Proper holomorphic mappings in the special class of Reinhardt domains

by Łukasz Kosiński (Kraków)

Abstract

A complete characterization of proper holomorphic mappings between domains from the class of all pseudoconvex Reinhardt domains in \mathbb{C}^{2} with the logarithmic image equal to a strip or a half-plane is given.

1. Statement of results. We adopt the standard notations of complex analysis. Given $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in \mathbb{R}^{2}$ and $z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ we put $\left|z^{\gamma}\right|=$ $\left|z_{1}\right|^{\gamma_{1}}\left|z_{2}\right|^{\gamma_{2}}$ whenever it makes sense. The unit disc in \mathbb{C} is denoted by \mathbb{D} and the set of proper holomorphic mappings between domains $D, G \subset \mathbb{C}^{n}$ is denoted by $\operatorname{Prop}(D, G)$.

In this paper we deal with those pseudoconvex Reinhardt domains in \mathbb{C}^{2} whose logarithmic image is equal to a strip or a half-plane. Observe that such domains are always algebraically equivalent to domains of the form

$$
D_{\alpha, r^{-}, r^{+}}:=\left\{z \in \mathbb{C}^{2}: r^{-}<\left|z^{\alpha}\right|<r^{+}\right\}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in\left(\mathbb{R}^{2}\right)_{*}, 0<r^{+}<\infty,-\infty<r^{-}<r^{+}$.
We say that $D_{\alpha, r^{-}, r^{+}}$is of the irrational type if $\alpha_{1} / \alpha_{2} \in \mathbb{R} \backslash \mathbb{Q}$. In the other case it is of the rational type.

Recall that if $r^{-}<0<r^{+}$and $\alpha \in\left(\mathbb{R}^{2}\right)_{*}$, then $D_{\alpha, r^{-}, r^{+}}$are so-called elementary Reinhardt domains.

Below we shall give a complete description of all proper holomorphic mappings from $D_{\alpha, r_{1}^{-}, r_{1}^{+}}$to $D_{\beta, r_{2}^{-}, r_{2}^{+}}$for arbitrary $\alpha, \beta \in\left(\mathbb{R}^{2}\right)_{*}$ and $0<$ $r_{i}^{+}<\infty,-\infty<r_{i}^{-}<r_{i}^{+}, i=1,2$. Similar problems have been studied in the literature. In [Shi1] and [Shi2] the problem of holomorphic equivalence of elementary Reinhardt domains was considered. Those results were partially extended by A. Edigarian and W. Zwonek [Edi-Zwo] who gave a charac-

[^0]terization of proper holomorphic mappings between elementary Reinhardt domains of the rational type.

Set $\mathbb{A}\left(\varrho^{-}, \varrho^{+}\right):=\left\{z \in \mathbb{C}: \varrho^{-}<|z|<\varrho^{+}\right\}$for $\varrho^{+}>0, \varrho^{-}<\varrho^{+}$and $\mathbb{A}_{\varrho}:=\mathbb{A}(1 / \varrho, \varrho), \varrho>1$. Moreover, put

$$
\begin{aligned}
D_{\gamma, r} & :=\left\{z \in \mathbb{C}^{2}: 1 / r<\left|z_{1}\right|\left|z_{2}\right|^{\gamma}<r\right\}, \quad \gamma \in \mathbb{R}_{*}, r>1, \\
D_{\gamma} & :=\left\{z \in \mathbb{C}^{2}:\left|z_{1}\right|\left|z_{2}\right|^{\gamma}<1\right\}, \quad \gamma \in \mathbb{R}_{*}, \\
D_{\gamma}^{*} & :=\left\{z \in \mathbb{C}^{2}: 0<\left|z_{1}\right|\left|z_{2}\right|^{\gamma}<1\right\}, \quad \gamma \in \mathbb{R}_{*} .
\end{aligned}
$$

Note that if γ is rational, i.e. $\gamma=p / q$ for some relatively prime $p, q \in \mathbb{Z}$, $q>0$, then $D_{\gamma, r}$ is biholomorphically equivalent to $\mathbb{A}_{r^{q}} \times \mathbb{C}_{*}$ and D_{γ}^{*} is biholomorphically equivalent to $\mathbb{D}_{*} \times \mathbb{C}$. Indeed, put

$$
\psi\left(z_{1}, z_{2}\right):=\left(z_{1}^{q} z_{2}^{p}, z_{1}^{m} z_{2}^{n}\right) \quad \text { for }\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}
$$

where $m, n \in \mathbb{Z}$ are such that $p m-q n=1$. One can check that the mappings $\left.\psi\right|_{D_{\gamma, r}}: D_{\gamma, r} \rightarrow \mathbb{A}_{r^{q}} \times \mathbb{C}_{*}$ and $\left.\psi\right|_{D_{\gamma}^{*}}: D_{\gamma}^{*} \rightarrow \mathbb{D}_{*} \times \mathbb{C}_{*}$ are biholomorphic.

Moreover, one may easily prove that $D_{\alpha, r^{-}, r^{+}}$is algebraically equivalent to a domain of one of the following types:
(i) If $r^{-}>0$:
(a) $\mathbb{A}_{\varrho} \times \mathbb{C}, \alpha_{1} \alpha_{2}=0$,
(b) $\mathbb{A}_{\varrho} \times \mathbb{C}_{*}, \alpha_{1} / \alpha_{2} \in \mathbb{Q}_{*}$,
(c) $D_{\gamma, \varrho}, \gamma=\alpha_{2} / \alpha_{1} \in \mathbb{R} \backslash \mathbb{Q}$.
(ii) If $r^{-}=0$:
(a) $\mathbb{D}_{*} \times \mathbb{C}, \alpha_{1} \alpha_{2}=0$,
(b) $\mathbb{D}_{*} \times \mathbb{C}_{*}, \alpha_{1} / \alpha_{2} \in \mathbb{Q}_{*}$,
(c) $D_{\gamma}^{*}, \gamma=\alpha_{2} / \alpha_{1} \in \mathbb{R} \backslash \mathbb{Q}$.
(iii) If $r^{-}<0$:
(a) $\mathbb{D} \times \mathbb{C}, \alpha_{1} \alpha_{2}=0$,
(b) $D_{\gamma}, \gamma=\alpha_{2} / \alpha_{1} \neq 0$.

Our main result is the following:
Theorem 1.
(a) If $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, then the set of proper holomorphic mappings from $D_{\alpha, r}$ to $D_{\beta, R}$ is non-empty if and only if

$$
\begin{equation*}
\frac{\log R}{\log r} \in \mathbb{Z}+\beta \mathbb{Z}, \quad \alpha \frac{\log R}{\log r} \in \mathbb{Z}+\beta \mathbb{Z} \tag{1}
\end{equation*}
$$

(b) Let $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ and let $r, R>1$ be such that $\frac{\log R}{\log r}=k_{1}+l_{1} \beta$ and $\alpha \frac{\log R}{\log r}=k_{2}+l_{2} \beta$ for some integers $k_{i}, l_{i}, i=1,2$. Then any proper holomorphic mapping $f: D_{\alpha, r} \rightarrow D_{\beta, R}$ is of one of the following forms:

$$
\left\{\begin{array}{l}
f(z)=\left(a z_{1}^{k_{1}} z_{2}^{k_{2}}, b z_{1}^{l_{1}} z_{2}^{l_{2}}\right), \tag{2}\\
f(z)=\left(a z_{1}^{-k_{1}} z_{2}^{-k_{2}}, b z_{1}^{-l_{1}} z_{2}^{-l_{2}}\right),
\end{array} \quad z=\left(z_{1}, z_{2}\right) \in D_{\alpha, r}\right.
$$

where $a, b \in \mathbb{C}$ satisfy $|a||b|^{\beta}=1$. Moreover, any of the mappings given by (2) is proper.

Notice that in Theorem 1(a) we do not demand β to be irrational.
Using Theorem 1 we will easily obtain analogous results for domains of the forms (ii) and (iii) of the irrational type.

THEOREM 2. Let $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$. The set of proper holomorphic mappings from D_{α}^{*} to D_{β}^{*} is non-empty if and only if $\alpha=\left(k_{2}+\beta l_{2}\right) /\left(k_{1}+\beta l_{1}\right)$ for some $k_{i}, l_{i} \in \mathbb{Z}, i=1,2$. Moreover, in that case, if $k_{1}+l_{1} \beta>0$, then any proper holomorphic mapping $f: D_{\alpha}^{*} \rightarrow D_{\beta}^{*}$ is of the form

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\left(a z_{1}^{k_{1}} z_{2}^{k_{2}}, b z_{1}^{l_{1}} z_{2}^{l_{2}}\right), \quad\left(z_{1}, z_{2}\right) \in D_{\alpha}^{*} \tag{3}
\end{equation*}
$$

where $a, b \in \mathbb{C}$ satisfy $|a||b|^{\beta}=1$.
Theorem 3. Let $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$. Then the set $\operatorname{Prop}\left(D_{\alpha}, D_{\beta}\right)$ is non-empty if and only if $\alpha=\left(k_{2}+\beta l_{2}\right) /\left(k_{1}+\beta l_{1}\right)$ for some $k_{i}, l_{i} \in \mathbb{Z}_{\geq 0}, i=1,2$. Moreover, in that case any proper holomorphic mapping $f: D_{\alpha} \rightarrow D_{\beta}$ is of the form

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\left(a z_{1}^{k_{1}} z_{2}^{k_{2}}, b z_{1}^{l_{1}} z_{2}^{l_{2}}\right), \quad\left(z_{1}, z_{2}\right) \in D_{\alpha} \tag{4}
\end{equation*}
$$

where $a, b \in \mathbb{C}$ are such that $|a||b|^{\beta}=1$.
Next we prove the following
Theorem 4. Let $\alpha, \beta \in\left(\mathbb{R}^{2}\right)_{*}, r_{i}^{+}>0, r_{i}^{-}<r_{i}^{+}, i=1,2$. Assume that the sets $D_{\alpha, r_{1}^{-}, r_{1}^{+}}, D_{\beta, r_{2}^{-}, r_{2}^{+}}$are of the same type (either rational or irrational). If there exists a proper holomorphic mapping between them, then either $r_{1}^{-} r_{2}^{-}>0$ or $r_{1}^{-}=r_{2}^{-}=0$.

For domains of different types we have the following result:
THEOREM 5. Let $\alpha, \beta \in\left(\mathbb{R}^{2}\right)_{*}, r_{i}^{+}>0, r_{i}^{-}<r_{i}^{+}, i=1,2$. If the sets $D_{\alpha, r_{1}^{-}, r_{1}^{+}}$and $D_{\beta, r_{2}^{-}, r_{2}^{+}}$are of different types, then there is no proper holomorphic mapping between them.

Finally, we discuss the rational case. As already mentioned, the set of proper holomorphic mappings between elementary Reinhardt domains of the rational type was described in [Edi-Zwo]. Thus, in order to obtain the desired characterization, it suffices to prove the following three theorems.

THEOREM 6. Let $r, R>1$. If $R \neq r^{m}$ for any natural number m, then $\operatorname{Prop}\left(\mathbb{A}_{r} \times \mathbb{C}, \mathbb{A}_{R} \times \mathbb{C}\right), \operatorname{Prop}\left(\mathbb{A}_{r} \times \mathbb{C}_{*}, \mathbb{A}_{R} \times \mathbb{C}\right)$ and $\operatorname{Prop}\left(\mathbb{A}_{r} \times \mathbb{C}_{*}, \mathbb{A}_{R} \times \mathbb{C}_{*}\right)$ are empty. Moreover, for any $m \in \mathbb{N}$:
(a) $\operatorname{Prop}\left(\mathbb{A}_{r} \times \mathbb{C}, \mathbb{A}_{r^{m}} \times \mathbb{C}\right)$ consists of the mappings of the form $\mathbb{A}_{r} \times \mathbb{C} \ni(z, w) \mapsto\left(e^{i \theta} z^{\varepsilon m}, a_{N}(z) w^{N}+\cdots+a_{0}(z)\right) \in \mathbb{A}_{r^{m}} \times \mathbb{C}$, where $\theta \in \mathbb{R}, N \in \mathbb{N}, \varepsilon= \pm 1$ and $a_{0}, \ldots, a_{N} \in \mathcal{O}\left(\mathbb{A}_{r}\right)$ are such that $\left|a_{0}(z)\right|+\cdots+\left|a_{N}(z)\right|>0, z \in \mathbb{A}_{r}$.
(b) $\operatorname{Prop}\left(\mathbb{A}_{r} \times \mathbb{C}_{*}, \mathbb{A}_{r^{m}} \times \mathbb{C}\right)$ consists of the mappings of the form $\mathbb{A}_{r} \times \mathbb{C}_{*} \ni(z, w) \mapsto\left(e^{i \theta} z^{\varepsilon m}, \frac{a_{N}(z) w^{N}+\cdots+a_{0}(z)}{w^{k}}\right) \in \mathbb{A}_{r^{m}} \times \mathbb{C}$, where $\theta \in \mathbb{R}, k, N \in \mathbb{N}, 0<k<N, \varepsilon= \pm 1$ and $a_{i} \in \mathcal{O}\left(\mathbb{A}_{r}\right)$, $i=1, \ldots, N$, satisfy $\left|a_{0}(z)\right|+\cdots+\left|a_{k-1}(z)\right|>0$ and $\left|a_{k+1}(z)\right|+$ $\cdots+\left|a_{N}(z)\right|>0$ for $z \in \mathbb{A}_{r}$.
(c) $\operatorname{Prop}\left(\mathbb{A}_{r} \times \mathbb{C}_{*}, \mathbb{A}_{r^{m}} \times \mathbb{C}_{*}\right)$ consists of the mappings of the form

$$
\mathbb{A}_{r} \times \mathbb{C}_{*} \ni(z, w) \mapsto\left(e^{i \theta} z^{m}, a(z) w^{k}\right) \in \mathbb{A}_{r^{m}} \times \mathbb{C}_{*}
$$

where $\varepsilon= \pm 1, \quad \theta \in \mathbb{R}, k \in \mathbb{N}$ and $a \in \mathcal{O}\left(\mathbb{A}_{r}, \mathbb{C}_{*}\right)$.
THEOREM 7. There are no proper holomorphic mappings from $\mathbb{A}_{r} \times \mathbb{C}$ to $\mathbb{A}_{R} \times \mathbb{C}_{*}$ for any $r, R>1$.

Theorem 8.

(a) $\operatorname{Prop}\left(\mathbb{D}_{*} \times \mathbb{C}, \mathbb{D}_{*} \times \mathbb{C}\right)$ consists of the mappings of the form

$$
\mathbb{D}_{*} \times \mathbb{C} \ni(z, w) \mapsto\left(e^{i \theta} z^{m}, a_{N}(z) w^{N}+\cdots+a_{0}(z)\right) \in \mathbb{D}_{*} \times \mathbb{C}
$$ where $\theta \in \mathbb{R}, N \in \mathbb{N}, m \in \mathbb{N}$ and $a_{0}, \ldots, a_{N} \in \mathcal{O}\left(\mathbb{D}_{*}\right)$ are such that $\left|a_{0}(z)\right|+\cdots+\left|a_{N}(z)\right|>0, z \in \mathbb{D}_{*}$.

(b) $\operatorname{Prop}\left(\mathbb{D}_{*} \times \mathbb{C}_{*}, \mathbb{D}_{*} \times \mathbb{C}\right)$ consists of the mappings of the form

$$
\mathbb{D}_{*} \times \mathbb{C}_{*} \ni(z, w) \mapsto\left(e^{i \theta} z^{m}, \frac{a_{N}(z) w^{N}+\cdots+a_{0}(z)}{w^{k}}\right) \in \mathbb{D}_{*} \times \mathbb{C}
$$

where $\theta \in \mathbb{R}, m \in \mathbb{N}, k, N \in \mathbb{N}, 0<k<N$ and $a_{i} \in \mathcal{O}\left(\mathbb{D}_{*}\right)$, $i=1, \ldots, N$ satisfy $\left|a_{0}(z)\right|+\cdots+\left|a_{k-1}(z)\right|>0$ and $\left|a_{k+1}(z)\right|+$ $\cdots+\left|a_{N}(z)\right|>0$ for $z \in \mathbb{D}_{*}$.
(c) $\operatorname{Prop}\left(\mathbb{D}_{*} \times \mathbb{C}_{*}, \mathbb{D}_{*} \times \mathbb{C}_{*}\right)$ consists of the mappings of the form

$$
\mathbb{D}_{*} \times \mathbb{C}_{*} \ni(z, w) \mapsto\left(e^{i \theta} z^{m}, a(z) w^{k}\right) \in \mathbb{D}_{*} \times \mathbb{C}_{*},
$$

where $\theta \in \mathbb{R}, k \in \mathbb{N}$ and $a \in \mathcal{O}\left(\mathbb{D}_{*}, \mathbb{C}_{*}\right)$.
(d) $\operatorname{Prop}\left(\mathbb{D}_{*} \times \mathbb{C}, \mathbb{D}_{*} \times \mathbb{C}_{*}\right)=\emptyset$.
2. Proofs. The following result is probably known. However, we could not find it in the literature, so we present a proof.

Lemma 9. Let $D \subset \mathbb{C}^{n}$ be a domain, $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ and let $f, g: D \rightarrow \mathbb{C}$ be holomorphic mappings with $|f(z)|=|g(z)|^{\alpha}, z \in D$. Then either $f=$ $g=0$ on D or there exists a holomorphic branch of the logarithm of g, i.e.
a mapping $\psi \in \mathcal{O}(D)$ such that $e^{\psi}=g$ on D. In particular, there exists a $\theta \in \mathbb{R}$ such that $f=e^{i \theta+\alpha \psi}$ on D.

Proof. Comparing multiplicities of the roots of the functions f and g composed with affine mappings we may reduce our considerations to the case when $f, g: D \rightarrow \mathbb{C}_{*}$. Moreover, we may assume that $g\left(x^{\prime}\right) \in \mathbb{R}_{>0}$ for some $x^{\prime} \in D$.

Obviously, there exists an $\eta \in \mathbb{R}$ such that the set $G_{\eta}:=\{z \in D:$ $\left.e^{i \eta} f(z) \in g(z)^{\alpha}\right\}$ is non-empty. Considering, if necessary, a mapping $e^{i \eta} f$ instead of f we may assume that $\eta=0$.

It is easy to see that G_{0} is an open-and-closed subset of D, and so $G_{0}=D$. Thus, there exists a holomorphic branch of g^{α} (also denoted by g^{α}) such that $g^{\alpha}\left(x^{\prime}\right) \in \mathbb{R}_{>0}$. It follows that there exist g^{t} for any $t \in Q:=\{k+l \alpha: k, l \in \mathbb{Z}\}$. Fix a sequence $\left(t_{m}\right)_{m=1}^{\infty} \subset Q$ converging to 0 . In virtue of Montel's theorem, it is clear that $g^{t_{m}} \rightarrow 1$ locally uniformly.

Put $\psi_{m}:=\left(g^{t_{m}}-1\right) / t_{m}$. Then $\lim _{m \rightarrow \infty} \psi_{m}\left(x^{\prime}\right)=\log g\left(x^{\prime}\right)$ and the sequence $\left(\psi_{m}^{\prime}\right)_{m=1}^{\infty}=\left(g^{t_{m}-1} g^{\prime}\right)_{m=1}^{\infty}$ is locally uniformly convergent with limit $(1 / g) g^{\prime}$. Thus $\left(\psi_{m}\right)_{m=1}^{\infty}$ converges locally uniformly on D. Denote its limit by ψ. By the Weierstrass theorem, ψ is holomorphic on D and $\psi^{\prime}=$ $\lim _{m \rightarrow \infty} \psi_{m}^{\prime}=(1 / g) g^{\prime}$.

Let $\widetilde{D} \subset D$ be any simply connected neighborhood of x^{\prime}. Let $\widetilde{\psi}$ be a holomorphic mapping on \widetilde{D} such that $\left.g\right|_{\widetilde{D}}=e^{\widetilde{\psi}}$ and $\widetilde{\psi}\left(x^{\prime}\right)=\log g\left(x^{\prime}\right)$. It is easy to see that $\widetilde{\psi}=\psi$ on \widetilde{D}, and so, by the identity principle, $g=e^{\psi}$ on D. -

Lemma 10. Let $0<r_{i}^{+},-\infty<r_{i}^{-}<r_{i}^{+}, i=1,2, \alpha, \beta \in \mathbb{R}$. Let $\left(\lambda_{n}\right)_{n=1}^{\infty} \subset \mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$. Let $\phi \in \operatorname{Prop}\left(D_{(1, \alpha), r_{1}^{-}, r_{1}^{+}}, D_{(1, \beta), r_{2}^{-}, r_{2}^{+}}\right)$. Put

$$
v(\lambda):=\left|\phi_{1}(\lambda, 1)\right|\left|\phi_{2}(\lambda, 1)\right|^{\beta}, \quad \lambda \in \mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)
$$

If the sequence $\left(\lambda_{n}\right)_{n=1}^{\infty}$ has no accumulation points in $\mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$, then $\left(v\left(\lambda_{n}\right)\right)_{n=1}^{\infty}$ has no accumulation points in $\mathbb{A}\left(r_{2}^{-}, r_{2}^{+}\right)$.

Proof. Assume that $v\left(\lambda_{n}\right) \rightarrow q$. It suffices to show that $q \in \partial \mathbb{A}\left(r_{2}^{-}, r_{2}^{+}\right)$. Otherwise $q \in \mathbb{A}\left(r_{2}^{-}, r_{2}^{+}\right)$. Note that for any $\lambda \in \mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$the function

$$
\begin{equation*}
u_{\lambda}: \mathbb{C} \ni z \mapsto\left|\phi_{1}\left(\lambda e^{-\alpha z}, e^{z}\right)\right|\left|\phi_{2}\left(\lambda e^{-\alpha z}, e^{z}\right)\right|^{\beta} \tag{5}
\end{equation*}
$$

is bounded and subharmonic, so u_{λ} is constant.
Since ϕ is proper, the mapping $\mathbb{C} \ni z \mapsto \phi_{2}\left(\lambda_{n} e^{-\alpha z}, e^{z}\right) \in \mathbb{C}$ is nonconstant for any $n \in \mathbb{N}$. Picard's theorem implies that there is a sequence $\left(z_{n}\right)_{n=0}^{\infty} \subset \mathbb{C}$ such that $\left|\phi_{2}\left(\lambda_{n} e^{-\alpha z_{n}}, e^{z_{n}}\right)\right|^{\beta}=1$. Obviously $u_{\lambda}(z)=u_{\lambda}(1)=$ $v(\lambda)$ for all $z \in \mathbb{C}$ and $v\left(\lambda_{n}\right) \rightarrow q$, so $\left|\phi_{1}\left(\lambda_{n} e^{-\alpha z_{n}}, e^{z_{n}}\right)\right| \rightarrow q$. In particular, the set $\left\{\phi\left(\lambda_{n} e^{-\alpha z_{n}}, e^{z_{n}}\right): n \in \mathbb{N}\right\}$ is relatively compact in $D_{(1, \beta), r_{2}^{-}, r_{2}^{+}}$; however, $\left(\left(\lambda_{n} e^{-\alpha z_{n}}, e^{z_{n}}\right)\right)_{n=1}^{\infty}$ has no accumulation points in $D_{(1, \alpha), r_{1}^{-}, r_{1}^{+}}$, a contradiction.

Corollary 11. Let $\phi=\left(\phi_{1}, \phi_{2}\right): D_{\alpha, r} \rightarrow D_{\beta, R}$ be a proper holomorphic mapping and let $\alpha, \beta \in \mathbb{R}_{>0}, r, R>1$. Put $v(\lambda):=\left|\phi_{1}(\lambda, 1)\right|\left|\phi_{2}(\lambda, 1)\right|^{\beta}$, $\lambda \in \mathbb{A}_{r}$. Then either
$\lim _{|\lambda| \rightarrow 1 / r} v(\lambda)=1 / R, \quad \lim _{|\lambda| \rightarrow r} v(\lambda)=R \quad$ or $\quad \lim _{|\lambda| \rightarrow 1 / r} v(\lambda)=R, \lim _{|\lambda| \rightarrow r} v(\lambda)=1 / R$.
Lemma 12. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}, \beta \in \mathbb{R},-\infty<r_{i}^{-}<r_{i}^{+}<\infty, 0<r_{i}^{+}, i=$ 1,2 , and let $\phi: D_{(1, \alpha), r_{1}^{-}, r_{1}^{+}} \rightarrow D_{(1, \beta), r_{2}^{-}, r_{2}^{+}}$be a holomorphic mapping. Then for any $\lambda \in \mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$,

$$
\begin{aligned}
\phi\left(\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}\right.\right. & \left.\left.:\left|z_{1}\right|\left|z_{2}\right|^{\alpha}=|\lambda|\right\}\right) \\
& \subset\left\{\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2}:\left|w_{1}\right|\left|w_{2}\right|^{\beta}=\left|\phi_{1}(\lambda, 1)\right|\left|\phi_{2}(\lambda, 1)\right|^{\beta}\right\}
\end{aligned}
$$

Proof. Note that for any $\lambda \in \mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$the function

$$
u: \mathbb{C} \ni z \mapsto\left|\phi_{1}\left(\lambda e^{\alpha z}, e^{-z}\right)\right|\left|\phi_{2}\left(\lambda e^{\alpha z}, e^{-z}\right)\right|^{\beta}
$$

is subharmonic and bounded. Hence u is constant.
In virtue of Kronecker's theorem, the set $\left\{\left(|\lambda| e^{\alpha z}, e^{-z}\right): z \in \mathbb{C}\right\}$ is dense in $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|\left|z_{2}\right|^{\alpha}=|\lambda|\right\}$. Thus, there is $t \in \mathbb{R}$ such that

$$
\phi\left(\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|\left|z_{2}\right|^{\alpha}=|\lambda|\right\}\right) \subset\left\{\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2}:\left|w_{1}\right|\left|w_{2}\right|^{\beta}=t\right\}
$$

It is easy to see that $t=\left|\phi_{1}(\lambda, 1)\right|\left|\phi_{2}(\lambda, 1)\right|^{\beta}$.
Proof of Theorem 1(a). Let $\phi: D_{\alpha, r} \rightarrow D_{\beta, R}$ be a proper holomorphic mapping. Put $v(\lambda):=\left|\phi_{1}(\lambda, 1)\right|\left|\phi_{2}(\lambda, 1)\right|^{\beta}, \lambda \in \mathbb{A}_{r}$. Obviously, $\log v$ is a harmonic function. Applying Corollary 11 and Hadamard's theorem we infer that

$$
v(\lambda)=|\lambda|^{\frac{\log R}{\log r}}, \lambda \in \mathbb{A}_{r} \quad \text { or } \quad v(\lambda)=|\lambda|^{-\frac{\log R}{\log r}}, \lambda \in \mathbb{A}_{r}
$$

From this and Lemma 12 we easily conclude that there is $\varepsilon= \pm 1$ such that

$$
\begin{equation*}
\left|\phi_{1}(z)\right|\left|\phi_{2}(z)\right|^{\beta}=\left|z_{1}\right|^{\varepsilon^{\frac{\log R}{\log r}}\left|z_{2}\right|^{\varepsilon \alpha \frac{\log R}{\log r}}, \quad z \in D_{\alpha, r}} \tag{6}
\end{equation*}
$$

Let $z_{2}=1, z_{1}=z \in \mathbb{A}_{r}, \psi_{i}(z):=\phi_{i}(z, 1), i=1,2$. Then

$$
\log \left(\psi_{1}(z) \bar{\psi}_{1}(z)\right)+\beta \log \left(\psi_{2}(z) \bar{\psi}_{2}(z)\right)=\varepsilon \frac{\log R}{\log r} \log (z \bar{z})
$$

Differentiating with respect to z we get

$$
\begin{equation*}
\frac{\psi_{1}^{\prime}(z)}{\psi_{1}(z)}+\beta \frac{\psi_{2}^{\prime}(z)}{\psi_{2}(z)}=\varepsilon \frac{\log R}{\log r} \cdot \frac{1}{z}, \quad z \in \mathbb{A}_{r} \tag{7}
\end{equation*}
$$

It follows that

$$
\operatorname{Ind}\left(\psi_{1} \circ \gamma ; 0\right)+\beta \operatorname{Ind}\left(\psi_{2} \circ \gamma ; 0\right)=\varepsilon \frac{\log R}{\log r}
$$

where γ is the unit circle. Hence $\frac{\log R}{\log r} \in \mathbb{Z}+\beta \mathbb{Z}$. The same argument with respect to the second variable shows that $\alpha \frac{\log R}{\log r} \in \mathbb{Z}+\beta \mathbb{Z}$.

To prove the converse, assume that

$$
\frac{\log R}{\log r}=k_{1}+l_{1} \beta, \quad \alpha \frac{\log R}{\log r}=k_{2}+l_{2} \beta
$$

where $k_{i}, l_{i} \in \mathbb{Z}, i=1,2$. Define $\phi_{1}(z):=z_{1}^{k_{1}} z_{2}^{k_{2}}, \phi_{2}(z):=z_{1}^{l_{1}} z_{2}^{l_{2}}$ for $z=$ $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$, and $\phi:=\left(\phi_{1}, \phi_{2}\right)$. Observe that $\left.\phi\right|_{D_{\alpha, r}} \in \operatorname{Prop}\left(D_{\alpha, r}, D_{\beta, R}\right)$. Indeed, it is easy to check that

$$
\begin{equation*}
\left|\phi_{1}(z)\right|\left|\phi_{2}(z)\right|^{\beta}=\left|z_{1}\right|^{\log R / \log r}\left|z_{2}\right|^{\alpha \log R / \log r}, \quad\left(z_{1}, z_{2}\right) \in D_{\alpha, r} \tag{8}
\end{equation*}
$$

so $\left.\phi\right|_{D_{\alpha, r}} \in \mathcal{O}\left(D_{\alpha, r}, D_{\beta, R}\right)$. Since $k_{1} l_{2} \neq k_{2} l_{1}, \phi$ is a proper holomorphic mapping from $\left(\mathbb{C}_{*}\right)^{2}$ into itself (see [Zwo, Theorem 2.1]). Now we immediately conclude from (8) that $\left.\phi\right|_{D_{\alpha, r}}$ is a proper holomorphic mapping from $D_{\alpha, r}$ to $D_{\beta, R}$.

Lemma 9 and (6) lead to the following
Corollary 13. Let $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ and $\phi \in \operatorname{Prop}\left(D_{\alpha, r}, D_{\beta, R}\right)$. Assume that $\frac{\log R}{\log r}=k_{1}+l_{1} \beta$ and $\alpha \frac{\log R}{\log r}=k_{2}+l_{2} \beta$ for some $k_{i}, l_{i} \in \mathbb{Z}, i=1,2$. Then there are $\theta \in \mathbb{R}, \psi \in \mathcal{O}\left(D_{\alpha, r}\right)$ and $\varepsilon \in\{1,-1\}$ such that

$$
\phi(z)=\left(z_{1}^{\varepsilon k_{1}} z_{2}^{\varepsilon k_{2}} e^{i \theta} e^{-\beta \psi(z)}, z_{1}^{\varepsilon l_{1}} z_{2}^{\varepsilon l_{2}} e^{\psi(z)}\right), \quad z \in D_{\alpha, r}
$$

Remark 14. We may always assume that ε in Corollary 13 is equal to 1 (replacing if necessary ϕ by $\phi \circ h$, where $h \in \operatorname{Aut}\left(D_{\alpha, r}\right), h\left(z_{1}, z_{2}\right):=$ $\left.\left(z_{1}^{-1}, z_{2}^{-1}\right)\right)$.

To prove Theorem 1(b) we need the following notation. Put $X_{\alpha, r}:=$ $\left\{z \in \mathbb{C}^{2}:-\log r<\operatorname{Re} z_{1}+\alpha \operatorname{Re} z_{2}<\log r\right\}$ and $\Pi\left(z_{1}, z_{2}\right):=\left(e^{z_{1}}, e^{z_{2}}\right)$ for $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$. It is clear that $\left(X_{\alpha, r}, \Pi\right)$ is the universal covering of $D_{\alpha, r}$.

Lemma 15. Let $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}, r, R>1$ and assume that $\frac{\log R}{\log r}=k_{1}+$ $l_{1} \beta, \alpha \frac{\log R}{\log r}=k_{2}+l_{2} \beta$, where $k_{i}, l_{i} \in \mathbb{Z}, i=1,2$. Let $f: D_{\alpha, r} \rightarrow D_{\beta, R}$ be a proper holomorphic mapping. Then every continuous lifting of the mapping $f \circ \Pi: X_{\alpha, r} \rightarrow D_{\beta, R}$ is proper and holomorphic.

Proof. By Corollary 13 and Remark 14 we may assume that $f(z)=$ $\left(z_{1}^{k_{1}} z_{2}^{k_{2}} e^{-\beta \psi(z)+i \theta}, z_{1}^{l_{1}} z_{2}^{l_{2}} e^{\psi(z)}\right)\left(z \in D_{\alpha, r}\right)$, where $\theta \in \mathbb{R}$ and $\psi \in \mathcal{O}\left(D_{\alpha, r}\right)$.

Let \widetilde{f} be any continuous lifting of $f \circ \Pi: X_{\alpha, r} \rightarrow D_{\beta, R}$, that is, $\tilde{f}:$ $X_{\alpha, r} \rightarrow X_{\beta, R}$ and $f \circ \Pi=\Pi \circ \tilde{f}$. It is obvious that \tilde{f} is holomorphic. Then by the identity principle

$$
\left\{\begin{array}{l}
\widetilde{f}_{1}(z)=k_{1} z_{1}+k_{2} z_{2}-\beta \psi\left(e^{z_{1}}, e^{z_{2}}\right)+i \theta+2 \mu_{1} \pi i, \tag{9}\\
\widetilde{f}_{2}(z)=l_{1} z_{1}+l_{2} z_{2}+\psi\left(e^{z_{1}}, e^{z_{2}}\right)+2 \mu_{2} \pi i
\end{array} \quad z \in X_{\alpha, r}\right.
$$

for some $\mu_{i} \in \mathbb{Z}, i=1,2$.

Suppose that \widetilde{f} is not proper, i.e. there is a sequence $\left(z^{m}\right)_{m=1}^{\infty} \subset X_{\alpha, r}$, $z^{m}=\left(z_{1}^{m}, z_{2}^{m}\right), m \in \mathbb{N}$, without any accumulation points in $X_{\alpha, r}$ such that $\left(\widetilde{f}\left(z^{m}\right)\right)_{m=1}^{\infty}$ is convergent in $X_{\beta, R}$. Put $y_{0}:=\lim _{m \rightarrow \infty} \widetilde{f}\left(z^{m}\right) \in X_{\beta, R}$.

Obviously, $f\left(\Pi\left(z_{1}^{m}, z_{2}^{m}\right)\right)=\Pi\left(\widetilde{f}\left(z_{1}^{m}, z_{2}^{m}\right)\right) \rightarrow \Pi\left(y_{0}\right)$. Since f is proper, the set $\left\{\Pi\left(z^{m}\right): m \geq 1\right\}$ is relatively compact in $D_{\alpha, r}$. Thus we may assume that $\left(\Pi\left(z^{m}\right)\right)_{m=1}^{\infty}$ is convergent, say to $w_{0} \in D_{\alpha, r}$. From (9) we deduce that $\left(k_{1} z_{1}^{m}+k_{2} z_{2}^{m}\right)_{m=1}^{\infty}$ and $\left(l_{1} z_{1}^{m}+l_{2} z_{2}^{m}\right)_{m=1}^{\infty}$ are convergent in \mathbb{C}^{2}. Thus $\left(z^{m}\right)_{m=1}^{\infty}$ is also convergent.

Put $z_{0}:=\lim _{m \rightarrow \infty} z^{m}$. Now it suffices to observe that $\Pi\left(z_{0}\right)=w_{0} \in$ $D_{\alpha, r}$, so $z_{0} \in X_{\alpha, r}$; a contradiction.

Now we are able to give a description of the set of proper holomorphic mappings between the domains $D_{\alpha, r}$ and $D_{\beta, R}$ of the irrational type.

Proof of Theorem $1(b)$. Let $f \in \operatorname{Prop}\left(D_{\alpha, r}, D_{\beta, R}\right)$. In virtue of Corollary 13 and Remark 14 we may assume that

$$
f(z)=\left(z_{1}^{k_{1}} z_{2}^{k_{2}} e^{-\beta \psi(z)+i \theta}, z_{1}^{l_{1}} z_{2}^{l_{2}} e^{\psi(z)}\right), \quad z=\left(z_{1}, z_{2}\right) \in D_{\alpha, r}
$$

for some $\theta \in \mathbb{R}$ and $\psi \in \mathcal{O}\left(D_{\alpha, r}\right)$. Our aim is to show that ψ is constant.
To simplify notation, for $\gamma \in \mathbb{R}$ put

$$
\Lambda_{\gamma}: \mathbb{C}^{2} \ni\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}+\gamma z_{2}, z_{2}\right) \in \mathbb{C}^{2}
$$

It is clear that $\Lambda_{\gamma}\left(X_{\gamma, \varrho}\right)=S_{\varrho} \times \mathbb{C}, \varrho>1$, where $S_{\varrho}:=\{z \in \mathbb{C}:-\log r<$ $\operatorname{Re} z<\log r\}$. Moreover, Λ_{γ} is biholomorphic with inverse $\Lambda_{\gamma}^{-1}=\Lambda_{-\gamma}$.

Note that the mapping $\tilde{f}: X_{\alpha, r} \rightarrow X_{\beta, R}$ given by

$$
\widetilde{f}(z)=\left(k_{1} z_{1}+k_{2} z_{2}-\beta \psi\left(e^{z_{1}}, e^{z_{2}}\right)+i \theta, l_{1} z_{1}+l_{2} z_{2}+\psi\left(e^{z_{1}}, e^{z_{2}}\right)\right)
$$

is a lifting of $f \circ \Pi$. Thus Lemma 15 implies that \widetilde{f} is proper and holomorphic.
Put $H:=\left(H_{1}, H_{2}\right):=\Lambda_{\beta} \circ \widetilde{f} \circ \Lambda_{\alpha}^{-1}: S_{r} \times \mathbb{C} \rightarrow S_{R} \times \mathbb{C}$. Obviously, H is proper and holomorphic.

Applying the relations $\frac{\log R}{\log r}=k_{1}+l_{1} \beta, \alpha \frac{\log R}{\log r}=k_{2}+l_{2} \beta$ we see that

$$
\begin{align*}
H(z)=\left(z_{1}\left(k_{1}+\beta l_{1}\right)+i \theta, l_{1} z_{1}+z_{2}\left(l_{2}-l_{1} \alpha\right)+\psi\left(e^{z_{1}-\alpha z_{2}}\right.\right. & \left.\left., e^{z_{2}}\right)\right) \tag{10}\\
& z \in S_{r} \times \mathbb{C}
\end{align*}
$$

Hence for any $z_{1} \in S_{r}$ the mapping $\mathbb{C} \ni z \mapsto H_{2}\left(z_{1}, z\right) \in \mathbb{C}$ is proper and holomorphic. Consequently, due to the form of proper holomorphic selfmappings of \mathbb{C}, there is a polynomial $p=p_{z_{1}} \in \mathcal{P}(\mathbb{C})$ such that $H_{2}\left(z_{1}, z\right)=$ $p(z)$. Therefore, the polynomial $q(z):=q_{z_{1}}(z):=p(z)-l_{1} z_{1}-z\left(l_{2}-l_{1} \alpha\right)$ satisfies the equation

$$
\begin{equation*}
\psi\left(e^{z_{1}} e^{-\alpha z}, e^{z}\right)=q(z), \quad z \in \mathbb{C} . \tag{11}
\end{equation*}
$$

Notice that $\left\{\left(e^{z_{1}} e^{-\alpha 2 \pi i m}, e^{2 \pi i m}\right): m \in \mathbb{N}\right\}$ is a relatively compact subset of $D_{\alpha, r}$ and the sequence $\{q(2 \pi i m)\}_{m=1}^{\infty}$ is bounded. Thus the polynomial q is constant.

Put $c\left(z_{1}\right):=\psi\left(e^{z_{1}-\alpha z_{2}}, e^{z_{2}}\right), z_{1} \in S_{r}$. Fix any $1<\varrho<R$ and take a constant $M=M(\varrho)>0$ such that $|c(x)|<M$ for every $x \in[-\log \varrho, \log \varrho]$.

Let $\lambda \in \varrho \mathbb{D} \backslash(1 / \varrho) \mathbb{D}$ be arbitrary. Note that for any $z_{2} \in \mathbb{C}$ we have $\left|\psi\left(|\lambda| e^{-\alpha z_{2}}, e^{z_{2}}\right)\right|=|c(\log |\lambda|)|<M$. Applying Kronecker's theorem we infer that the set $\left\{\left(|\lambda| e^{-\alpha z}, e^{z}\right): z \in \mathbb{C}\right\}$ is dense in $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|\left|z_{2}\right|^{\alpha}=|\lambda|\right\}$. Consequently, $\left.\psi\right|_{D_{\alpha, \varrho}}$ is bounded.

Now it suffices to repeat the proof of Lemma 2.7.1 of [Jar-Pfl1] in order to show that every bounded holomorphic mapping on $D_{\alpha, \varrho}$ (in particular, ψ) is constant.

On the other hand, we have already mentioned in the proof of Theorem 1 (a) that any mapping given by (2) is proper.

Proof of Theorems 2 and 3. We prove both theorem simultaneously. Let $f: D_{\alpha} \rightarrow D_{\beta}$ (respectively, $f: D_{\alpha}^{*} \rightarrow D_{\beta}^{*}$) be a proper holomorphic function. We aim at reducing the situation to that of Theorem 1. Take any $r>1$.

From Lemma 12 we see that for any $t \in[0,1)$ (resp. $t \in(0,1)$) there is an $s(t) \in[0,1)($ resp. $s(t) \in(0,1))$ such that

$$
f\left(\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|\left|z_{2}\right|^{\alpha}=t\right\}\right) \subset\left\{\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2}:\left|w_{1}\right|\left|w_{2}\right|^{\beta}=s(t)\right\}
$$

Note that $s(|\lambda|)=\left|f_{1}(\lambda, 1)\right|\left|f_{2}(\lambda, 1)\right|^{\beta}$ and the function v given by $v: \mathbb{D} \ni$ $\lambda \mapsto s(|\lambda|) \in[0,1]$ (resp. $\left.v: \mathbb{D}_{*} \ni \lambda \mapsto s(|\lambda|) \in[0,1]\right)$ is radial and subharmonic on \mathbb{D} (in the second case we may remove the singularity at 0). The maximum principle applied to v implies that s is increasing.

In particular, $\left.f\right|_{D_{(1, \alpha), 1 / r^{2}, 1}}: D_{(1, \alpha), 1 / r^{2}, 1} \rightarrow D_{(1, \beta), 1 / R^{2}, 1}$ is proper for some $R>1$. For $\varrho>1$ put $\widetilde{\Lambda}_{\varrho}: \mathbb{C}^{2} \ni\left(z_{1}, z_{2}\right) \mapsto\left(\varrho z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ and define $\psi:=\left.\widetilde{\Lambda}_{R} \circ f \circ \widetilde{\Lambda}_{r}^{-1}\right|_{D_{\alpha, r}}$. Note that $\psi \in \operatorname{Prop}\left(D_{\alpha, r}, D_{\beta, R}\right)$. Applying Theorem 1 we find that $\frac{\log R}{\log r}=k_{1}+l_{1} \beta, \alpha \frac{\log R}{\log r}=k_{2}+l_{2} \beta$ and $\psi\left(z_{1}, z_{2}\right)=$ $\left(a z_{1}^{\varepsilon k_{1}} z_{2}^{\varepsilon k_{2}}, b z_{1}^{\varepsilon l_{1}} z_{2}^{\varepsilon l_{2}}\right)$ for some $k_{i}, l_{i} \in \mathbb{Z}, i=1,2, \varepsilon= \pm 1$ and $a, b \in \mathbb{C}$ satisfying $|a||b|^{\beta}=1$. Oviously $\alpha=\left(k_{2}+l_{2} \beta\right) /\left(k_{1}+l_{1} \beta\right)$ and by the identity principle we obtain

$$
\begin{align*}
& f\left(z_{1}, z_{2}\right)=\left(a r^{\varepsilon l_{1} \beta} z_{1}^{\varepsilon k_{1}} z_{2}^{\varepsilon k_{2}}, b r^{-\varepsilon l_{1}} z_{1}^{\varepsilon l_{1}} z_{2}^{\varepsilon l_{2}}\right) \tag{12}\\
&\left(z_{1}, z_{2}\right) \in D_{\alpha}\left(\text { resp. }\left(z_{1}, z_{2}\right) \in D_{\alpha}^{*}\right)
\end{align*}
$$

If $f: D_{\alpha}^{*} \rightarrow D_{\beta}^{*}$, then it suffices to notice that $\left|f_{1}(z)\right|\left|f_{2}(z)\right|^{\beta}=$ $\left(\left|z_{1}\right|\left|z_{2}\right|^{\alpha}\right)^{\varepsilon k_{1}+\varepsilon l_{1} \beta}, z=\left(z_{1}, z_{2}\right) \in D_{\alpha}^{*}$, hence $\varepsilon\left(k_{1}+l_{1} \beta\right)>0$.

When $f: D_{\alpha} \rightarrow D_{\beta}$, we conclude that $\varepsilon k_{i}, \varepsilon l_{i} \geq 0, i=1,2$.
Hence we easily get the required formulas.
On the other hand, one can check that any of the mappings given in Theorem 3 is proper (since α is irrational, $k_{1} l_{2}-k_{2} l_{1} \neq 0$).

Lemma 16. Let $r^{+}>0, r^{-}<r^{+}, t \in \mathbb{R}$. Suppose that the function $v: \mathbb{A}\left(r^{-}, r^{+}\right) \rightarrow[-\infty, t)$ is subharmonic, radial (i.e. $v(|\lambda|)=v(\lambda), \lambda \in$
$\left.\mathbb{A}\left(r^{-}, r^{+}\right)\right)$and harmonic on the set $\left\{z \in \mathbb{A}\left(r^{-}, r^{+}\right): v(z) \neq-\infty\right\}$. Then there exist $a, b \in \mathbb{R}$ such that

$$
v(\lambda)=a \log |\lambda|+b, \quad \lambda \in \mathbb{A}\left(r^{-}, r^{+}\right)
$$

Proof. It suffices to observe that since v is radial, $\mathbb{A}\left(r^{-}, r^{+}\right) \backslash\{0\} \subset\{z \in$ $\left.\mathbb{A}\left(r^{-}, r^{+}\right): v(z) \neq-\infty\right\}$ (and next one may proceed in a standard way, i.e. solve an easy differential equation).

Proof of Theorem 4. First, consider the case when $D_{\alpha, r_{1}^{-}, r_{1}^{+}}$and $D_{\beta, r_{2}^{-}, r_{2}^{+}}$ are of the irrational type. Then we may assume that $\alpha=\left(1, \alpha_{1}\right)$ for some $\alpha_{1} \in \mathbb{R} \backslash \mathbb{Q}$. Let

$$
v: \mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right) \ni \lambda \mapsto \log \left|\psi_{1}(\lambda, 1)\right|^{\beta_{1}}\left|\psi_{2}(\lambda, 1)\right|^{\beta_{2}} \in \mathbb{R}
$$

By Lemma 12 we see that $\psi\left(\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|\left|z_{2}\right|^{\alpha}=|\lambda|\right\} \subset\left\{\left(w_{1}, w_{2}\right) \in\right.\right.$ $\left.\mathbb{C}^{2}:\left|w_{1}\right|^{\beta_{1}}\left|w_{2}\right|^{\beta_{2}}=e^{v(\lambda)}\right\}$. Therefore, v is radial. Observe moreover that v is subharmonic on $\mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$and harmonic on $\left\{\lambda \in \mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right): v(\lambda)>-\infty\right\}$. Since ψ is surjective, we conclude that

$$
v\left(\mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)\right)= \begin{cases}\left(\log r_{2}^{-}, \log r_{2}^{+}\right) & \text {if } r_{2}^{-} \geq 0 \tag{13}\\ {\left[-\infty, \log r_{2}^{+}\right)} & \text {if } r_{2}^{-}<0\end{cases}
$$

(we put $\log 0:=-\infty$). However, by Lemma $16, v(\lambda)=a \log |\lambda|+b, \lambda \in$ $\mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$, for some $a, b \in \mathbb{R}$, which easily finishes the proof in this case.

Now suppose that $D_{\alpha, r_{1}^{-}, r_{1}^{+}}$and $D_{\beta, r_{2}^{-}, r_{2}^{+}}$are of the rational type; we may assume that $\beta=(p, q) \in \mathbb{Z}^{2}$ and $\alpha=\left(1, \alpha_{1}\right)$ for some $\alpha_{1} \in \mathbb{Q}$. Applying Lemma 10 one can see that the mapping

$$
\mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right) \ni \lambda \mapsto \psi_{1}(\lambda, 1)^{p} \psi_{2}(\lambda, 1)^{q} \in \mathbb{A}\left(r_{2}^{-}, r_{2}^{+}\right)
$$

is proper. Hence this case follows directly from the form of the set of proper holomorphic mappings from $\mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$to $\mathbb{A}\left(r_{2}^{-}, r_{2}^{+}\right)$. -

Proof of Theorem 5. Assume that $D_{\alpha, r_{1}^{-}, r_{1}^{+}}$is of the rational type and $D_{\beta, r_{2}^{-}, r_{2}^{+}}$is of the irrational type; without loss of generality $\alpha=(1, p / q)$ for some $p, q \in \mathbb{Z}$ and $\beta=\left(1, \beta_{2}\right)$ for some $\beta_{2} \in \mathbb{R} \backslash \mathbb{Q}$.

Suppose that $\psi \in \operatorname{Prop}\left(D_{\alpha, r_{1}^{-}, r_{1}^{+}}, D_{\beta, r_{2}^{-}, r_{2}^{+}}\right)$. Note that for any $\lambda \in$ $\mathbb{A}\left(r_{1}^{-}, r_{1}^{+}\right)$the mapping

$$
\begin{equation*}
u_{\lambda}: \mathbb{C}_{*} \ni z \mapsto\left|\psi_{1}\left(\lambda z^{p}, z^{-q}\right)\right|\left|\psi_{2}\left(\lambda z^{p}, z^{-q}\right)\right|^{\beta_{2}} \tag{14}
\end{equation*}
$$

is constant. Fix λ_{0} and $c \neq 0$ such that $u_{\lambda_{0}} \equiv c$. One can see that $\mathbb{C}_{*} \ni z \mapsto$ $\psi_{i}\left(\lambda_{0} z^{p}, z^{-q}\right) \in \mathbb{C}_{*}$ is a proper holomorphic self-mapping of $\mathbb{C}_{*}, i=1,2$. Therefore, there are $a_{i} \in \mathbb{C}_{*}$ and $\mu_{i} \in \mathbb{Z}_{*}, i=1,2$, such that $\psi_{i}\left(\lambda_{0} z^{p}, z^{-q}\right)=$ $a_{i} z^{\mu_{i}}$ for $z \in \mathbb{C}_{*}, i=1,2$. Applying (14) it is clear that $\left|a_{1}\right|\left|a_{2}\right|^{\beta_{2}}|z|^{\mu_{1}+\mu_{2} \beta_{2}}$ $=c$ for $z \in \mathbb{C}_{*}$. In particular, $\beta_{2} \in \mathbb{Q}$, a contradiction.

Now, suppose that there exists $\psi \in \operatorname{Prop}\left(D_{\beta, r_{2}^{-}, r_{2}^{+}}, D_{\alpha, r_{1}^{-}, r_{1}^{+}}\right)$. Put $u(\lambda)$ $:=\left|\psi_{1}(\lambda, 1)\right|\left|\psi_{2}(\lambda, 1)\right|^{\beta_{2}}$ for $\lambda \in \mathbb{A}\left(r_{2}^{-}, r_{2}^{+}\right)$.

Applying Lemmas 10 and 12 we find that u satisfies the assumptions of Lemma 16. Thus, there are $a, b \in \mathbb{R}$ such that $\log u(\lambda)=a \log |\lambda|+b$ for $\lambda \in \mathbb{A}\left(r_{2}^{-}, r_{2}^{+}\right)$. In particular, u is either strictly increasing or strictly decreasing. Take any $\varrho_{2}^{-}, \varrho_{2}^{+}$such that $\varrho_{2}^{-}>\max \left\{0, r_{2}^{-}\right\}, \varrho_{2}^{+}<r_{2}^{+}, \varrho_{2}^{-}<\varrho_{2}^{+}$. Put $\varrho_{1}^{-}:=\min \left\{u\left(\varrho_{2}^{-}\right), u\left(\varrho_{2}^{+}\right)\right\}, \varrho_{1}^{+}:=\max \left\{u\left(\varrho_{2}^{-}\right), u\left(\varrho_{2}^{+}\right)\right\}$. Then

$$
\left.\psi\right|_{\beta, \varrho_{2}^{-}, e_{2}^{+}}: D_{\beta, \varrho_{2}^{-}, \varrho_{2}^{+}} \rightarrow D_{(1, \alpha), \varrho_{1}^{-}, \varrho_{1}^{+}}
$$

is obviously a proper holomorphic mapping. In virtue of Theorem 1(a) there are $k_{i}, l_{i} \in \mathbb{Z}, i=1,2$, such that $\beta=\left(k_{1}+l_{1} \alpha\right) /\left(k_{2}+l_{2} \alpha\right)$. In particular, $\beta \in \mathbb{Q}$, a contradiction.

Lemma 17. Let $A, B \subset \mathbb{C}^{n}$ be domains and assume that B is bounded.
(a) A mapping $f: A \times \mathbb{C}_{*} \rightarrow B \times \mathbb{C}$ is proper and holomorphic if and only if there are $m \in \operatorname{Prop}(A, B), k \in \mathbb{N}, 0<k<N, N \in \mathbb{N}, a_{i} \in \mathcal{O}(A)$, $i=1, \ldots, N$, with $\left|a_{0}(z)\right|+\cdots+\left|a_{k-1}(z)\right|>0$ and $\left|a_{k+1}(z)\right|+\cdots+$ $\left|a_{N}(z)\right|>0$ for $z \in A$, satisfying

$$
f(z, w)=\left(m(z), \frac{a_{N}(z) w^{N}+\cdots+a_{0}(z)}{w^{k}}\right), \quad(z, w) \in A \times \mathbb{C}_{*}
$$

(b) A mapping $f: A \times \mathbb{C} \rightarrow B \times \mathbb{C}$ is proper and holomorphic if and only if there are $a_{0}, \ldots, a_{N} \in \mathcal{O}(A), N \in \mathbb{N}$, with $\left|a_{0}(z)\right|+\cdots+\left|a_{N}(z)\right|>0$ for $z \in A$, and there is a proper holomorphic mapping $m: A \rightarrow B$ such that

$$
f(z, w)=\left(m(z), a_{N}(z) w^{N}+\cdots+a_{0}(z)\right), \quad(z, w) \in A \times \mathbb{C}
$$

(c) A mapping $f: A \times \mathbb{C}_{*} \rightarrow B \times \mathbb{C}$ is proper and holomorphic if and only if there are $m \in \operatorname{Prop}(A, B), a \in \mathcal{O}\left(A, \mathbb{C}_{*}\right)$ and $k \in \mathbb{N}$ such that

$$
f(z, w)=\left(m(z), a(z) w^{k}\right), \quad(z, w) \in A \times \mathbb{C}_{*}
$$

(d) There is no proper holomorphic mapping from $A \times \mathbb{C}$ to $B \times \mathbb{C}_{*}$.

Proof. First of all, notice that for any $z \in A$ the mapping $w \mapsto f_{1}(z, w)$ $\in \mathbb{C}^{n}$ is bounded on $\mathbb{C}\left(\right.$ or $\left.\mathbb{C}_{*}\right)$, so it is constant.
(a) Observe that $\mathbb{C}_{*} \ni w \mapsto f_{2}(z, w) \in \mathbb{C}$ is proper for any $z \in A$. Thus, for any $z \in A$ there is a polynomial $p(z, \cdot), p(z, 0) \neq 0$, and a natural $k(z)$ such that

$$
\begin{equation*}
\phi_{2}(z, w)=\frac{p(z, w)}{w^{k(z)}}, \quad(z, w) \in A \times \mathbb{C}_{*} \tag{15}
\end{equation*}
$$

One can see that there is a k such that $k=k(z)$ for $z \in A$ (use Rouche's theorem). Consequently, $p \in \mathcal{O}\left(A \times \mathbb{C}_{*}\right)$.

Fix any domain $A^{\prime} \subset \subset A$ and put

$$
A_{\mu}:=\left\{z \in \overline{A^{\prime}}: \frac{\partial^{\mu} p}{\partial w^{\mu}}(z, w)=0 \text { for any } w \in \mathbb{C}\right\}
$$

The above considerations imply that $\bigcup_{\mu=1}^{\infty} A_{\mu}=\overline{A^{\prime}}$. Applying Baire's theorem we find that there exists $N \in \mathbb{N}$ such that A_{N} has non-empty interior. By the identity principle, $A_{N}=A$.

Thus, there are holomorphic mappings $a_{0}, \ldots, a_{N}: A \rightarrow \mathbb{C}$ such that $p(z, w)=a_{N}(z) w^{N}+\cdots+a_{1}(z) w+a_{0}(z)$ for $(z, w) \in A \times \mathbb{C}$, i.e.

$$
\begin{equation*}
f_{2}(z, w)=\frac{a_{N}(z) w^{N}+\cdots+a_{1}(z) w+a_{0}(z)}{w^{k}}, \quad(z, w) \in A \times \mathbb{C} \tag{16}
\end{equation*}
$$

By properness of $f_{2}(z, \cdot)$ we conclude that $0<k<N$, and $\left|a_{N}(z)\right|+\ldots+$ $\left|a_{k+1}(z)\right|>0$ and $\left|a_{k-1}(z)\right|+\cdots+\left|a_{0}(z)\right|>0$ for any $z \in A$.

Put $m(z):=f_{1}(z, 1), z \in A$. We claim that m is proper.
Indeed, take any sequence $\left(z_{n}\right)_{n=1}^{\infty}$ and assume that it has no accumulation points in A. We may assume that $a_{0}\left(z_{n}\right) \neq 0$ for any $n \in \mathbb{N}$ (if necessary replace a_{0} with a_{1} etc.). Then there exists a sequence $\left(w_{n}\right)_{n=1}^{\infty} \subset \mathbb{C}_{*}$ such that $a_{N}\left(z_{n}\right) w_{n}^{N}+\cdots+a_{1}\left(z_{n}\right) w_{n}+a_{0}\left(z_{n}\right)=0$ for any $n \in \mathbb{N}$. Since $f\left(z_{n}, w_{n}\right)=\left(m\left(z_{n}\right), 0\right)$, it is obvious that $\left(m\left(z_{n}\right)\right)_{n=1}^{\infty}$ has no accumulation points in B.

Conversely, one can check that every mapping f defined in this way is proper.
(b) It is easy to see that $\mathbb{C} \ni w \mapsto f_{2}(z, w) \in \mathbb{C}$ is a proper holomorphic mapping for any $z \in A$. From the form of such mappings we conclude that for every $z \in A$ the mapping $f_{2}(z, \cdot)$ is a complex polynomial. Now we proceed exactly as in the proof of (a).
(c) We proceed similarly to the proofs of (a) and (b).
(d) Suppose that $f: A \times \mathbb{C} \rightarrow B \times \mathbb{C}_{*}$ is a proper holomorphic function. Fix $z \in A$. Then $\mathbb{C} \ni w \mapsto f_{2}(z, w) \in \mathbb{C}_{*}$ is proper.

Take $\psi \in \mathcal{O}(\mathbb{C})$ such that $f_{2}(1, \cdot)=\exp \circ \psi$. Observe that ψ is a proper holomorphic self-mapping of the complex plane, hence ψ is a polynomial. From this we easily get a contradiction.

Proof of Theorems 6, 7 and 8. These are direct consequences of Lemma 17.

Finally, I take this opportunity to express my deep gratitude to Professor Włodzimierz Zwonek for introducing me to the subject and numerous remarks.

References

[Edi-Zwo] A. Edigarian and W. Zwonek, Proper holomorphic mappings in some class of unbounded domains, Kodai Math J. 22 (1999), 305-312.
[Jar-Pfl1] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, 1993.
[Jar-Pfl2] -, —, First Steps in Several Complex Variables: Reinhardt Domains, Eur. Math. Soc. Publ. House, 2007, to appear.
[Rud] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Grundlehren Math. Wiss. 241, Springer, 1980.
[Shi1] S. Shimizu, Holomorphic equivalence problem for a certain class of unbounded Reinhardt domains in \mathbb{C}^{2}, Osaka J. Math. 28 (1991), 609-621.
[Shi2] -, Holomorphic equivalence problem for a certain class of unbounded Reinhardt domains in \mathbb{C}^{2}, II, Kodai Math. J. 15 (1992), 430-444.
[Zwo] W. Zwonek, On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math. (Basel) 72 (1999), 304-314.

Instytut Matematyki
Uniwersytet Jagielloński
Reymonta 4
30-059 Kraków, Poland
E-mail: lukasz.kosinski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: 32H35, 32A07.
 Key words and phrases: proper holomorphic mappings, Reinhardt domains, elementary Reinhardt domains.

