ANNALES
POLONICI MATHEMATICI
92.3 (2007)

Proper holomorphic mappings in the special
class of Reinhardt domains

by Lukasz KosiNskI (Krakow)

Abstract. A complete characterization of proper holomorphic mappings between
domains from the class of all pseudoconvex Reinhardt domains in C* with the logarithmic
image equal to a strip or a half-plane is given.

1. Statement of results. We adopt the standard notations of complex
analysis. Given v = (y1,72) € R? and z = (21,22) € C? we put [27| =
|21|7"|22|7* whenever it makes sense. The unit disc in C is denoted by D
and the set of proper holomorphic mappings between domains D, G C C" is
denoted by Prop(D, G).

In this paper we deal with those pseudoconvex Reinhardt domains in C?
whose logarithmic image is equal to a strip or a half-plane. Observe that
such domains are always algebraically equivalent to domains of the form

Dyppr ={2€C? 0™ < 2% <1},

where a = (a1, a2) € (R?),, 0 <rt < oo, —co <r~ <rT.

We say that D,, - .+ is of the drrational type if a1/ € R\ Q. In the
other case it is of the rational type.

Recall that if 7~ < 0 < r™ and a € (R?),, then D, - .+ are so-called
elementary Reinhardt domains.

Below we shall give a complete description of all proper holomorphic
mappings from Daﬂ“fﬂ"f to Dﬁ,r;nﬁ’ for arbitrary o, € (R?), and 0 <
7“27" <oo, —o<r; < 1";', 1 = 1,2. Similar problems have been studied in
the literature. In [Shil] and [Shi2]| the problem of holomorphic equivalence of
elementary Reinhardt domains was considered. Those results were partially
extended by A. Edigarian and W. Zwonek [Edi-Zwo| who gave a charac-
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terization of proper holomorphic mappings between elementary Reinhardt
domains of the rational type.
Set A(p™,0t):={2€C:90 < |z| <o} for o7 >0, oo < o' and
A, :=A(1/0,0), 0> 1. Moreover, put
Dy, :={2€C?:1/r<|zn||z" <r}, FER,r>1,
D, :={2€C?: |z||2" <1}, ~7E€ER,,
Dl :={z¢ C?:0< |z1]]2|” <1}, ~€ER,.
Note that if 7 is rational, i.e. v = p/q for some relatively prime p, q € Z,
q > 0, then D, , is biholomorphically equivalent to A;s x C, and D} is
biholomorphically equivalent to D, x C. Indeed, put
(21, 22) = (2928, 2"28)  for (21, 22) € C?,

where m,n € Z are such that pm —qn = 1. One can check that the mappings
Y|p.,, : Dyy — Apa x Cy and @/J’D;; : DY — D, x C, are biholomorphic.

Moreover, one may easily prove that D, .- .+ is algebraically equivalent
to a domain of one of the following types:

(i) If r— > 0:

(a) Ag X C, a1 = 0,

(b) A, x Cy, a1/ag € Qy,

(0) Diygr 7 = a2/1 € R\ Q.
(i) If 7~ =

(a

(b) Dy x Cy, a1/as € Q,

(C) Di, v = 042/041 S R\Q
r

(a) D x (C, 10y = O,
(b) Dy, v = aa/a1 # 0.
Our main result is the following:

THEOREM 1.

(a) If o € R\ Q, then the set of proper holomorphic mappings from Dq
to Dg g is non-empty if and only if

log R log R
(1) - A B ez 482
log r logr
(b) Let a, 8 € R\Q and let r,R > 1 be such that llzggf = ki + L5 and
ozlffgf = ko + 123 for some integers ki, l;, i = 1,2. Then any proper

holomorphic mapping f : Do, — Dgr ts of one of the following
forms:
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z = (21722) S Da,T‘)

f(z) = (azflz§27 bzlllz?)v
f(2) = (az7 M2y b2y 2y ),

where a,b € C satisfy |a| |b|® = 1. Moreover, any of the mappings
given by (2) is proper.

Notice that in Theorem 1(a) we do not demand f to be irrational.
Using Theorem 1 we will easily obtain analogous results for domains of
the forms (ii) and (iii) of the irrational type.

THEOREM 2. Let a, 3 € R\ Q. The set of proper holomorphic mappings
from D, to D} is non-empty if and only if @ = (kg + Bla)/ (k1 + Bly) for
some ki, l; € Z, 1 = 1,2. Moreover, in that case, if k1 + 113 > 0, then any
proper holomorphic mapping f : D} — Dg 1s of the form

(3) f(z1,22) = (azflzé”,bzlllz?), (21,22) € D,
where a,b € C satisfy |a| |b]® = 1.

THEOREM 3. Let o, f € R\ Q. Then the set Prop(Dq, Dg) is non-empty
if and only if o = (ko + Bl2)/(k1 + Bl1) for some ki, l; € Z>o, 1 = 1,2.
Moreover, in that case any proper holomorphic mapping f : Do — Dg is of
the form
(4) flz1,22) = (a2 252, b21'22), (21, 22) € Da,
where a,b € C are such that |a| |b]® = 1.

Next we prove the following

THEOREM 4. Let o, 3 € (R?),, r;r >0, r, < rj, 1 = 1,2. Assume
that the sets D, P Dﬁ vy g Q7€ of the same type (either rational or
irrational). If there exists a proper holomorphic mapping between them, then
esther riry >0 orry =1y =0.

For domains of different types we have the following result:

THEOREM 5. Let o, 3 € (R?),, 7 > 0, r; < rf, i = 1,2. If the
sets Doc,rf,rf and Dﬁ,rg,r; are of different types, then there is no proper

holomorphic mapping between them.

Finally, we discuss the rational case. As already mentioned, the set of
proper holomorphic mappings between elementary Reinhardt domains of
the rational type was described in [Edi-Zwol|. Thus, in order to obtain the
desired characterization, it suffices to prove the following three theorems.

THEOREM 6. Let r,R > 1. If R # ™ for any natural number m, then
Prop(A, x C,Ar x C), Prop(A, x Cs,Ar x C) and Prop(A, x C,,Ar x C,)

are empty. Moreover, for any m € N :
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(a) Prop(A, x C,A,m x C) consists of the mappings of the form
A, x C3 (z,w) — (€25 an(2)w™ + - +ap(z)) € Apm x C,
where € R, N € N, e = £1 and ay,...,any € O(A,) are such that
lag(2)| + -+ |an(2)| > 0, z € A,.
(b) Prop(A, x Cy, Aym x C) consists of the mappings of the form
an(2)w™ + - +ap(2)
wk

A, x Cy 3 (z,w) — (ewzam, ) € Aym x C,

where € R, k,N € N, 0 < k < N, e = £1 and a; € O(A,),
i=1,...,N, satisfy lap(2)| + -+ + |ag—1(2)] > 0 and |ags+1(2)| +
o+ lan(2)| > 0 for z € A,.

(¢) Prop(A, x Cy, Aym x C,) consists of the mappings of the form

A, x C, 3 (z,w) — (2™, a(z)wk) € Apm x C,,
wheree = +£1, € R, k € N and a € O(A,,C,).

THEOREM 7. There are no proper holomorphic mappings from A, x C
to A x C, for any r, R > 1.

THEOREM 8.
(a) Prop(D, x C,D, x C) consists of the mappings of the form
D, x C 3 (z,w) — (2™ an(2)w™ + -+ ap(z)) € Dy x C,
where 0 € R, N € N, m € N and ag,...,ay € O(Dy) are such that
lap(z)| + -+ -+ |an(2)| > 0, z € D,.
(b) Prop(D. x Cy, D, x C) consists of the mappings of the form

. Ny
D, x Cy 3 (z,w) — <ewzm, an (2)w +k + ao(z)> e D, x C,
w

C
where § € R, m € N, k,N € N, 0 < k < N and a; € O(D,),
i =1,...,N satisfy lag(z)| + -+ + |ax—1(2)| > 0 and |ap1(2)| +
-+ lan(z)| > 0 for z € D,.
(c) Prop(D, x Cy, D, x Cy) consists of the mappings of the form
D, x Cy 3 (z,w) — (e¥92™, a(z)w*) € D, x C,,

where € R, k € N and a € O(D,, C,).
(d) Prop(Ds x C,D, x C,) = 0.

2. Proofs. The following result is probably known. However, we could
not find it in the literature, so we present a proof.

LEMMA 9. Let D C C™ be a domain, o € R\ Q and let f,g: D — C
be holomorphic mappings with |f(z)| = |g(2)|%, z € D. Then either [ =
g =0 on D or there exists a holomorphic branch of the logarithm of g, i.e.
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a mapping ¢ € O(D) such that e¥ = g on D. In particular, there exists a
0 € R such that f = eT% on D.

Proof. Comparing multiplicities of the roots of the functions f and ¢
composed with affine mappings we may reduce our considerations to the
case when f, g : D — C,. Moreover, we may assume that g(z’) € R+ for
some 2’ € D.

Obviously, there exists an n € R such that the set G, := {z € D :
ef(z) € g(2)*} is non-empty. Considering, if necessary, a mapping e f
instead of f we may assume that n = 0.

It is easy to see that G is an open-and-closed subset of D, and so Gog = D.
Thus, there exists a holomorphic branch of g* (also denoted by ¢g¢) such that
g%(2") € Rxo. It follows that there exist g* for any t € Q := {k+la : k,l € Z}.
Fix a sequence (t,)7°_; C @ converging to 0. In virtue of Montel’s theorem,
it is clear that g™ — 1 locally uniformly.

Put ¥, = (¢'™ —1)/tm. Then lim,, .o ¥m(z’) = logg(z’) and the
sequence (¢)°_, = (gim~ 1g’ )>°_, is locally uniformly convergent with
limit (1/g)g’. Thus (¢,)59_, converges locally uniformly on D. Denote its
limit by v. By the Weierstrass theorem, 7 is holomorphic on D and ¢’ =
limm oo ¥y, = (1/9)g"-

Let D C D be any sumply connected nelghborhood of 2. Let w be a holo-
morphic mapplng on D such that 9lp = —¢¥ and 1,[)( "y =logg(a'). It is easy
to see that 1/1 1 on D and so, by the identity principle, g =¢e¥ on D.

LEMMA 10. Let 0 < rf, —co < 77 <71/, i = 1,2, a,3 € R. Let
(An)Sy C A(ry,r]). Let gb € Prop(D(La% - 4 (175)77‘577";)' Put

T1 71

v(A) = oA DI g2 (A DI, A€ Alry, ).
If the sequence (A\,)SS; has mo accumulation points in A(ry,r]), then
(v(An))SS, has no accumulation points in A(ry ,r5).

Proof. Assume that v()\ ) — q. It suffices to show that q € 0A(ry,13).
Otherwise ¢ € A(ry, 7). Note that for any A € A(r;,r{") the function

(5) uy: Coz = |p1(Ae” Y, )| |pa(Ae™ e )\ﬁ

is bounded and subharmonic, so u) is constant.

Since ¢ is proper, the mapping C > z — ¢a(A\e”*?,e*) € C is non-
constant for any n € N. Picard’s theorem implies that there is a sequence
(22)%%y C C such that |pa(A,e™ ", e*)|# = 1. Obviously uy(z) = ux(1) =
v(A) for all z € Cand v(\,) — ¢, 50 |p1(Ane” ", e*")| — ¢. In particular, the
set {p(A\,e” ", e*") : n € N} is relatively compact in D(l,ﬁ) S however,

((Ane=**", e*))>° | has no accumulation points in D(l, )Tt a contradic-

o 7"1 T’
tion. m
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COROLLARY 11. Let ¢ = (¢1,¢2) : Doy — Dg r be a proper holomorphic
mapping and let a, 3 € Rsg, r,R > 1. Put v()\) = |p1(\, 1)][p2(N,1)|5,
A € A,.. Then either

lim v(A\) =1/R, ‘

Ry imv(A) =R or lim v(A\) =R, limv(\)=1/R.

)1\\ [A|—1/7 [A|—r
LEMMA 12. Let « € R\ Q, BE€R, —co<r; <rf <oo, 0<rf, i=
1,2, and let ¢ : D(l,a)ﬂ“fn"f — D(l,ﬂ)n";m;' be a holomorphic mapping. Then
for any X\ € A(ry,r]),

$({(21,22) € C* : |21] |22]* = |A[})

C {(wi,wz) € C? < [wn|Jwa|” = [¢1 (A, 1)] [$2(X, 1)}
Proof. Note that for any A € A(r],r]) the function
w:C 3z 1A, e %) [pa(Ae, e 7))

is subharmonic and bounded. Hence « is constant.
In virtue of Kronecker’s theorem, the set {(|]\|e®*,e™*) : z € C} is dense
in {(21,22) € C?: |21 |22 = |A|}. Thus, there is ¢ € R such that

¢({(z1,22) € C* ¢ [z1] |22]* = |A}) € {(wr,w2) € C?: |wn | [un]” = t}.
It is easy to see that t = |p1(\, 1)||p2(X, 1)[°. =

Proof of Theorem 1(a). Let ¢ : Do, — Dg g be a proper holomorphic
mapping. Put v(\) := |¢1(\, 1)||¢2(N, 1)|?, A € A,. Obviously, logv is a
harmonic function. Applying Corollary 11 and Hadamard’s theorem we infer
that

R log R

lo,
oA) = N[, A€ A, or u(h) =T, A€ A,

From this and Lemma 12 we easily conclude that there is € = +1 such that
1

log R log R
(6) |61(2)| [¢2(2)] = |z1[ 87 |29 167, 2 € Doy
Let z0 =1, z1 =z € Ay, ¥i(2) := ¢i(2,1), i =1,2. Then

— — log R _
log (1 (2)91(2)) + Blog(a(2)Pa(2)) = € 7~ log(27).
Differentiating with respect to z we get
i(z) | sa(z) _ logR 1
7 =c =,z €A,
" 0 ) T o
It follows that
log R
Ind (41 ©7;0) + BInd(1s 0 7;0) = € —o,
logr

where v is the unit circle. Hence % € Z + PZ. The same argument with

respect to the second variable shows that alfz)ggf €7+ p7Z.
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To prove the converse, assume that
log R
logr

log R
log r

where k;,l; € Z, i = 1,2. Define ¢1(2) := zlflzé”, Pa(z) = zilz? for z =
(21,22) € C?, and ¢ := (¢1,¢2). Observe that @|p,, € Prop(Da,r, Dg r).
Indeed, it is easy to check that

(8)  [¢1(2)] |d2(2)|” = |21 ['08 /1087|2518 R/BT (21, 29) € Do,

$0 ¢|p,, € O(Day, DgR). Since kily # kali, ¢ is a proper holomorphic
mapping from (C,)? into itself (see [Zwo, Theorem 2.1]). Now we immediately
conclude from (8) that ¢|p,, is a proper holomorphic mapping from D
to Dgg. m

:kl+ll/65 «

= k2 + l267

Lemma 9 and (6) lead to the following

COROLLARY 13. Let a,3 € R\ Q and ¢ € Prop(Da,, Dg r). Assume
that lfz)ggf =k +1:6 and alf;ggf = ko+150 for some k;,l; € Z, i = 1,2. Then

there are € R, ¢ € O(Dq,) and € € {1, —1} such that

o(z) = (ziklngewe*ﬁzp(z), zillngew(z)), 2 € Doy

REMARK 14. We may always assume that € in Corollary 13 is equal
to 1 (replacing if necessary ¢ by ¢ o h, where h € Aut(Dq,), h(z1,22) :=
(201 2%7)-

To prove Theorem 1(b) we need the following notation. Put X, , :=
{2 €C?: —logr < Rez; + aRezs < logr} and II(z1,22) := (e*!,e?2) for
(21,22) € C2. 1t is clear that (Xq,r, IT) is the universal covering of D .

LEMMA 15. Let a, 8 € R\ Q, r,R > 1 and assume that ll(gng =k +

8, all‘;ggfj = ko + Lo, where ki, l; € Z, i = 1,2. Let f : Dy, — Dg.g be a

proper holomorphic mapping. Then every continuous lifting of the mapping
foll : Xo, — Dgr ts proper and holomorphic.

Proof. By Corollary 13 and Remark 14 we may assume that f(z) =
(2M1 k2= B0(2)+i0 Sl bev(2)) (5 € D), where § € R and ¢ € O(Dq,).

Let .]? be any continuous lifting of f o Il : X,, — Dgpg, that is, J?:
Xaoyr — Xgrand foll =IIo f.It is obvious that f is holomorphic. Then
by the identity principle

o D)=kt kaz = Bu(en, €2) +i0 + 2
f2(2) = lizy + lazo + (e, €*2) 4 2uomi,
for some u; € Z, i =1, 2.

FAS Xa,ra



292 L.. Kosinski

Suppose that fis not proper, i.e. there is a sequence (2™)>_; C X,
2™ = (21", 25"), m € N, without any accumulation points in X, , such that
(f(zm))ﬁnozl is convergent in Xg . Put yo := limy, . fzm™) e X3.R-

Obviously, F(IT(", ")) = I(F(=}", 2§%)) — II(yo). Since f is proper,
the set {II(2™) : m > 1} is relatively compact in D, ,. Thus we may assume
that (I1(z™))y°_; is convergent, say to wg € Dq . From (9) we deduce that

m=1

k12 +kozi)°_ 1 and (1127 +1925%)%°_, are convergent in C2. Thus (2™)%°_
1 2 Jm=1 1 2 Jm=1 g m=1
is also convergent.

Put zp := lim,, o0 2. Now it suffices to observe that II(z9) = wy €

Dy, 50 29 € Xo,r; a contradiction. m

Now we are able to give a description of the set of proper holomorphic
mappings between the domains D, , and Dg g of the irrational type.

Proof of Theorem 1(b). Let f € Prop(Da,, Dg r). In virtue of Corollary
13 and Remark 14 we may assume that

f(z)= (z]flzlg%_ﬁw(z)”g, zilz?ew(z)), z = (21,22) € Do,
for some § € R and ¢ € O(D,,). Our aim is to show that v is constant.
To simplify notation, for v € R put
Ay C? 3 (21, 20) — (21 + Y22, 20) € C2.
It is clear that A,(X,,) = S, x C, o > 1, where S, := {z € C: —logr <
Re z <logr}. Moreover, A, is biholomorphic with inverse A 1= A,
Note that the mapping J?: Xa,r — Xg g given by

F(2) = (kiz1 + kazo — B, €%2) + 00,1121 + laza + (e, 7))

is a lifting of foll. Thus Lemma 15 implies that fis proper and holomorphic.
Put H := (Hy, Hy) := Ago fo Ayl : S, x C — Sk x C. Obviously, H is

proper and holomorphic.

Applying the relations % = k1 + 115, al;gglj = ko + I3 we see that
(10)  H(z) = (z1(k1 + Bl1) + 10,1121 + 22(l2 — l1x) + (e~ 42, €*2)),
ze S, xC.

Hence for any z; € S, the mapping C > z — Hs(z1,2) € C is proper
and holomorphic. Consequently, due to the form of proper holomorphic self-
mappings of C, there is a polynomial p = p,, € P(C) such that Hy(z1,2) =
p(2). Therefore, the polynomial ¢(z) := g, (2) = p(2) — liz1 — z(l2 — Lha)
satisfies the equation

(11) P(ee ¥ e*) =q(z), zeC.

Notice that {(e#1e=92™m ¢2mim) . 1y € N} is a relatively compact subset
of Dqr and the sequence {q(2wim)}oo_; is bounded. Thus the polynomial ¢
is constant.
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Put c(z1) = ¢(e® 72 e*), z; € S,. Fix any 1 < p < R and take
a constant M = M (p) > 0 such that |c(x)| < M for every x € [—log o, log g].

Let A € oD\ (1/0)D be arbitrary. Note that for any zo € C we have
[(|Ale™*2,e*2)| = |c(log |A|)| < M. Applying Kronecker’s theorem we infer
that the set {(|A|e™%*,e?) : z € C}isdensein { (21, 22) € C? : |21| |22|* = |\|}.
Consequently, ¢|p,, , is bounded.

Now it suffices to repeat the proof of Lemma 2.7.1 of [Jar-Pfl1] in order
to show that every bounded holomorphic mapping on D, , (in particular, 1)
is constant.

On the other hand, we have already mentioned in the proof of Theo-
rem 1(a) that any mapping given by (2) is proper. =

Proof of Theorems 2 and 3. We prove both theorem simultaneously. Let
[ : Do — Dg (respectively, f : D}, — DE) be a proper holomorphic function.
We aim at reducing the situation to that of Theorem 1. Take any r > 1.

From Lemma 12 we see that for any t € [0,1) (resp. t € (0,1)) there is
an s(t) € [0,1) (resp. s(t) € (0,1)) such that

F({(21,22) € C*: || |22]™ = #}) C {(w1,w2) € C*: |wn | [wa|” = s(t)}.
Note that s(|A]) = [f1(\, 1)]|f2(), 1)]? and the function v given by v : D 3
A — s(JA]) € [0,1] (vesp. v : Dy 5 X — s(|]A]) € [0,1]) is radial and
subharmonic on D (in the second case we may remove the singularity at 0).
The maximum principle applied to v implies that s is increasing.

In particular, f|D(1Q Ae2a :~D(17a)’1/r271 — D1,8),1/R2,1 is proper for
some R > 1. For ¢ > 1 put A, : C? 3 (21,22) — (021,22) € C? and
define ¢ := Aro fo A_1|Dar Note that 1) € Prop(Da,, Dg r). Applying
Theorem 1 we find that logR =k + 10, o lc;ggf = ko + I and (21, 29) =
(azf’Cl ek bzd1 612) for some k;,l; € Z, i = 1,2, ¢ = +1 and a,b € C
satlsfylng ]a\ ]b[ﬂ = 1. Oviously o = (ko + l23)/(k1 + 11 3) and by the identity
principle we obtain
(12) f(z].7 ZQ) — (CLTEZlBZikl Z;kz7 b'l"_dlzi;ll Z;lz)7

(21,22) € Dq (resp. (21,22) € Dy).
If f : Dy — Dj, then it suffices to notice that ()| f2(2)]P =
(’Z1| |22’a)8k1+5115, z = (21,22) S DZ, hence 6(/-6‘1 + llﬁ) > 0.

When f : D, — Dg, we conclude that ek;,el; >0, i = 1,2.

Hence we easily get the required formulas.

On the other hand, one can check that any of the mappings given in
Theorem 3 is proper (since « is irrational, k1lo — kal; # 0). =

LEMMA 16. Let r™ > 0, r— < rT, t € R. Suppose that the function
v A(r—,rt) — [—o0o,t) is subharmonic, radial (i.e. v(JA|]) = v()\), A €
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A(r=,rT)) and harmonic on the set {z € A(r—,r%) : v(z) # —oc}. Then
there exist a,b € R such that

v(\) =alog |\l +b, AeA(r,rh).

Proof. Tt suffices to observe that since v is radial, A(r—,7")\ {0} C {z €
A(r=,rT) 1 v(z) # —oo} (and next one may proceed in a standard way, i.e.
solve an easy differential equation). m

Proof of Theorem 4. First, consider the case when D_ -+ and D

a,ry ] Bry ,r2
are of the irrational type. Then we may assume that o = (1 ayp) for some
a1 € R\ Q. Let

v AT, ) 3 A e log [P (N, 1) (N, 1)]%2 € R.

By Lemma 12 we see that ¢({(21,22) € C? : |21 |22]* = |A|} C {(w1,we) €
C? - Jwy [P |wa|% = e?M}. Therefore, v is radial. Observe moreover that v is
subharmonic on A(r],r;) and harmonic on {\ € A(r{,r]) : v(A\) > —o0}.
Since 1 is surjective, we conclude that

(13) W(AGT, 1)) = {

(we put log0 := —o0). However, by Lemma 16, v(\) = alog|A| +b, X €
A(ry,r] ), for some a,b € R, which easily finishes the proof in this case.

(logry ,logry) ifry >0,
[~o0,logry)  ifry <0

Now suppose that D a7t and D By i AT€ of the rational type; we may

assume that § = (p,q) € 22 and a = (1,a;) for some a1 € Q. Applying
Lemma 10 one can see that the mapping

A(r,r) 3 A= (A DPa (N, 1)7 € A(ry ,ry)

is proper. Hence this case follows dlrectly from the form of the set of proper
holomorphic mappings from A(r{, ) to A(ry ,ry). =

Proof of Theorem 5. Assume that D ot is of the rational type and
Dy ro ot is of the irrational type; without loss of generality o = (1,p/q) for
some p,q € Z and 3 = (1, B2) for some B2 € R\ Q.

Suppose that 1 € Prop(Da’rl_ﬂ-, Dﬁﬂ”z_ﬂ’;)' Note that for any \ €
A(ry,r]) the mapping

(14) uy : Cy 3 2 [P (A2P, 27| [ha(A2P, 279)| P2

is constant. Fix A\g and ¢ # 0 such that u), = c. One can see that C, > z —
;(AgzP,277) € C, is a proper holomorphic self-mapping of C,, i = 1,2.
Therefore, there are a; € C, and p; € Zy, i = 1,2, such that 1;(A\g2?, z79) =
a;z" for z € C,, i = 1,2. Applying (14) it is clear that |a1||ag|??|z|#1HH2052
= ¢ for z € C,. In particular, G2 € Q, a contradiction.
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+)‘ Put ’LL()\)

a,ry Ty

Now, suppose that there exists ¢ € Prop(Dﬁ@_’T;,D
= [a (0 )] [\ 1| for A € AGry 7).

Applying Lemmas 10 and 12 we find that u satisfies the assumptions
of Lemma 16. Thus, there are a,b € R such that logu(\) = alog |\ + b
for A € A(ry ,7“; ). In particular, u is either strictly increasing or strictly
decreasing. Take any g, , o5 such that g, > max{0,75 }, o5 <74, 05, < 05 .
Put o = min{u(oy), u(e3)}, o = max{u(oy), u(g3)}. Then

: D - 4+ — D -+
¢’Dﬁ,92_,9§ By05 503 (1,2),071 ;01

is obviously a proper holomorphic mapping. In virtue of Theorem 1(a) there
are ki, l; € Z, i = 1,2, such that 8 = (k1 + lia))/(k2 + l2cx). In particular,
8 € Q, a contradiction. =

LEMMA 17. Let A, B C C™ be domains and assume that B is bounded.

(a) A mapping f : AxC, — BxC is proper and holomorphic if and only
if there are m € Prop(A,B), k€ N, 0 <k < N, N €N, a; € O(A),
i=1,...,N, with |ag(2)| + -+ |ag—1(2)| > 0 and |ag41(2)| + -+
lan(2)| > 0 for z € A, satisfying

an(2)wh + - +ag(z
fz,w) = (m(z), N(w + -+ dof )>, (z,w) € A xC,.

wk

(b) A mapping f : AxC — B x C is proper and holomorphic if and only
if there are ag, . ..,any € O(A), N € N, with |ag(z)|+- - -+|an(z)] > 0
for z € A, and there is a proper holomorphic mapping m : A — B
such that

f(z,w) = (m(2),an(2)w™ + - +ap(2)), (z,w) € AxC.
(¢c) A mapping f: Ax Cy — B x C is proper and holomorphic if and
only if there are m € Prop(A, B), a € O(A,C,) and k € N such that
f(z,w) = (m(2),a(z)w®), (z,w)e AxC,.
(d) There is no proper holomorphic mapping from A x C to B x C,.

Proof. First of all, notice that for any z € A the mapping w — fi(z,w)
€ C" is bounded on C (or C,), so it is constant.

(a) Observe that C, > w — fa(z,w) € C is proper for any z € A. Thus,
for any z € A there is a polynomial p(z,-), p(z,0) # 0, and a natural k(z)
such that

(15) b2(z,w) = TR (z,w) € A xC,.

One can see that there is a k such that £ = k(2) for z € A (use Rouche’s
theorem). Consequently, p € O(A x Cy).
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Fix any domain A’ CC A and put
A, = ZEE'%(zw)—Oforan weC
ui= P (P w) = y )

The above considerations imply that Uzozl A, = A’. Applying Baire’s theo-
rem we find that there exists N € N such that Ay has non-empty interior.
By the identity principle, Ay = A.

Thus, there are holomorphic mappings ag,...,ay : A — C such that
p(z,w) = an(2)wN + -+ a1 (2)w + ag(z) for (z,w) € A x C, i.e.

an(2)w™ + -+ a1 (2)w + ag(2)
wk

(16)  fa(z,w) = ,  (z,w) e AxC.
By properness of fa(z,-) we conclude that 0 < k < N, and |an(2)] + ... +
lag+1(2)| > 0 and |ag—1(2)| + - - + |ao(2)| > 0 for any z € A.

Put m(z) := fi(z,1), z € A. We claim that m is proper.

Indeed, take any sequence (z,)72; and assume that it has no accumu-
lation points in A. We may assume that ag(z,) # 0 for any n € N (if nec-
essary replace ap with a; etc.). Then there exists a sequence (wy)22; C C,
such that ay(zn)wY + -+ 4 a1(2,)wy, + aog(z,) = 0 for any n € N. Since
f(zn,wn) = (m(2y),0), it is obvious that (m(z,))5; has no accumulation
points in B.

Conversely, one can check that every mapping f defined in this way is
proper.

(b) It is easy to see that C 3 w — fa(z,w) € C is a proper holomorphic
mapping for any z € A. From the form of such mappings we conclude that for
every z € A the mapping fa(z,-) is a complex polynomial. Now we proceed
exactly as in the proof of (a).

(c) We proceed similarly to the proofs of (a) and (b).

(d) Suppose that f: A x C — B x C, is a proper holomorphic function.
Fix z € A. Then C > w — fo(z,w) € C, is proper.

Take ¢ € O(C) such that fa(1,-) = expot). Observe that 1 is a proper
holomorphic self-mapping of the complex plane, hence 1 is a polynomial.
From this we easily get a contradiction. m

Proof of Theorems 6, 7 and 8. These are direct consequences of Lem-
ma 17. =

Finally, I take this opportunity to express my deep gratitude to Profes-
sor Wlodzimierz Zwonek for introducing me to the subject and numerous
remarks.
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