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Proper holomorphi mappings in the speiallass of Reinhardt domainsby Łukasz Kosiński (Kraków)
Abstrat. A omplete haraterization of proper holomorphi mappings betweendomains from the lass of all pseudoonvex Reinhardt domains in C2 with the logarithmiimage equal to a strip or a half-plane is given.1. Statement of results. We adopt the standard notations of omplexanalysis. Given γ = (γ1, γ2) ∈ R2 and z = (z1, z2) ∈ C2 we put |zγ | =

|z1|
γ1 |z2|

γ2 whenever it makes sense. The unit dis in C is denoted by Dand the set of proper holomorphi mappings between domains D,G ⊂ Cn isdenoted by Prop(D,G).In this paper we deal with those pseudoonvex Reinhardt domains in C2whose logarithmi image is equal to a strip or a half-plane. Observe thatsuh domains are always algebraially equivalent to domains of the form
Dα,r−,r+ := {z ∈ C2 : r− < |zα| < r+},where α = (α1, α2) ∈ (R2)∗, 0 < r+ <∞, −∞ < r− < r+.We say that Dα,r−,r+ is of the irrational type if α1/α2 ∈ R \ Q. In theother ase it is of the rational type.Reall that if r− < 0 < r+ and α ∈ (R2)∗, then Dα,r−,r+ are so-alledelementary Reinhardt domains.Below we shall give a omplete desription of all proper holomorphimappings from Dα,r−1 ,r

+
1

to Dβ,r−2 ,r
+
2

for arbitrary α, β ∈ (R2)∗ and 0 <

r+i < ∞, −∞ < r−i < r+i , i = 1, 2. Similar problems have been studied inthe literature. In [Shi1℄ and [Shi2℄ the problem of holomorphi equivalene ofelementary Reinhardt domains was onsidered. Those results were partiallyextended by A. Edigarian and W. Zwonek [Edi-Zwo℄ who gave a hara-2000 Mathematis Subjet Classi�ation: 32H35, 32A07.Key words and phrases: proper holomorphi mappings, Reinhardt domains, elemen-tary Reinhardt domains. [285℄ © Instytut Matematyzny PAN, 2007



286 �. Kosi«skiterization of proper holomorphi mappings between elementary Reinhardtdomains of the rational type.Set A(̺−, ̺+) := {z ∈ C : ̺− < |z| < ̺+} for ̺+ > 0, ̺− < ̺+ and
A̺ := A(1/̺, ̺), ̺ > 1. Moreover, put

Dγ,r := {z ∈ C2 : 1/r < |z1| |z2|
γ < r}, γ ∈ R∗, r > 1,

Dγ := {z ∈ C2 : |z1| |z2|
γ < 1}, γ ∈ R∗,

D∗
γ := {z ∈ C2 : 0 < |z1| |z2|

γ < 1}, γ ∈ R∗.Note that if γ is rational, i.e. γ = p/q for some relatively prime p, q ∈ Z,
q > 0, then Dγ,r is biholomorphially equivalent to Arq × C∗ and D∗

γ isbiholomorphially equivalent to D∗ × C. Indeed, put
ψ(z1, z2) := (zq1z

p
2 , z

m
1 z

n
2 ) for (z1, z2) ∈ C2,where m,n ∈ Z are suh that pm−qn = 1. One an hek that the mappings

ψ|Dγ,r : Dγ,r → Arq × C∗ and ψ|D∗

γ
: D∗

γ → D∗ × C∗ are biholomorphi.Moreover, one may easily prove that Dα,r−,r+ is algebraially equivalentto a domain of one of the following types:(i) If r− > 0:(a) A̺ × C, α1α2 = 0,(b) A̺ × C∗, α1/α2 ∈ Q∗,() Dγ,̺, γ = α2/α1 ∈ R \ Q.(ii) If r− = 0:(a) D∗ × C, α1α2 = 0,(b) D∗ × C∗, α1/α2 ∈ Q∗,() D∗
γ , γ = α2/α1 ∈ R \ Q.(iii) If r− < 0:(a) D × C, α1α2 = 0,(b) Dγ , γ = α2/α1 6= 0.Our main result is the following:Theorem 1.(a) If α ∈ R \ Q, then the set of proper holomorphi mappings from Dα,rto Dβ,R is non-empty if and only if(1) logR

log r
∈ Z + βZ, α

logR

log r
∈ Z + βZ.(b) Let α, β ∈ R\Q and let r,R > 1 be suh that logR

log r = k1 + l1β and
α logR

log r = k2 + l2β for some integers ki, li, i = 1, 2. Then any properholomorphi mapping f : Dα,r → Dβ,R is of one of the followingforms:
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(2) {

f(z) = (azk11 z
k2
2 , bz

l1
1 z

l2
2 ),

f(z) = (az−k11 z−k22 , bz−l11 z−l22 ),
z = (z1, z2) ∈ Dα,r,where a, b ∈ C satisfy |a| |b|β = 1. Moreover , any of the mappingsgiven by (2) is proper.Notie that in Theorem 1(a) we do not demand β to be irrational.Using Theorem 1 we will easily obtain analogous results for domains ofthe forms (ii) and (iii) of the irrational type.Theorem 2. Let α, β ∈ R \ Q. The set of proper holomorphi mappingsfrom D∗

α to D∗
β is non-empty if and only if α = (k2 + βl2)/(k1 + βl1) forsome ki, li ∈ Z, i = 1, 2. Moreover , in that ase, if k1 + l1β > 0, then anyproper holomorphi mapping f : D∗

α → D∗
β is of the form(3) f(z1, z2) = (azk11 z

k2
2 , bz

l1
1 z

l2
2 ), (z1, z2) ∈ D∗

α,where a, b ∈ C satisfy |a| |b|β = 1.Theorem 3. Let α, β ∈ R \ Q. Then the set Prop(Dα, Dβ) is non-emptyif and only if α = (k2 + βl2)/(k1 + βl1) for some ki, li ∈ Z≥0, i = 1, 2.Moreover , in that ase any proper holomorphi mapping f : Dα → Dβ is ofthe form(4) f(z1, z2) = (azk11 z
k2
2 , bz

l1
1 z

l2
2 ), (z1, z2) ∈ Dα,where a, b ∈ C are suh that |a| |b|β = 1.Next we prove the followingTheorem 4. Let α, β ∈ (R2)∗, r

+
i > 0, r−i < r+i , i = 1, 2. Assumethat the sets Dα,r−1 ,r

+
1
, Dβ,r−2 ,r

+
2

are of the same type (either rational orirrational). If there exists a proper holomorphi mapping between them, theneither r−1 r−2 > 0 or r−1 = r−2 = 0.For domains of di�erent types we have the following result:Theorem 5. Let α, β ∈ (R2)∗, r
+
i > 0, r−i < r+i , i = 1, 2. If thesets Dα,r−1 ,r

+
1

and Dβ,r−2 ,r
+
2

are of di�erent types, then there is no properholomorphi mapping between them.Finally, we disuss the rational ase. As already mentioned, the set ofproper holomorphi mappings between elementary Reinhardt domains ofthe rational type was desribed in [Edi-Zwo℄. Thus, in order to obtain thedesired haraterization, it su�es to prove the following three theorems.Theorem 6. Let r,R > 1. If R 6= rm for any natural number m, then
Prop(Ar ×C,AR×C), Prop(Ar ×C∗,AR×C) and Prop(Ar ×C∗,AR×C∗)are empty. Moreover , for any m ∈ N :



288 �. Kosi«ski(a) Prop(Ar × C,Arm × C) onsists of the mappings of the form
Ar × C ∋ (z, w) 7→ (eiθzεm, aN (z)wN + · · · + a0(z)) ∈ Arm × C,where θ ∈ R, N ∈ N, ε = ±1 and a0, . . . , aN ∈ O(Ar) are suh that

|a0(z)| + · · · + |aN (z)| > 0, z ∈ Ar.(b) Prop(Ar × C∗,Arm × C) onsists of the mappings of the form
Ar × C∗ ∋ (z, w) 7→

(
eiθzεm,

aN (z)wN + · · · + a0(z)

wk

)
∈ Arm × C,where θ ∈ R, k,N ∈ N, 0 < k < N , ε = ±1 and ai ∈ O(Ar),

i = 1, . . . , N , satisfy |a0(z)| + · · · + |ak−1(z)| > 0 and |ak+1(z)| +
· · · + |aN (z)| > 0 for z ∈ Ar.() Prop(Ar × C∗,Arm × C∗) onsists of the mappings of the form

Ar × C∗ ∋ (z, w) 7→ (eiθzm, a(z)wk) ∈ Arm × C∗,where ε = ±1, θ ∈ R, k ∈ N and a ∈ O(Ar,C∗).Theorem 7. There are no proper holomorphi mappings from Ar × Cto AR × C∗ for any r,R > 1.Theorem 8.(a) Prop(D∗ × C,D∗ × C) onsists of the mappings of the form
D∗ × C ∋ (z, w) 7→ (eiθzm, aN (z)wN + · · · + a0(z)) ∈ D∗ × C,where θ ∈ R, N ∈ N, m ∈ N and a0, . . . , aN ∈ O(D∗) are suh that

|a0(z)| + · · · + |aN (z)| > 0, z ∈ D∗.(b) Prop(D∗ × C∗,D∗ × C) onsists of the mappings of the form
D∗ × C∗ ∋ (z, w) 7→

(
eiθzm,

aN (z)wN + · · · + a0(z)

wk

)
∈ D∗ × C,where θ ∈ R, m ∈ N, k,N ∈ N, 0 < k < N and ai ∈ O(D∗),

i = 1, . . . , N satisfy |a0(z)| + · · · + |ak−1(z)| > 0 and |ak+1(z)| +
· · · + |aN (z)| > 0 for z ∈ D∗.() Prop(D∗ × C∗,D∗ × C∗) onsists of the mappings of the form

D∗ × C∗ ∋ (z, w) 7→ (eiθzm, a(z)wk) ∈ D∗ × C∗,where θ ∈ R, k ∈ N and a ∈ O(D∗,C∗).(d) Prop(D∗ × C,D∗ × C∗) = ∅.2. Proofs. The following result is probably known. However, we ouldnot �nd it in the literature, so we present a proof.Lemma 9. Let D ⊂ Cn be a domain, α ∈ R \ Q and let f, g : D → Cbe holomorphi mappings with |f(z)| = |g(z)|α, z ∈ D. Then either f =
g = 0 on D or there exists a holomorphi branh of the logarithm of g, i.e.



Proper holomorphi mappings of Reinhardt domains 289a mapping ψ ∈ O(D) suh that eψ = g on D. In partiular , there exists a
θ ∈ R suh that f = eiθ+αψ on D.Proof. Comparing multipliities of the roots of the funtions f and gomposed with a�ne mappings we may redue our onsiderations to thease when f, g : D → C∗. Moreover, we may assume that g(x′) ∈ R>0 forsome x′ ∈ D.Obviously, there exists an η ∈ R suh that the set Gη := {z ∈ D :
eiηf(z) ∈ g(z)α} is non-empty. Considering, if neessary, a mapping eiηfinstead of f we may assume that η = 0.It is easy to see that G0 is an open-and-losed subset ofD, and soG0 = D.Thus, there exists a holomorphi branh of gα (also denoted by gα) suh that
gα(x′) ∈ R>0. It follows that there exist gt for any t ∈ Q := {k+lα : k, l ∈ Z}.Fix a sequene (tm)∞m=1 ⊂ Q onverging to 0. In virtue of Montel's theorem,it is lear that gtm → 1 loally uniformly.Put ψm := (gtm − 1)/tm. Then limm→∞ ψm(x′) = log g(x′) and thesequene (ψ′

m)∞m=1 = (gtm−1g′)∞m=1 is loally uniformly onvergent withlimit (1/g)g′. Thus (ψm)∞m=1 onverges loally uniformly on D. Denote itslimit by ψ. By the Weierstrass theorem, ψ is holomorphi on D and ψ′ =
limm→∞ ψ′

m = (1/g)g′.Let D̃ ⊂ D be any simply onneted neighborhood of x′. Let ψ̃ be a holo-morphi mapping on D̃ suh that g|
D̃

= eψ̃ and ψ̃(x′) = log g(x′). It is easyto see that ψ̃ = ψ on D̃, and so, by the identity priniple, g = eψ on D.Lemma 10. Let 0 < r+i , −∞ < r−i < r+i , i = 1, 2, α, β ∈ R. Let
(λn)

∞
n=1 ⊂ A(r−1 , r

+
1 ). Let φ ∈ Prop(D(1,α),r−1 ,r

+
1
, D(1,β),r−2 ,r

+
2
). Put

v(λ) := |φ1(λ, 1)| |φ2(λ, 1)|β, λ ∈ A(r−1 , r
+
1 ).If the sequene (λn)

∞
n=1 has no aumulation points in A(r−1 , r

+
1 ), then

(v(λn))
∞
n=1 has no aumulation points in A(r−2 , r

+
2 ).Proof. Assume that v(λn) → q. It su�es to show that q ∈ ∂A(r−2 , r

+
2 ).Otherwise q ∈ A(r−2 , r

+
2 ). Note that for any λ ∈ A(r−1 , r

+
1 ) the funtion(5) uλ : C ∋ z 7→ |φ1(λe

−αz, ez)| |φ2(λe
−αz, ez)|βis bounded and subharmoni, so uλ is onstant.Sine φ is proper, the mapping C ∋ z 7→ φ2(λne

−αz, ez) ∈ C is non-onstant for any n ∈ N. Piard's theorem implies that there is a sequene
(zn)

∞
n=0 ⊂ C suh that |φ2(λne

−αzn , ezn)|β = 1. Obviously uλ(z) = uλ(1) =
v(λ) for all z ∈ C and v(λn) → q, so |φ1(λne

−αzn , ezn)| → q. In partiular, theset {φ(λne
−αzn , ezn) : n ∈ N} is relatively ompat in D(1,β),r−2 ,r

+
2
; however,

((λne
−αzn , ezn))∞n=1 has no aumulation points in D(1,α),r−1 ,r

+
1
, a ontradi-tion.



290 �. Kosi«skiCorollary 11. Let φ = (φ1, φ2) : Dα,r → Dβ,R be a proper holomorphimapping and let α, β ∈ R>0, r, R > 1. Put v(λ) := |φ1(λ, 1)| |φ2(λ, 1)|β,
λ ∈ Ar. Then either

lim
|λ|→1/r

v(λ) = 1/R, lim
|λ|→r

v(λ) = R or lim
|λ|→1/r

v(λ) = R, lim
|λ|→r

v(λ) = 1/R.Lemma 12. Let α ∈ R \ Q, β ∈ R, −∞ < r−i < r+i < ∞, 0 < r+i , i =
1, 2, and let φ : D(1,α),r−1 ,r

+
1
→ D(1,β),r−2 ,r

+
2
be a holomorphi mapping. Thenfor any λ ∈ A(r−1 , r

+
1 ),

φ({(z1, z2) ∈ C2 : |z1| |z2|
α = |λ|})

⊂ {(w1, w2) ∈ C2 : |w1| |w2|
β = |φ1(λ, 1)| |φ2(λ, 1)|β}.Proof. Note that for any λ ∈ A(r−1 , r

+
1 ) the funtion

u : C ∋ z 7→ |φ1(λe
αz, e−z)| |φ2(λe

αz, e−z)|βis subharmoni and bounded. Hene u is onstant.In virtue of Kroneker's theorem, the set {(|λ|eαz, e−z) : z ∈ C} is densein {(z1, z2) ∈ C2 : |z1| |z2|
α = |λ|}. Thus, there is t ∈ R suh that

φ({(z1, z2) ∈ C2 : |z1| |z2|
α = |λ|}) ⊂ {(w1, w2) ∈ C2 : |w1| |w2|

β = t}.It is easy to see that t = |φ1(λ, 1)| |φ2(λ, 1)|β.Proof of Theorem 1(a). Let φ : Dα,r → Dβ,R be a proper holomorphimapping. Put v(λ) := |φ1(λ, 1)| |φ2(λ, 1)|β, λ ∈ Ar. Obviously, log v is aharmoni funtion. Applying Corollary 11 and Hadamard's theorem we inferthat
v(λ) = |λ|

log R
log r , λ ∈ Ar or v(λ) = |λ|−

log R
log r , λ ∈ Ar.From this and Lemma 12 we easily onlude that there is ε = ±1 suh that(6) |φ1(z)| |φ2(z)|

β = |z1|
ε log R

log r |z2|
εα log R

log r , z ∈ Dα,r.Let z2 = 1, z1 = z ∈ Ar, ψi(z) := φi(z, 1), i = 1, 2. Then
log(ψ1(z)ψ1(z)) + β log(ψ2(z)ψ2(z)) = ε

logR

log r
log(zz).Di�erentiating with respet to z we get(7) ψ′

1(z)

ψ1(z)
+ β

ψ′
2(z)

ψ2(z)
= ε

logR

log r
·
1

z
, z ∈ Ar.It follows that

Ind(ψ1 ◦ γ; 0) + β Ind(ψ2 ◦ γ; 0) = ε
logR

log r
,where γ is the unit irle. Hene logR

log r ∈ Z + βZ. The same argument withrespet to the seond variable shows that α logR
log r ∈ Z + βZ.



Proper holomorphi mappings of Reinhardt domains 291To prove the onverse, assume that
logR

log r
= k1 + l1β, α

logR

log r
= k2 + l2β,where ki, li ∈ Z, i = 1, 2. De�ne φ1(z) := zk11 z
k2
2 , φ2(z) := zl11 z

l2
2 for z =

(z1, z2) ∈ C2, and φ := (φ1, φ2). Observe that φ|Dα,r ∈ Prop(Dα,r, Dβ,R).Indeed, it is easy to hek that(8) |φ1(z)| |φ2(z)|
β = |z1|

logR/log r|z2|
α logR/log r, (z1, z2) ∈ Dα,r,so φ|Dα,r ∈ O(Dα,r, Dβ,R). Sine k1l2 6= k2l1, φ is a proper holomorphimapping from (C∗)

2 into itself (see [Zwo, Theorem 2.1℄). Now we immediatelyonlude from (8) that φ|Dα,r is a proper holomorphi mapping from Dα,rto Dβ,R.Lemma 9 and (6) lead to the followingCorollary 13. Let α, β ∈ R \ Q and φ ∈ Prop(Dα,r, Dβ,R). Assumethat logR
log r = k1 + l1β and α logR

log r = k2 + l2β for some ki, li ∈ Z, i = 1, 2. Thenthere are θ ∈ R, ψ ∈ O(Dα,r) and ε ∈ {1,−1} suh that
φ(z) = (zεk11 zεk22 eiθe−βψ(z), zεl11 zεl22 eψ(z)), z ∈ Dα,r.

Remark 14. We may always assume that ε in Corollary 13 is equalto 1 (replaing if neessary φ by φ ◦ h, where h ∈ Aut(Dα,r), h(z1, z2) :=
(z−1

1 , z−1
2 )).To prove Theorem 1(b) we need the following notation. Put Xα,r :=

{z ∈ C2 : − log r < Re z1 + αRe z2 < log r} and Π(z1, z2) := (ez1, ez2) for
(z1, z2) ∈ C2. It is lear that (Xα,r, Π) is the universal overing of Dα,r.Lemma 15. Let α, β ∈ R \ Q, r, R > 1 and assume that logR

log r = k1 +

l1β, α
logR
log r = k2 + l2β, where ki, li ∈ Z, i = 1, 2. Let f : Dα,r → Dβ,R be aproper holomorphi mapping. Then every ontinuous lifting of the mapping

f ◦Π : Xα,r → Dβ,R is proper and holomorphi.Proof. By Corollary 13 and Remark 14 we may assume that f(z) =
(zk11 z

k2
2 e

−βψ(z)+iθ, zl11 z
l2
2 e

ψ(z)) (z ∈ Dα,r), where θ ∈ R and ψ ∈ O(Dα,r).Let f̃ be any ontinuous lifting of f ◦ Π : Xα,r → Dβ,R, that is, f̃ :

Xα,r → Xβ,R and f ◦Π = Π ◦ f̃ . It is obvious that f̃ is holomorphi. Thenby the identity priniple(9) {
f̃1(z) = k1z1 + k2z2 − βψ(ez1, ez2) + iθ + 2µ1πi,

f̃2(z) = l1z1 + l2z2 + ψ(ez1, ez2) + 2µ2πi,
z ∈ Xα,r,for some µi ∈ Z, i = 1, 2.



292 �. Kosi«skiSuppose that f̃ is not proper, i.e. there is a sequene (zm)∞m=1 ⊂ Xα,r,
zm = (zm1 , z

m
2 ), m ∈ N, without any aumulation points in Xα,r suh that

(f̃(zm))∞m=1 is onvergent in Xβ,R. Put y0 := limm→∞ f̃(zm) ∈ Xβ,R.Obviously, f(Π(zm1 , z
m
2 )) = Π(f̃(zm1 , z

m
2 )) → Π(y0). Sine f is proper,the set {Π(zm) : m ≥ 1} is relatively ompat in Dα,r. Thus we may assumethat (Π(zm))∞m=1 is onvergent, say to w0 ∈ Dα,r. From (9) we dedue that

(k1z
m
1 +k2z

m
2 )∞m=1 and (l1z

m
1 +l2z

m
2 )∞m=1 are onvergent in C2. Thus (zm)∞m=1is also onvergent.Put z0 := limm→∞ zm. Now it su�es to observe that Π(z0) = w0 ∈

Dα,r, so z0 ∈ Xα,r; a ontradition.Now we are able to give a desription of the set of proper holomorphimappings between the domains Dα,r and Dβ,R of the irrational type.Proof of Theorem 1(b). Let f ∈ Prop(Dα,r, Dβ,R). In virtue of Corollary13 and Remark 14 we may assume that
f(z) = (zk11 z

k2
2 e

−βψ(z)+iθ, zl11 z
l2
2 e

ψ(z)), z = (z1, z2) ∈ Dα,r,for some θ ∈ R and ψ ∈ O(Dα,r). Our aim is to show that ψ is onstant.To simplify notation, for γ ∈ R put
Λγ : C2 ∋ (z1, z2) 7→ (z1 + γz2, z2) ∈ C2.It is lear that Λγ(Xγ,̺) = S̺ × C, ̺ > 1, where S̺ := {z ∈ C : − log r <

Re z < log r}. Moreover, Λγ is biholomorphi with inverse Λ−1
γ = Λ−γ .Note that the mapping f̃ : Xα,r → Xβ,R given by

f̃(z) = (k1z1 + k2z2 − βψ(ez1, ez2) + iθ, l1z1 + l2z2 + ψ(ez1, ez2))is a lifting of f◦Π. Thus Lemma 15 implies that f̃ is proper and holomorphi.Put H := (H1, H2) := Λβ ◦ f̃ ◦ Λ−1
α : Sr × C → SR × C. Obviously, H isproper and holomorphi.Applying the relations logR

log r = k1 + l1β, α logR
log r = k2 + l2β we see that

(10) H(z) = (z1(k1 + βl1) + iθ, l1z1 + z2(l2 − l1α) + ψ(ez1−αz2 , ez2)),

z ∈ Sr × C.Hene for any z1 ∈ Sr the mapping C ∋ z 7→ H2(z1, z) ∈ C is properand holomorphi. Consequently, due to the form of proper holomorphi self-mappings of C, there is a polynomial p = pz1 ∈ P(C) suh that H2(z1, z) =
p(z). Therefore, the polynomial q(z) := qz1(z) := p(z) − l1z1 − z(l2 − l1α)satis�es the equation(11) ψ(ez1e−αz, ez) = q(z), z ∈ C.Notie that {(ez1e−α2πim, e2πim) : m ∈ N} is a relatively ompat subsetof Dα,r and the sequene {q(2πim)}∞m=1 is bounded. Thus the polynomial qis onstant.



Proper holomorphi mappings of Reinhardt domains 293Put c(z1) := ψ(ez1−αz2 , ez2), z1 ∈ Sr. Fix any 1 < ̺ < R and takea onstantM = M(̺) > 0 suh that |c(x)| < M for every x ∈ [− log ̺, log ̺].Let λ ∈ ̺D \ (1/̺)D be arbitrary. Note that for any z2 ∈ C we have
|ψ(|λ|e−αz2, ez2)| = |c(log |λ|)| < M. Applying Kroneker's theorem we inferthat the set {(|λ|e−αz, ez) : z ∈C} is dense in {(z1, z2) ∈ C2 : |z1| |z2|

α = |λ|}.Consequently, ψ|Dα,̺ is bounded.Now it su�es to repeat the proof of Lemma 2.7.1 of [Jar-P�1℄ in orderto show that every bounded holomorphi mapping on Dα,̺ (in partiular, ψ)is onstant.On the other hand, we have already mentioned in the proof of Theo-rem 1(a) that any mapping given by (2) is proper.Proof of Theorems 2 and 3. We prove both theorem simultaneously. Let
f : Dα → Dβ (respetively, f : D∗

α → D∗
β) be a proper holomorphi funtion.We aim at reduing the situation to that of Theorem 1. Take any r > 1.From Lemma 12 we see that for any t ∈ [0, 1) (resp. t ∈ (0, 1)) there isan s(t) ∈ [0, 1) (resp. s(t) ∈ (0, 1)) suh that

f({(z1, z2) ∈ C2 : |z1| |z2|
α = t}) ⊂ {(w1, w2) ∈ C2 : |w1| |w2|

β = s(t)}.Note that s(|λ|) = |f1(λ, 1)| |f2(λ, 1)|β and the funtion v given by v : D ∋
λ 7→ s(|λ|) ∈ [0, 1] (resp. v : D∗ ∋ λ 7→ s(|λ|) ∈ [0, 1]) is radial andsubharmoni on D (in the seond ase we may remove the singularity at 0).The maximum priniple applied to v implies that s is inreasing.In partiular, f |D(1,α),1/r2,1

: D(1,α),1/r2,1 → D(1,β),1/R2,1 is proper forsome R > 1. For ̺ > 1 put Λ̺̃ : C2 ∋ (z1, z2) 7→ (̺z1, z2) ∈ C2 andde�ne ψ := Λ̃R ◦ f ◦ Λ̃−1
r |Dα,r . Note that ψ ∈ Prop(Dα,r, Dβ,R). ApplyingTheorem 1 we �nd that logR

log r = k1 + l1β, α
logR
log r = k2 + l2β and ψ(z1, z2) =

(azεk11 zεk22 , bzεl11 zεl22 ) for some ki, li ∈ Z, i = 1, 2, ε = ±1 and a, b ∈ Csatisfying |a| |b|β = 1.Oviously α = (k2 + l2β)/(k1 + l1β) and by the identitypriniple we obtain
(12) f(z1, z2) = (arεl1βzεk11 zεk22 , br−εl1zεl11 zεl22 ),

(z1, z2) ∈ Dα (resp. (z1, z2) ∈ D∗
α).If f : D∗

α → D∗
β, then it su�es to notie that |f1(z)| |f2(z)|

β =

(|z1| |z2|
α)εk1+εl1β, z = (z1, z2) ∈ D∗

α, hene ε(k1 + l1β) > 0.When f : Dα → Dβ, we onlude that εki, εli ≥ 0, i = 1, 2.Hene we easily get the required formulas.On the other hand, one an hek that any of the mappings given inTheorem 3 is proper (sine α is irrational, k1l2 − k2l1 6= 0).Lemma 16. Let r+ > 0, r− < r+, t ∈ R. Suppose that the funtion
v : A(r−, r+) → [−∞, t) is subharmoni, radial (i.e. v(|λ|) = v(λ), λ ∈
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A(r−, r+)) and harmoni on the set {z ∈ A(r−, r+) : v(z) 6= −∞}. Thenthere exist a, b ∈ R suh that

v(λ) = a log |λ| + b, λ ∈ A(r−, r+).Proof. It su�es to observe that sine v is radial, A(r−, r+)\{0} ⊂ {z ∈
A(r−, r+) : v(z) 6= −∞} (and next one may proeed in a standard way, i.e.solve an easy di�erential equation).Proof of Theorem 4. First, onsider the ase when Dα,r−1 ,r

+
1
and Dβ,r−2 ,r

+
2are of the irrational type. Then we may assume that α = (1, α1) for some

α1 ∈ R \ Q. Let
v : A(r−1 , r

+
1 ) ∋ λ 7→ log |ψ1(λ, 1)|β1|ψ2(λ, 1)|β2 ∈ R.By Lemma 12 we see that ψ({(z1, z2) ∈ C2 : |z1| |z2|

α = |λ|} ⊂ {(w1, w2) ∈
C2 : |w1|

β1 |w2|
β2 = ev(λ)}. Therefore, v is radial. Observe moreover that v issubharmoni on A(r−1 , r

+
1 ) and harmoni on {λ ∈ A(r−1 , r

+
1 ) : v(λ) > −∞}.Sine ψ is surjetive, we onlude that(13) v(A(r−1 , r

+
1 )) =

{
(log r−2 , log r+2 ) if r−2 ≥ 0,

[−∞, log r+2 ) if r−2 < 0(we put log 0 := −∞). However, by Lemma 16, v(λ) = a log |λ| + b, λ ∈
A(r−1 , r

+
1 ), for some a, b ∈ R, whih easily �nishes the proof in this ase.Now suppose that Dα,r−1 ,r

+
1
and Dβ,r−2 ,r

+
2
are of the rational type; we mayassume that β = (p, q) ∈ Z2 and α = (1, α1) for some α1 ∈ Q. ApplyingLemma 10 one an see that the mapping

A(r−1 , r
+
1 ) ∋ λ 7→ ψ1(λ, 1)pψ2(λ, 1)q ∈ A(r−2 , r

+
2 )is proper. Hene this ase follows diretly from the form of the set of properholomorphi mappings from A(r−1 , r

+
1 ) to A(r−2 , r

+
2 ).Proof of Theorem 5. Assume that Dα,r−1 ,r

+
1
is of the rational type and

Dβ,r−2 ,r
+
2
is of the irrational type; without loss of generality α = (1, p/q) forsome p, q ∈ Z and β = (1, β2) for some β2 ∈ R \ Q.Suppose that ψ ∈ Prop(Dα,r−1 ,r

+
1
, Dβ,r−2 ,r

+
2
). Note that for any λ ∈

A(r−1 , r
+
1 ) the mapping(14) uλ : C∗ ∋ z 7→ |ψ1(λz

p, z−q)| |ψ2(λz
p, z−q)|β2is onstant. Fix λ0 and c 6= 0 suh that uλ0 ≡ c. One an see that C∗ ∋ z 7→

ψi(λ0z
p, z−q) ∈ C∗ is a proper holomorphi self-mapping of C∗, i = 1, 2.Therefore, there are ai ∈ C∗ and µi ∈ Z∗, i = 1, 2, suh that ψi(λ0z

p, z−q) =
aiz

µi for z ∈ C∗, i = 1, 2. Applying (14) it is lear that |a1| |a2|
β2 |z|µ1+µ2β2

= c for z ∈ C∗. In partiular, β2 ∈ Q, a ontradition.
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+
2
, Dα,r−1 ,r

+
1
). Put u(λ)

:= |ψ1(λ, 1)| |ψ2(λ, 1)|β2 for λ ∈ A(r−2 , r
+
2 ).Applying Lemmas 10 and 12 we �nd that u satis�es the assumptionsof Lemma 16. Thus, there are a, b ∈ R suh that log u(λ) = a log |λ| + bfor λ ∈ A(r−2 , r

+
2 ). In partiular, u is either stritly inreasing or stritlydereasing. Take any ̺−2 , ̺+

2 suh that ̺−2 > max{0, r−2 }, ̺
+
2 < r+2 , ̺

−
2 < ̺+

2 .Put ̺−1 := min{u(̺−2 ), u(̺+
2 )}, ̺+

1 := max{u(̺−2 ), u(̺+
2 )}. Then

ψ|D
β,̺−2 ,̺+

2

: Dβ,̺−2 ,̺
+
2
→ D(1,α),̺−1 ,̺

+
1is obviously a proper holomorphi mapping. In virtue of Theorem 1(a) thereare ki, li ∈ Z, i = 1, 2, suh that β = (k1 + l1α)/(k2 + l2α). In partiular,

β ∈ Q, a ontradition.Lemma 17. Let A,B ⊂ Cn be domains and assume that B is bounded.(a) A mapping f : A×C∗ → B×C is proper and holomorphi if and onlyif there are m ∈ Prop(A,B), k ∈ N, 0 < k < N, N ∈ N, ai ∈ O(A),
i = 1, . . . , N, with |a0(z)|+ · · ·+ |ak−1(z)| > 0 and |ak+1(z)|+ · · ·+
|aN (z)| > 0 for z ∈ A, satisfying
f(z, w) =

(
m(z),

aN (z)wN + · · · + a0(z)

wk

)
, (z, w) ∈ A× C∗.(b) A mapping f : A×C → B×C is proper and holomorphi if and onlyif there are a0, . . . , aN ∈ O(A), N ∈ N, with |a0(z)|+· · ·+|aN (z)| > 0for z ∈ A, and there is a proper holomorphi mapping m : A → Bsuh that

f(z, w) = (m(z), aN(z)wN + · · · + a0(z)), (z, w) ∈ A× C.() A mapping f : A × C∗ → B × C is proper and holomorphi if andonly if there are m ∈ Prop(A,B), a ∈ O(A,C∗) and k ∈ N suh that
f(z, w) = (m(z), a(z)wk), (z, w) ∈ A× C∗.(d) There is no proper holomorphi mapping from A× C to B × C∗.Proof. First of all, notie that for any z ∈ A the mapping w 7→ f1(z, w)

∈ Cn is bounded on C (or C∗), so it is onstant.(a) Observe that C∗ ∋ w 7→ f2(z, w) ∈ C is proper for any z ∈ A. Thus,for any z ∈ A there is a polynomial p(z, ·), p(z, 0) 6= 0, and a natural k(z)suh that(15) φ2(z, w) =
p(z, w)

wk(z)
, (z, w) ∈ A× C∗.One an see that there is a k suh that k = k(z) for z ∈ A (use Rouhe'stheorem). Consequently, p ∈ O(A× C∗).
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Aµ :=

{
z ∈ A′ :

∂µp

∂wµ
(z, w) = 0 for any w ∈ C

}
.

The above onsiderations imply that ⋃∞
µ=1Aµ = A′. Applying Baire's theo-rem we �nd that there exists N ∈ N suh that AN has non-empty interior.By the identity priniple, AN = A.Thus, there are holomorphi mappings a0, . . . , aN : A → C suh that

p(z, w) = aN (z)wN + · · · + a1(z)w + a0(z) for (z, w) ∈ A× C, i.e.(16) f2(z, w) =
aN (z)wN + · · · + a1(z)w + a0(z)

wk
, (z, w) ∈ A× C.By properness of f2(z, ·) we onlude that 0 < k < N , and |aN (z)| + . . . +

|ak+1(z)| > 0 and |ak−1(z)| + · · · + |a0(z)| > 0 for any z ∈ A.Put m(z) := f1(z, 1), z ∈ A. We laim that m is proper.Indeed, take any sequene (zn)
∞
n=1 and assume that it has no aumu-lation points in A. We may assume that a0(zn) 6= 0 for any n ∈ N (if ne-essary replae a0 with a1 et.). Then there exists a sequene (wn)

∞
n=1 ⊂ C∗suh that aN (zn)w

N
n + · · · + a1(zn)wn + a0(zn) = 0 for any n ∈ N. Sine

f(zn, wn) = (m(zn), 0), it is obvious that (m(zn))
∞
n=1 has no aumulationpoints in B.Conversely, one an hek that every mapping f de�ned in this way isproper.(b) It is easy to see that C ∋ w 7→ f2(z, w) ∈ C is a proper holomorphimapping for any z ∈ A. From the form of suh mappings we onlude that forevery z ∈ A the mapping f2(z, ·) is a omplex polynomial. Now we proeedexatly as in the proof of (a).() We proeed similarly to the proofs of (a) and (b).(d) Suppose that f : A× C → B × C∗ is a proper holomorphi funtion.Fix z ∈ A. Then C ∋ w 7→ f2(z, w) ∈ C∗ is proper.Take ψ ∈ O(C) suh that f2(1, ·) = exp ◦ψ. Observe that ψ is a properholomorphi self-mapping of the omplex plane, hene ψ is a polynomial.From this we easily get a ontradition.Proof of Theorems 6, 7 and 8. These are diret onsequenes of Lem-ma 17.Finally, I take this opportunity to express my deep gratitude to Profes-sor Wªodzimierz Zwonek for introduing me to the subjet and numerousremarks.
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