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Lorentzian isothermic surfaces and Bonnet pairs

by M. A. Magid (Wellesley, MA)

Abstract. Lorentzian surfaces in Lorentz three-space are studied using an indefinite
version of the quaternions. A classification theorem for Bonnet pairs in Lorentz three-space
is obtained.

1. Introduction. In recent years there has been a resurgence of inter-
est in certain classical differential geometric objects and constructions such
as isothermic surfaces, Christoffel transforms and Darboux transforms. For
example one has F. Burstall’s epic work [B] and the wonderful example of
both mathematics and scholarship [H-J]. These use, among other tools, Clif-
ford algebras or quaternions to explore and clarify aspects of surface theory
from the late 1800’s. In [KPP] the quaternions are used to study isothermic
surfaces and their relationship to what the authors define as Bonnet pairs.

In [M] it is shown that for Lorentzian isothermic surfaces, one has, just
as in the positive definite setting, a dual surface. However, there are two
types of isothermic surfaces and the constructions of the dual surfaces are
different for the two types. One can still investigate these isothermic sur-
faces and appropriately defined Bonnet pairs in Lorentz space using what
Libermann [L1, L2] called the quaternions of the second type H̃. These form
a real, four-dimensional associative algebra containing some non-invertible,
non-zero elements and give an appropriate setting for studying Lorentzian
surfaces.

2. Preliminaries

2.1. Definitions and notations for Lorentzian surfaces in R3
1. The metric

in R3
1 is denoted by

〈~v, ~w〉 = −v1w1 + v2w2 + v3w3
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for ~v = (v1, v2, v3) and ~w = (w1, w2, w3). We often use isothermal coordi-
nates (t, s) on our surface M 2

1 defined by an immersion X : M2
1 → R3

1, by
which we mean that, for the induced metric h on M 2

1 and for the associated
coordinate vectors ∂t and ∂s, there is a non-zero function µ so that

(2.1) h(∂t, ∂t) = −µ2, h(∂t, ∂s) = 0, h(∂s, ∂s) = µ2.

We can also use any set of isothermal coordinates to define null coordi-
nates {x, y} by

x =
t− s√

2
, y =

t+ s√
2

so that ∂x = 1√
2
(∂t− ∂s), ∂y = 1√

2
(∂t+ ∂s) and h(∂x, ∂y) = −µ2.

Following Weinstein [W, p. 13], a Lorentzian surface (M 2
1 , [h]) is defined

to be M2
1 with all the metrics conformally equivalent to h.

The fundamental equations of the immersion X are given by

(2.2)

Xtt =
µt
µ
Xt +

µs
µ
Xs + eN,

Xts =
µs
µ
Xt +

µt
µ
Xs + fN,

Xss =
µt
µ
Xt +

µs
µ
Xs + gN,

Nt =
e

µ2 Xt −
f

µ2 Xs,

Ns =
f

µ2 Xt −
g

µ2 Xs.

Thus, the shape operator corresponding to N is

(2.3) A =
[
−e/µ2 −f/µ2

f/µ2 g/µ2

]
.

Recall that the shape operator at each point on a Lorentzian surface
falls into one of three distinct classes which we call its algebraic type. The
shape operator is either (a) diagonalizable over R, (b) diagonalizable over C
but not R or (c) not diagonalizable over C, and has a single real eigenvalue
([O’N]).

A Riemannian surface is called isothermic if there is an isothermal coor-
dinate system for which every shape operator is diagonalized (over R). For a
Lorentzian surface we need to adjust the definition. Essentially we will call
a surface isothermic if there is an isothermal coordinate system for which
each shape operator is diagonalized over R or C.

Definition 2.1. A Lorentzian immersion is called isothermic if there is
some isothermal coordinate system (t, s) such that each A with respect to
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the basis {∂t, ∂s} has one of the following forms:

(a)
[
λ1 0
0 λ2

]
, (b)

[
a b
−b a

]
.

We call the first case real isothermic and the second complex isothermic.
In this paper we are working locally and define an isothermic immersion to
be an immersion for which each point has a neighborhood which is either
real isothermic or complex isothermic. Note that, in the complex isothermic
case, the shape operator satisfies e+ g = 0.

Each Lorentzian surface (M 2
1 , [h]) has a time orientation and an inte-

grable product structure J ′. A time orientation is a choice of time cone in
each tangent space. An integrable product structure is a tensor of type (1, 1)
such that J ′2 = Id, J ′ 6= Id and ∇J ′ = 0, where ∇ is the Levi-Civita connec-
tion on M2

1 defined by h. We define J ′ by choosing the two future directed
null vectors {∂x, ∂y} in the chosen time cone so that {∂x, ∂y} is positively
oriented, and set

J ′(∂x) = −∂x, J ′(∂y) = ∂y.

In the isothermal coordinates we have

(2.4) J ′(∂t) = ∂s, J ′(∂s) = ∂t.

The time orientation on M 2
1 is induced from the standard time orientation

on R3
1; see [O’N, pp. 145 and 194]. We note that J ′ depends only on the

Lorentzian surface (M2
1 , [h]), its time orientation, and orientation, which

we include in the definition of (M 2
1 , [h]). This structure is analogous to the

complex structure defined on a Riemann surface.

2.2. Surfaces in H̃. Our R3
1 will sit in H̃, a four-dimensional Clifford

algebra given by

H̃ = {x0 + x1i+ x2j
′ + x3k

′ | x0, x1, x2, x3 ∈ R}
with

i2 = −1, j′2 = 1 = k′2,

ij′ = k′, j′i = −k′, j′k′ = −i, k′j′ = i, ik′ = −j′, k′i = j′.

This was defined by Libermann in [L1], and called a quaternionic algebra of
the second type. We will call them indefinite quaternions. For x, y ∈ H̃ we
define our inner product x · y by

x · y = −Re(xy) = −x0y0 − x1y1 + x2y2 + x3y3,

where x0 + x1i+ x2j′ + x3k′ = x0−x1i−x2j
′−x3k

′. We call those indefinite
quaternions with x0 = 0 imaginary , and denote them by Im H̃. They inherit
a metric of signature (1, 2) from H̃ and are identified in all that follows with
Lorentz three-space R3

1. The metric chosen here in H̃ has signature (2, 2)
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and induces the standard metric on the imaginary quaternions, but it is the
negative of the one found in [Po]. We denote H̃ by R4

2. Also note that if
x ∈ Im H̃ then x = −x.

For imaginary x and y an important formula for calculations is

(2.5) xy = x · y + x× y,
Here x× y is the cross product in R3

1 given by

(x× y) · z = det[z, x, y].

We can define, exactly as in [KPP], a wedge product on H̃-valued one-
forms on M2

1 by
α ∧ β(X,Y ) = α(X)β(Y )− α(Y )β(X),

which satisfies the identities
α ∧ β = −β ∧ α, d(hα) = dh ∧ α+ hdα,

α ∧ hβ = αh ∧ β, d(αh) = dαh− α ∧ dh,
where h : M2

1 → H̃. We also identify two-forms on M 2
1 with their quadratic

forms by
ω(X) = ω(X,J ′X),

for ω an H̃-valued two-form on M2
1 . If we define ∗α = α ◦ J ′ then we have

α ∧ β = α(∗β)− (∗α)β,

since (α∧β)(U, J ′U) = α(U)β(J ′U)−α(J ′U)β(U). Note that in the Loren-
tzian setting we have ∗2 = Id. There is an algebraic lemma whose statement
and proof is quite similar to one in [BFLPP].

Lemma 2.1. For x, y ∈ H̃ = R4
2,

(1) xy = yx iff Im(x) and Im(y) are linearly dependent over R.
(2) Im(x2) = 0 iff x is either real or purely imaginary.
(3) x2 = 0 iff x · x = 0, i.e., x is in the null cone in R4

2.
(4) x2 = 1 iff x = ±1 or x is purely imaginary and x2 = x · x = 1.
(5) x2 = −1 iff x is purely imaginary and x2 = x · x = −1.

We also need the following version of Lemma 2.1 found in [KPP].

Lemma 2.2. X : M2
1 → R3

1 is a conformal immersion iff there exists
N : M2

1 → H̃ such that

(2.6) (∗dX)U = dX(J ′U) = NdX(U).

If (2.6) holds then N : M2
1 → S2

1 ⊂ R3
1, where S2

1 is the Lorentzian sphere
in R3

1 and N is the oriented unit normal field to X.

Proof. Assume first that N exists. Since dX is pointwise injective,

dX(U) = (∗dX)(J ′U) = (NdX)(J ′U) = NNdX(U),



Lorentzian isothermic surfaces 133

so that N2 = 1. We see that N cannot be ±1, so that N is purely imaginary
and a map into the sphere. Next we would like to see that N is normal
to the surface. Note that −N = N , so that dX(J ′U) = dX(U)N gives
−dX(J ′U) = dX(U)N , hence −NdX(U) = dX(U)N and

NdX(U) + dX(U)N = 0 = 2N · dX(U),

so that N is a normal field.
Conversely, suppose X : M2

1 → R3
1 is a conformal immersion of a

Lorentzian surface and assume that N : M 2
1 → S2

1 is the unit normal field
to X. We need to show that

dX(J ′U) = NdX(U) = N × dX(U).

Equivalently we must show that for the null coordinates {x, y},
dX(−∂x) = N ×Xx, dX(∂y) = N ×Xy.

We can see that this is so because det[Xt/µ,Xs/µ,N ] = 1.

At this point we decompose our H̃-valued one-forms α = α+ + α− by
defining

(2.7) α+ = 1
2 (α−N(∗α)), α− = 1

2 (α+N(∗α)).

These satisfy

∗α+ = −Nα+, ∗α− = Nα−.

Now we can find

d(∗dX) = d(NdX) = dN ∧ dX = dN(∗dX)− (∗dN)dX

= (dNN − ∗dN)dX = 2(dN−)NdX.

We can see by a calculation involving the shape operator that
(dNN − ∗dN)dX is Im H̃-valued. This says that dN− · NdX = 0, which
in turn implies that dN− is a real multiple of dX. In fact we can see that
dN− = HdX, where H is the negative of the mean curvature of the immer-
sion X.

Thus we have

(2.8) d∗dX = −2HNdX · dX
and we can write

(2.9) dN = dN− + dN+ = HdX + θ with θ = dN+.

We also get the Codazzi equation by differentiating (2.9):

(2.10) dθ = (∗dH − dHN)dX.
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2.3. Spin equivalent immersions

Definition 2.2. Two conformal immersions X, X̃ : (M2
1 , [h])→ R3

1 are
called spin equivalent if there exists λ : M 2

1 → H̃∗ so that

(2.11) dX̃ = −
( |λ · λ|
λ · λ

)
λdXλ = − sgn(λ · λ)λdXλ,

where H̃∗ are the invertible elements.

The factor sgn(λ · λ) is not needed in the positive definite case because
it is always 1 there.

We note that, up to a positive scaling factor, this is an orthogonal trans-
formation of R3

1 and the mapping

%(v) = − 1
λ · λ λvλ

covers the special orthogonal group of R3
1. Note finally that the identity

component of the special orthogonal group, which consists of orientation
and time orientation preserving transformations, is generated by λ with
λ · λ < 0.

Thus we can see that, locally, any two conformal immersions are spin
equivalent.

If X and X̃ are spin equivalent then we must have

0 = d(λdXλ) = dλ ∧ dXλ− λdX ∧ dλ.
This shows that λdX∧dλ is real, so that dX∧dλ = −%dX·dXλ = −%dXdXλ
for some real-valued function % on M 2

1 . Then we have

−%dXdXλ = dX ∧ dλ = dX(∗dλ)− (∗dX)dλ = dX(∗dλ+Ndλ),

so that we get the following integrability condition:

−%dXλ = ∗dλ+Ndλ.

We write this as a lemma:

Lemma 2.3. If X and X̃ are spin equivalent via

dX̃ = − sgn(λ · λ)λdXλ

then λ : M2
1 → H̃∗ satisfies

(2.12) −%dXλ = ∗dλ+Ndλ

for some real-valued function % on M2
1 . Conversely , if π1(M2

1 ) = 0 then for
a given conformal immersion X : M2

1 → R3
1, nowhere vanishing solutions

λ : M2
1 → H̃∗ to (2.12) give all conformal immersions X̃ : M2

1 → R3
1 via the

transformations dX̃ = − sgn(λ · λ)λdXλ.
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The next lemma calculates the shape operator of a spin transform; it
gives more information than the positive definite version.

Lemma 2.4. Let X, X̃ : M2
1 → R3

1 be spin equivalent via dX̃ =
− sgn(λ · λ)λdXλ. Then

(1) Ñ = λ−1Nλ.
(2) dX̃ · dX̃ = (λ · λ)2dX · dX.
(3)

Ã =
sgn(λ · λ)
λ · λ

[
−2a2 − e/µ2 −f/µ2 + 2a1

−2a1 + f/µ2 2a2 + 2%+ g/µ2

]
,

where a1, a2 are defined below.

Proof. The first two statements are clear so we will calculate the shape
operator of X̃. Using the fact that Ndλ = −∗dλ− %dXλ we find that

Nλt = −λs − %Xtλ, Nλs = −λt − %Xsλ,

or
λtλ
−1 = −Nλsλ−1 − %Xs, λsλ

−1 = −Nλtλ−1 − %Xt.

If we set

λtλ
−1 = a0 + a1Xt + a2Xs + a3N, λsλ

−1 = b0 + b1Xt + b2Xs + b3N,

and use the equations above we see that

b0 = −a3, b1 = −a2 − %, b2 = −a1, b3 = −a0.

We now calculate

dÑ = −λ−1dλλ−1Nλ+ λ−1dNλ+ λ−1Ndλ

= −λ−1(dλλ−1N − dN −Ndλλ−1)λ

=
1

λ · λ λ(dλλ−1N − dN −Ndλλ−1)λ.

Using the expression for Nt and Ns from (2.2) we can find

(2.13) Ã =
sgn(λ · λ)
λ · λ

[
−2a2 − e/µ2 −f/µ2 + 2a1

−2a1 + f/µ2 2a2 + 2%+ g/µ2

]
.

Thus the negative of the mean curvature of X̃ is

(2.14) H̃ =
sgn(λ · λ)
λ · λ (−%+H).

Corollary. Assume that X, X̃ : M2
1 → R3

1 are spin equivalent with

dX̃ = − sgn(λ · λ)λdXλ.

Then the following are equivalent :

(1) dX ∧ dλ = 0, which is the same as ∗dλ+Ndλ = 0.
(2) sgn(λ · λ)H̃dX̃ · dX̃ = H(dX · dX)(λ · λ).
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3. Isothermic surfaces and Bonnet pairs. We begin with an alter-
native characterization of an isothermic surface.

Proposition 3.1. A surface X : M2
1 → R3

1 is isothermic iff there is a
two-dimensional closed one-form τ ∈ Ω1(M2

1 , Im H̃) so that ∗τ + Nτ = 0,
or , equivalently , dX ∧ τ = 0.

Proof. If a surface X is real isothermic, then

τ = −Xt

µ2 dt+
Xs

µ2 ds,

while if X is complex isothermic,

τ = −Xs

µ2 dt+
Xt

µ2 ds.

On the other hand, if such a locally integrable one-form τ is given, then
there is a surface Xc so that dX ∧ dXc = 0. Setting

Xc
t = a1Xt + b1Xs + c1N, Xc

s = a2Xt + b2Xs + c2N,

and calculating XtX
c
s −XsX

c
t = 0 gives

Xc
t = a1Xt + b1Xs, Xc

s = −b1Xt − a1Xs.

We see that the tangent planes of the two surfaces agree. If a2
1 − b21 > 0 the

surface is real isothermic, while the other sign gives a complex isothermic
surface [M]. The only other possibility, a2

1 − b21 = 0, does not yield a two-
dimensional one-form.

Definition 3.1. The Lorentzian isothermic surface Xc in Proposi-
tion 3.1 is called the dual surface to X.

Definition 3.2. Two conformal immersions X, X̃ : (M2
1 , [h]) → R3

1

form a Bonnet pair if dX ·dX = dX̃ ·dX̃, the principal curvatures agree, and
the shape operators have the same algebraic type but they are not congru-
ent. (If one avoids umbilic points then one only needs the mean curvatures
to agree.)

Theorem 3.1. Let X : M2
1 → R3

1 be an isothermic surface with dual
Xc : M2

1 → R3
1. Choose ε ∈ R, a ∈ Im H̃ and set λ± = ±ε+Xc + a, where

ε and a must be chosen so that λ± is invertible. Then the spin transforms
X± : M2

1 → R3
1 given by dX± = − sgn(λ± · λ±)λ±dXλ± form a Bonnet

pair.
Conversely , up to a rigid transformation, every pair of Bonnet surfaces

arises from a three-parameter family (determined up to scalings) of isother-
mic surfaces where the three parameters account for the orientation and
time orientation preserving rotations of the Bonnet pairs with respect to one
another.
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Note that
λ± · λ± = −(±ε+Xc + a)(±ε−Xc − a)

= −(ε2 − a2 − aXc −Xca−XcXc) = (Xc + a) · (Xc + a)− ε2.

Thus the condition that λ± is invertible is equivalent to requiring that Xc

does not intersect the indefinite sphere centered at −a with radius ε.

Proof. We first assume that we have X and Xc so that dX ∧ dXc = 0.
This implies that dX ∧ dλ± = 0 or ∗dλ± + Ndλ± = 0. This is (2.10) with
%± = 0. We have seen that λ+ ·λ+ = λ− ·λ−, so that dX+ ·dX+ = dX− ·dX−

To see that X± form a Bonnet pair, we need to look at their shape
operators. As we saw in the proof of Lemma 2.4 the shape operators depend
on the shape operator of X and the tangential components of (λ+)t(λ+)−1

and (λ−)t(λ−)−1. In fact these are

(λ+)t(λ+)−1 =
1

λ+ · λ+
Xc
t (−ε+Xc + a),

(λ−)t(λ−)−1 =
1

λ+ · λ+
Xc
t (ε+Xc + a).

We express the tangential component of these expressions respectively as

((λ+)t(λ+)−1)T =
1

λ+ · λ+
(−εXc

t + c1Xt + c2Xs),

((λ−)t(λ−)−1)T =
1

λ+ · λ+
(εXc

t + c1Xt + c2Xs).

We will now make a separate calculation for the two types of isothermic
surfaces, real and complex. In the case of a real isothermic surface, Xc

t =
−Xt/µ

2 and c1 is zero. Indeed,

c1 =
1
µ2 Xt · (Xt/µ

2)(Xc + a)

= −Re
1
µ2 Xt(Xt/µ

2)(Xc + a) =
1
µ2 Re(Xc + a) = 0.

Recalling that, for a real isothermic surface, f = 0, we see that the shape
operators of X+ and X− are

A+ =
sgn(λ+ · λ+)
λ+ · λ+




−2c2
λ+ · λ+

− e

µ2

2ε
(λ+ · λ+)µ2

−2ε
(λ+ · λ+)µ2

2c2
λ+ · λ+

+
g

µ2


 ,

A− =
sgn(λ+ · λ+)
λ+ · λ+




−2c2
λ+ · λ+

− e

µ2

−2ε
(λ+ · λ+)µ2

2ε
(λ+ · λ+)µ2

2c2
λ+ · λ+

+
g

µ2


 .
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Thus it is clear that, in this case, the shape operators have the same eigen-
values and the same algebraic type. Indeed, one can explicitly calculate the
eigenvalues and eigenvectors to determine the algebraic type of the Bonnet
pairs.

In the case of a complex isothermic surface, Xc
t = −Xs/µ

2 and c2 is zero
as above. Recalling that, for a complex isothermic surface, g = −e we see
that the shape operators of X+ and X− are

A+ =
sgn(λ+ · λ+)
λ+ · λ+




−2ε
µ2(λ+ · λ+)

− e

µ2

2c1
λ+ · λ+

− f

µ2

− 2c1
λ+ · λ+

+
f

µ2

2ε
µ2(λ+ · λ+)

− e

µ2


 ,

A− =
sgn(λ+ · λ+)
λ+ · λ+




2ε
µ2(λ+ · λ+)

− e

µ2

2c1
λ+ · λ+

− f

µ2 ,

− 2c1
λ+ · λ+

+
f

µ2

−2ε
µ2(λ+ · λ+)

− e

µ2


 .

Again, the shape operators have the same eigenvalues and the same algebraic
type at each corresponding point.

For the converse suppose that X− and X+ form a Bonnet pair and,
initially, that dX− and dX+ are never equal. We have

(3.1) dX+ = − sgn(λ · λ)λdX−λ

for some λ : M2
1 → H̃. Since X− and X+ induce the same metric, we

have dX+ · dX+ = λdX−λ · λdX−λ = (λλ)2dX− · dX− = dX− · dX−, so
λ · λ = ±1. We are assuming that X± induce the same time orientation, so
that λ · λ = −1. From equation (2.14) we see that dX− ∧ dλ = 0. We are
looking for λ± so that

dX± = − sgn(λ± · λ±)λ±dXλ±

with λ+ = Xc + ε and λ− = Xc − ε. In this case

− sgn(λ+ · λ+)λ+dXλ+ = − sgn(λ− · λ−)λλ−dXλ−λ.

In order for this to hold we must have

(3.2) λ+ = λ−λ.

Thus, the signs of λ− and λ+ are equal, yielding λ− + 2ε = λ+ and λ− =
2ε(λ−1)−1. We set Xc = ε+2ε(λ−1)−1. One can calculate, using λ·λ = −1,
that Xc is imaginary.

Thus we can define X by

(3.3) dX = − sgn(λ− · λ−)
λ− 1

2ε
dX−

λ− 1
2ε
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since the forms on the right-hand side are closed. We can also see that
dXc ∧ dX = 0.

We can now follow the proof of Theorem 2.3.2 in [KNPP]. Let X± be
a Bonnet pair and λ : M2

1 → H3
2 the function such that dX+ = λdX−λ,

where H3
2 is the set of vectors in H̃ of length −1. Because M2

1 is a surface,
there must be an a ∈ H3

2 such that a is not in the image of λ. We see that
− sgn(a · a)aX+a = aX+a and X− form a Bonnet pair satisfying dX− 6=
adX+a.
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