) for some α1 ∈ Q. ApplyingLemma 10 one 
an see that the mapping

A(r−1 , r
+
1 ) ∋ λ 7→ ψ1(λ, 1)pψ2(λ, 1)q ∈ A(r−2 , r

+
2 )is proper. Hen
e this 
ase follows dire
tly from the form of the set of properholomorphi
 mappings from A(r−1 , r

+
1 ) to A(r−2 , r

+
2 ).Proof of Theorem 5. Assume that Dα,r−1 ,r

+
1
is of the rational type and

Dβ,r−2 ,r
+
2
is of the irrational type; without loss of generality α = (1, p/q) forsome p, q ∈ Z and β = (1, β2) for some β2 ∈ R \ Q.Suppose that ψ ∈ Prop(Dα,r−1 ,r

+
1
, Dβ,r−2 ,r

+
2
). Note that for any λ ∈

A(r−1 , r
+
1 ) the mapping(14) uλ : C∗ ∋ z 7→ |ψ1(λz

p, z−q)| |ψ2(λz
p, z−q)|β2is 
onstant. Fix λ0 and c 6= 0 su
h that uλ0 ≡ c. One 
an see that C∗ ∋ z 7→

ψi(λ0z
p, z−q) ∈ C∗ is a proper holomorphi
 self-mapping of C∗, i = 1, 2.Therefore, there are ai ∈ C∗ and µi ∈ Z∗, i = 1, 2, su
h that ψi(λ0z

p, z−q) =
aiz

µi for z ∈ C∗, i = 1, 2. Applying (14) it is 
lear that |a1| |a2|
β2 |z|µ1+µ2β2

= c for z ∈ C∗. In parti
ular, β2 ∈ Q, a 
ontradi
tion.
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+
2
, Dα,r−1 ,r

+
1
). Put u(λ)

:= |ψ1(λ, 1)| |ψ2(λ, 1)|β2 for λ ∈ A(r−2 , r
+
2 ).Applying Lemmas 10 and 12 we �nd that u satis�es the assumptionsof Lemma 16. Thus, there are a, b ∈ R su
h that log u(λ) = a log |λ| + bfor λ ∈ A(r−2 , r

+
2 ). In parti
ular, u is either stri
tly in
reasing or stri
tlyde
reasing. Take any ̺−2 , ̺+

2 su
h that ̺−2 > max{0, r−2 }, ̺
+
2 < r+2 , ̺

−
2 < ̺+

2 .Put ̺−1 := min{u(̺−2 ), u(̺+
2 )}, ̺+

1 := max{u(̺−2 ), u(̺+
2 )}. Then

ψ|D
β,̺−2 ,̺+

2

: Dβ,̺−2 ,̺
+
2
→ D(1,α),̺−1 ,̺

+
1is obviously a proper holomorphi
 mapping. In virtue of Theorem 1(a) thereare ki, li ∈ Z, i = 1, 2, su
h that β = (k1 + l1α)/(k2 + l2α). In parti
ular,

β ∈ Q, a 
ontradi
tion.Lemma 17. Let A,B ⊂ Cn be domains and assume that B is bounded.(a) A mapping f : A×C∗ → B×C is proper and holomorphi
 if and onlyif there are m ∈ Prop(A,B), k ∈ N, 0 < k < N, N ∈ N, ai ∈ O(A),
i = 1, . . . , N, with |a0(z)|+ · · ·+ |ak−1(z)| > 0 and |ak+1(z)|+ · · ·+
|aN (z)| > 0 for z ∈ A, satisfying
f(z, w) =

(
m(z),

aN (z)wN + · · · + a0(z)

wk

)
, (z, w) ∈ A× C∗.(b) A mapping f : A×C → B×C is proper and holomorphi
 if and onlyif there are a0, . . . , aN ∈ O(A), N ∈ N, with |a0(z)|+· · ·+|aN (z)| > 0for z ∈ A, and there is a proper holomorphi
 mapping m : A → Bsu
h that

f(z, w) = (m(z), aN(z)wN + · · · + a0(z)), (z, w) ∈ A× C.(
) A mapping f : A × C∗ → B × C is proper and holomorphi
 if andonly if there are m ∈ Prop(A,B), a ∈ O(A,C∗) and k ∈ N su
h that
f(z, w) = (m(z), a(z)wk), (z, w) ∈ A× C∗.(d) There is no proper holomorphi
 mapping from A× C to B × C∗.Proof. First of all, noti
e that for any z ∈ A the mapping w 7→ f1(z, w)

∈ Cn is bounded on C (or C∗), so it is 
onstant.(a) Observe that C∗ ∋ w 7→ f2(z, w) ∈ C is proper for any z ∈ A. Thus,for any z ∈ A there is a polynomial p(z, ·), p(z, 0) 6= 0, and a natural k(z)su
h that(15) φ2(z, w) =
p(z, w)

wk(z)
, (z, w) ∈ A× C∗.One 
an see that there is a k su
h that k = k(z) for z ∈ A (use Rou
he'stheorem). Consequently, p ∈ O(A× C∗).
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Aµ :=

{
z ∈ A′ :

∂µp

∂wµ
(z, w) = 0 for any w ∈ C

}
.

The above 
onsiderations imply that ⋃∞
µ=1Aµ = A′. Applying Baire's theo-rem we �nd that there exists N ∈ N su
h that AN has non-empty interior.By the identity prin
iple, AN = A.Thus, there are holomorphi
 mappings a0, . . . , aN : A → C su
h that

p(z, w) = aN (z)wN + · · · + a1(z)w + a0(z) for (z, w) ∈ A× C, i.e.(16) f2(z, w) =
aN (z)wN + · · · + a1(z)w + a0(z)

wk
, (z, w) ∈ A× C.By properness of f2(z, ·) we 
on
lude that 0 < k < N , and |aN (z)| + . . . +

|ak+1(z)| > 0 and |ak−1(z)| + · · · + |a0(z)| > 0 for any z ∈ A.Put m(z) := f1(z, 1), z ∈ A. We 
laim that m is proper.Indeed, take any sequen
e (zn)
∞
n=1 and assume that it has no a

umu-lation points in A. We may assume that a0(zn) 6= 0 for any n ∈ N (if ne
-essary repla
e a0 with a1 et
.). Then there exists a sequen
e (wn)

∞
n=1 ⊂ C∗su
h that aN (zn)w

N
n + · · · + a1(zn)wn + a0(zn) = 0 for any n ∈ N. Sin
e

f(zn, wn) = (m(zn), 0), it is obvious that (m(zn))
∞
n=1 has no a

umulationpoints in B.Conversely, one 
an 
he
k that every mapping f de�ned in this way isproper.(b) It is easy to see that C ∋ w 7→ f2(z, w) ∈ C is a proper holomorphi
mapping for any z ∈ A. From the form of su
h mappings we 
on
lude that forevery z ∈ A the mapping f2(z, ·) is a 
omplex polynomial. Now we pro
eedexa
tly as in the proof of (a).(
) We pro
eed similarly to the proofs of (a) and (b).(d) Suppose that f : A× C → B × C∗ is a proper holomorphi
 fun
tion.Fix z ∈ A. Then C ∋ w 7→ f2(z, w) ∈ C∗ is proper.Take ψ ∈ O(C) su
h that f2(1, ·) = exp ◦ψ. Observe that ψ is a properholomorphi
 self-mapping of the 
omplex plane, hen
e ψ is a polynomial.From this we easily get a 
ontradi
tion.Proof of Theorems 6, 7 and 8. These are dire
t 
onsequen
es of Lem-ma 17.Finally, I take this opportunity to express my deep gratitude to Profes-sor Wªodzimierz Zwonek for introdu
ing me to the subje
t and numerousremarks.
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