Parametrization of Riemann-measurable selections for multifunctions of two variables with application to differential inclusions

by Giovanni Anello and Paolo Cubiotti (Messina)

Abstract

We consider a multifunction $F: T \times X \rightarrow 2^{E}$, where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.

1. Introduction. If X is a topological space, we denote by $\mathcal{B}(X)$ the Borel σ-algebra of X. Moreover, if μ is measure on $\mathcal{B}(X)$, we denote by $\mathcal{T}_{\mu}(X)$ the completion of $\mathcal{B}(X)$ with respect to μ. We briefly put $\mathcal{T}_{\mu}=\mathcal{T}_{\mu}(X)$ when ambiguities do not occur. For the basic definitions about multifunctions, we refer the reader to [6] and [7].

This note is motivated by the main result of [11], which concerns the existence of Riemann-measurable selections (i.e., selections which are a.e. continuous) for a given multifunction. For the reader's convenience, we now state the main result of [11] (as usual, by a Polish space we mean a complete separable metric space).

Theorem 1 (Theorem 3 of [11]). Let X be a Polish space equipped with a σ-finite regular Borel measure, E a metric space and $F: X \rightarrow 2^{E} a$ multifunction with nonempty complete values. If F is lower semicontinuous at almost every point of X, then there exists a selection of F which is continuous at almost every point of X.

We refer to [11] for motivations leading to Theorem 1. Applications of Theorem 1 to implicit integral equations and to elliptic differential equations can be found in [2] and [8], respectively.

[^0]Our aim in this paper is to prove a parametrized version of Theorem 1 for multifunctions of two variables, obtaining, in particular, sufficient conditions for the existence of a selection which is measurable with respect to the first variable and a.e. continuous with respect to the second one. More precisely, we prove the following result.

Theorem 2. Let T, X be two Polish spaces and let μ, ψ be two positive regular Borel measures on T and X, respectively, with μ finite and $\psi \sigma$-finite. Let S be a separable metric space, $F: T \times X \rightarrow 2^{S}$ a multifunction with nonempty complete values, and let $E \subseteq X$ be a given set. Assume that:
(i) F is $\mathcal{T}_{\mu} \otimes \mathcal{B}(X)$-measurable;
(ii) for a.a. $t \in T$,

$$
\begin{equation*}
\{x \in X: F(t, \cdot) \text { is not lower semicontinuous at } x\} \subseteq E \tag{1}
\end{equation*}
$$

Then there exist a selection $\phi: T \times X \rightarrow S$ of F and a set $R \in \mathcal{B}(X)$, with $\psi(R)=0$, such that
(i) ${ }^{\prime} \phi(\cdot, x)$ is \mathcal{T}_{μ}-measurable for each $x \in X \backslash(E \cup R)$;
(ii)' for a.a. $t \in T$,

$$
\{x \in X: \phi(t, \cdot) \text { is not continuous at } x\} \subseteq E \cup R
$$

The proof of Theorem 2 will be given in Section 2, while in Section 3 we shall provide an application of Theorem 2 to differential inclusions.
2. Proof of Theorem 2. Before proving Theorem 2, we need the following preliminary results.

Lemma 1. Let T, X be two Polish spaces and let μ, ψ be two positive σ-finite regular Borel measure on X and Y, respectively. Then there exist two sets $Q \in \mathcal{B}(T)$ and $R \in \mathcal{B}(X)$, with $\mu(Q)=\psi(R)=0$, a continuous open function $\pi: \mathbb{N}^{\mathbb{N}} \rightarrow T \times X$, and a function $\sigma: T \times X \rightarrow \mathbb{N}^{\mathbb{N}}$ which is continuous at each point of $(T \backslash Q) \times(X \backslash R)$ and satisfies $\pi(\sigma(t, x))=(t, x)$ for all $(t, x) \in T \times X$.

Proof. By Lemma 1 of [11], there exist $Q \in \mathcal{B}(T)$ and $R \in \mathcal{B}(X)$ with $\mu(Q)=\psi(R)=0$, two continuous open functions $\pi_{1}: \mathbb{N}^{\mathbb{N}} \rightarrow T, \pi_{2}: \mathbb{N}^{\mathbb{N}} \rightarrow$ X, a function $\sigma_{1}: T \rightarrow \mathbb{N}^{\mathbb{N}}$ which is continuous at each point of $T \backslash Q$, and a function $\sigma_{2}: X \rightarrow \mathbb{N}^{\mathbb{N}}$ which is continuous at each point of $X \backslash R$, such that $\pi_{1}\left(\sigma_{1}(t)\right)=t$ and $\pi_{2}\left(\sigma_{2}(x)\right)=x$ for all $(t, x) \in T \times X$. For each $\alpha:=\left\{n_{k}\right\}_{k} \in \mathbb{N}^{\mathbb{N}}$, we denote by α_{e} and α_{o} the sequences $\left\{n_{2 k}\right\}_{k}$ and $\left\{n_{2 k-1}\right\}_{k}$, respectively. If we put $\pi(\alpha)=\left(\pi_{1}\left(\alpha_{e}\right), \pi_{2}\left(\alpha_{o}\right)\right)$ for all $\alpha \in \mathbb{N}^{\mathbb{N}}$, then $\pi: \mathbb{N}^{\mathbb{N}} \rightarrow T \times X$ is a continuous open function. Moreover, if we put $\sigma(t, x)=\left\{n(t, x)_{k}\right\}_{k}$, where $\left\{n(t, x)_{2 k}\right\}_{k}=\sigma_{1}(t)$ and $\left\{n(t, x)_{2 k-1}\right\}_{k}=\sigma_{2}(x)$, then $\sigma: T \times X \rightarrow \mathbb{N}^{\mathbb{N}}$ is continuous at each point of $(T \backslash Q) \times(X \backslash R)$ and one has $\pi(\sigma(t, x))=(t, x)$ for all $(t, x) \in T \times X$.

Lemma 2. Let $T, X, Q, R, \mu, \psi, \pi, \sigma$ be as in Lemma 1. Let E be a metric space, $B \subseteq T \times X$ and $V \subseteq B$ two given sets, and $F: B \rightarrow 2^{E}$ a multifunction with nonempty complete values which is lower semicontinuous at each point of $B \backslash V$. Then there exists a selection g of F which is continuous at each point of $[B \cap((T \backslash Q) \times(X \backslash R))] \backslash V$.

Proof. Put $Z=\pi^{-1}(B)$ and $G=\left.F \circ \pi\right|_{Z}$. Observe that Z is 0-dimensional and G is lower semicontinuous at each point of $Z \backslash \pi^{-1}(V)$. Consequently, by the proof of Lemma 2 of [11], there exists a selection s of G which is continuous at each point of $Z \backslash \pi^{-1}(V)$. Since $\sigma(t, x) \in \pi^{-1}(t, x) \subseteq Z$ for all $(t, x) \in B$, we can put $g(t, x)=s(\sigma(t, x))$ for all $(t, x) \in B$. Then $g(t, x) \in F(\pi(\sigma(t, x))=F(t, x)$ for all $(t, x) \in B$. Further, it is easily seen that g is continuous at each point of $[B \cap((T \backslash Q) \times(X \backslash R))] \backslash V$.

The next lemma follows from the proof of Lemma 2.3 of [1].
Lemma 3. Let X and S be metric spaces, with S separable, $F: X \rightarrow 2^{S}$ a multifunction with nonempty values, $\left\{s_{n}\right\}$ a dense sequence in S, and $x_{0} \in X$. Denote by d the distance in S.
(i) If F is lower semicontinuous at x_{0}, then for each $s \in S$ the function $x \in X \mapsto d(s, F(x))$ is upper semicontinuous at x_{0}.
(ii) If for each $n \in \mathbb{N}$ the function $x \in X \mapsto d\left(s_{n}, F(x)\right)$ is upper semicontinuous at x_{0}, then F is lower semicontinuous at x_{0}.
Lemma 4. Let T, X, μ, ψ be as in Lemma 1, with μ finite. Let $f: T \times X$ $\rightarrow \mathbb{R}$ be a single-valued function and $E \subseteq X$ a given set. Assume that:
(i) f is $\mathcal{T}_{\mu} \otimes \mathcal{B}(X)$-measurable;
(ii) $\inf _{T \times X} f>-\infty$;
(iii) for a.a. $t \in T$,
$\{x \in X: f(t, \cdot)$ is not lower semicontinuous at $x\} \subseteq E$.
Then for each $\varepsilon>0$ there exists a \mathcal{T}_{μ}-measurable set $K \subseteq T$ such that $\mu(T \backslash K) \leq \varepsilon$ and the function $\left.f\right|_{K \times X}$ is lower semicontinuous at each point $(t, x) \in K \times(X \backslash E)$.

Proof. Without loss of generality, we can suppose $f \geq 0$ in $T \times X$. Let $T_{0} \in \mathcal{B}(X)$ be such that $\mu\left(T \backslash T_{0}\right)=0$ and (2) holds for all $t \in T_{0}$. For each $n \in \mathbb{N}$, let $f_{n}: T \times X \rightarrow[0, \infty[$ be the function defined by putting, for all $(t, x) \in T \times X$,

$$
\begin{equation*}
f_{n}(t, x):=\inf _{y \in X}[n d(x, y)+f(t, y)] \tag{3}
\end{equation*}
$$

We observe the following facts.
(a) For each $x \in X$, the function $f_{n}(\cdot, x)$ is \mathcal{T}_{μ}-measurable over T. This follows from Lemma III. 39 of [3], since the function

$$
(t, y) \mapsto n d(x, y)+f(t, y)
$$

is $\mathcal{T}_{\mu} \otimes \mathcal{B}(X)$-measurable for each fixed $n \in \mathbb{N}$ and $x \in X$.
(b) For each $n \in \mathbb{N}$ and each $(t, x) \in T \times X$, one has

$$
\begin{equation*}
f_{n}(t, x) \leq f(t, x) \tag{4}
\end{equation*}
$$

Indeed, it is enough to put $y=x$ in (3).
(c) For each $n \in \mathbb{N}$ and each $t \in T$, the function $f_{n}(t, \cdot)$ is n-Lipschitzian over X. Indeed, if $n \in \mathbb{N}$ and $t \in T$ are fixed, then for each $x, z \in X$ one has

$$
f_{n}(t, x) \leq \inf _{y \in X}[n d(x, z)+n d(z, y)+f(t, y)]=n d(x, z)+f_{n}(t, z)
$$

hence

$$
f_{n}(t, x)-f_{n}(t, z) \leq n d(x, z)
$$

By the latter inequality, upon interchanging the roles of x and z, our assertion follows.
(d) For all $(t, x) \in T \times X$, set

$$
f^{*}(t, x):=\sup _{n \in \mathbb{N}} f_{n}(t, x)
$$

Then

$$
\begin{equation*}
f^{*}(t, x)=f(t, x) \quad \text { for all }(t, x) \in T_{0} \times(X \backslash E) \tag{5}
\end{equation*}
$$

To see this, let $(t, x) \in T_{0} \times(X \backslash E)$ and $\eta>0$. Since $f(t, \cdot)$ is lower semicontinuous at x, there exists $\delta>0$ such that for each $y \in X$ with $d(x, y)<\delta$ one has

$$
f(t, y)>\beta:=f(t, x)-\eta
$$

Pick $n^{*}>\beta / \delta$. For each $y \in X$ we get

$$
n^{*} d(x, y)+f(t, y) \geq \begin{cases}f(t, y)>\beta & \text { if } d(x, y)<\delta \\ n^{*} \delta+f(t, y)>\beta+f(t, y) \geq \beta & \text { if } d(x, y) \geq \delta\end{cases}
$$

It follows that $f_{n^{*}}(t, x) \geq \beta$ and thus, by taking into account (4), the equality (5) holds.

At this point, fix $\varepsilon>0$. For each $n \in \mathbb{N}$, by the Scorza Dragoni Theorem, there exists a \mathcal{T}_{μ}-measurable set $K_{n} \subseteq T_{0}$ such that

$$
\mu\left(T \backslash K_{n}\right) \leq \varepsilon / 2^{n}
$$

and $\left.f_{n}\right|_{K_{n} \times X}$ is continuous. The set $K:=\bigcap_{n \in \mathbb{N}} K_{n}$ is \mathcal{T}_{μ}-measurable and

$$
\mu(T \backslash K)=\mu\left(\bigcup_{n \in \mathbb{N}}\left(T \backslash K_{n}\right)\right) \leq \sum_{n=1}^{\infty} \mu\left(T \backslash K_{n}\right) \leq \varepsilon
$$

Since each $\left.f_{n}\right|_{K \times X}$ is continuous, $\left.f^{*}\right|_{K \times X}$ is lower semicontinuous (as the upper envelope of a sequence of continuous functions). Now, choose any $\left(t^{*}, x^{*}\right) \in K \times(X \backslash E)$, and let us show that $\left.f\right|_{K \times X}$ is lower semicontinuous
at $\left(t^{*}, x^{*}\right)$. To this end, fix $\gamma>0$. Since $\left.f^{*}\right|_{K \times X}$ is lower semicontinuous, there exists a neighborhood U of $\left(t^{*}, x^{*}\right)$ in $K \times X$ such that

$$
f^{*}\left(t^{*}, x^{*}\right)-\gamma<f^{*}(t, x) \quad \text { for all }(t, x) \in U .
$$

Taking into account (4) and (5), it follows that for all $(t, x) \in U$ one has

$$
f(t, x) \geq f^{*}(t, x)>f^{*}\left(t^{*}, x^{*}\right)-\gamma=f\left(t^{*}, x^{*}\right)-\gamma
$$

Hence, $\left.f\right|_{K \times X}$ is lower semicontinuous at $\left(t^{*}, x^{*}\right)$, as claimed. The proof is complete.

Lemma 5. Let T, X, μ, ψ be as in Lemma 1, with μ finite, S a separable metric space, $F: T \times X \rightarrow 2^{S}$ a multifunction with nonempty closed values, and $E \subseteq X$ a given set. Assume that:
(i) F is $\mathcal{T}_{\mu} \otimes \mathcal{B}(X)$-measurable;
(ii) for a.a. $t \in T$,

$$
\{x \in X: F(t, \cdot) \text { is not lower semicontinuous at } x\} \subseteq E .
$$

Then for each $\varepsilon>0$ there exists a \mathcal{T}_{μ}-measurable set $K \subseteq T$ such that $\mu(T \backslash K) \leq \varepsilon$ and the multifunction $\left.F\right|_{K \times X}$ is lower semicontinuous at each $(t, x) \in K \times(X \backslash E)$.

Proof. Let ϱ be an equivalent distance over S such that $\varrho \leq 1$, and let $\left\{y_{n}\right\}$ be a dense sequence in S. By Proposition 13.2.2 of [7], for each $y \in S$ the function $\varrho(y, F(\cdot, \cdot))$ is $\mathcal{T}_{\mu} \otimes \mathcal{B}(X)$-measurable. Moreover, by Lemma 3 , for each $y \in E$ and for a.a. $t \in T$ the function $\varrho(y, F(t, \cdot))$ is upper semicontinuous at each $x \in X \backslash E$. Now, fix $\varepsilon>0$. For each $n \in \mathbb{N}$, by Lemma 4 applied to the function $-\varrho\left(y_{n}, F(\cdot, \cdot)\right)$, there exists a \mathcal{T}_{μ}-measurable set $K_{n} \subseteq T$ such that

$$
\mu\left(T \backslash K_{n}\right) \leq \varepsilon / 2^{n}
$$

and the function $\left.\varrho\left(y_{n}, F(\cdot, \cdot)\right)\right|_{K_{n} \times X}$ is upper semicontinuous at each $(t, x) \in$ $K_{n} \times(X \backslash E)$. Putting $K:=\bigcap_{n \in \mathbb{N}} K_{n}$, we see that K is \mathcal{T}_{μ}-measurable, $\mu(T \backslash K) \leq \varepsilon$, and for each $n \in \mathbb{N}$ the function $\left.\varrho\left(y_{n}, F(\cdot, \cdot)\right)\right|_{K \times X}$ is upper semicontinuous at each $(t, x) \in K \times(X \backslash E)$. By Lemma 3, this implies our conclusion.

Proof of Theorem 2. By Lemma 5, there exists a sequence $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ of pairwise disjoint \mathcal{T}_{μ}-measurable subsets of T such that the set

$$
Y:=T \backslash \bigcup_{n \in \mathbb{N}} K_{n}
$$

is negligible and, for each $n \in \mathbb{N}$, the multifunction $\left.F\right|_{K_{n} \times X}$ is lower semicontinuous at each point of $K_{n} \times(X \backslash E)$. We can assume that inclusion (1) holds for all $t \in \bigcup_{n \in \mathbb{N}} K_{n}$. Let Q and R be as in Lemma 1. By Lemma 2,
for each $n \in \mathbb{N}$ there exists a selection $g_{n}: K_{n} \times X \rightarrow S$ of $\left.F\right|_{K_{n} \times X}$ which is continuous at each point of

$$
\left(K_{n} \backslash Q\right) \times(X \backslash(R \cup E))
$$

For all $t \in Y$, let $h_{t}: X \rightarrow S$ be any selection of the multifunction $F(t, \cdot)$. Define $\phi: T \times X \rightarrow S$ by putting

$$
\phi(t, x)= \begin{cases}g_{n}(t, x) & \text { if } t \in K_{n} \\ h_{t}(x) & \text { if } t \in Y\end{cases}
$$

Clearly, ϕ is a selection of F. Let us show that ϕ satisfies our conclusion. To this end, choose any $x^{*} \in X \backslash(E \cup R)$. Since by construction each function $\left.g_{n}\left(\cdot, x^{*}\right)\right|_{K_{n} \backslash Q}$ is continuous, it is \mathcal{T}_{μ}-measurable. Since $Y \cup Q$ is negligible, ϕ satisfies $(\mathrm{i})^{\prime}$. In order to prove (ii) ${ }^{\prime \prime}$, choose any $t^{*} \in T \backslash(Y \cup Q)$, and let $n \in \mathbb{N}$ be such that $t^{*} \in K_{n}$. Since

$$
\left\{x \in X: g_{n}\left(t^{*}, \cdot\right) \text { is discontinuous at } x\right\} \subseteq E \cup R
$$

and $g_{n}\left(t^{*}, \cdot\right)=\phi\left(t^{*}, \cdot\right)$, our claim follows. This completes the proof.
3. An application to differential inclusions. In this section we provide an application of Theorem 2 to differential inclusions. In particular we stress that a multifunction F satisfying the assumptions of Theorem 3 below can fail to be lower semicontinuous in the second variable at each $x \in \mathbb{R}$. Moreover, unlike other recent results in the field (see, for instance, [10] and references therein), the convexity of the values of F is not assumed. Our result is as follows (as usual, we denote by m the Lebesgue measure in \mathbb{R}).

Theorem 3. Let $[a, b]$ be a real interval, $F:[a, b] \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ a multifunction and $p \in[1, \infty[$. Assume that there exists a multifunction $G:[a, b] \times \mathbb{R}$ $\rightarrow 2^{\mathbb{R}}$, with nonempty closed values, satisfying the following conditions:
(i) G is $\mathcal{L}([a, b]) \otimes \mathcal{B}(\mathbb{R})$-measurable;
(ii) there exists $E_{0} \subseteq \mathbb{R}$, with $m\left(E_{0}\right)=0$, such that for a.a. $t \in[a, b]$,
$\{x \in \mathbb{R}: G(t, \cdot)$ is not lower semicontinuous at $x\}$

$$
\cup\{x \in \mathbb{R}: G(t, x) \nsubseteq F(t, x)\} \subseteq E_{0}
$$

(iii) there exist $\beta \in L^{p}([a, b])$ and $\left.\alpha:[a, b] \rightarrow\right] 0, \infty[$ such that for a.a. $t \in[a, b]$ and all $x \in \mathbb{R}$

$$
G(t, x) \subseteq[\alpha(t), \beta(t)]
$$

Then there exists $u \in W^{2, p}([a, b])$ such that

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t) \in F(t, u(t)) \quad \text { for a.a. } t \in[a, b] \\
u(a)=u(b)=0
\end{array}\right.
$$

Proof. By Theorem 2, there exist a selection $\phi:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ of the multifunction G, and two m-negligible sets $K_{0} \subseteq[a, b]$ and $E \subseteq \mathbb{R}$, with
$E_{0} \subseteq E$, such that for all $x \in \mathbb{R} \backslash E$ the function $\phi(\cdot, x)$ is measurable and for all $t \in[a, b] \backslash K_{0}$ one has
$\{x \in \mathbb{R}: \phi(t, \cdot)$ is discontinuous at $x\} \subseteq E$.
Since $\mathbb{R} \backslash E$ a separable dense subset of \mathbb{R}, we can find a countable set $P \subset \mathbb{R} \backslash E$ which is dense in \mathbb{R}.

Without loss of generality we can assume that

$$
G(t, x) \subseteq[\alpha(t), \beta(t)] \quad \text { for all } x \in \mathbb{R}, t \in[a, b] \backslash K_{0}
$$

Let $\phi^{*}:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\phi^{*}(t, x)= \begin{cases}\phi(t, x) & \text { if } t \in[a, b] \backslash K_{0} \\ \beta(t) & \text { if } t \in K_{0}\end{cases}
$$

Since ϕ is a selection of G, by assumption (iii) we have

$$
\alpha(t) \leq \phi^{*}(t, x) \leq \beta(t) \quad \text { for all } x \in \mathbb{R}, t \in[a, b]
$$

In particular, observe that $\phi^{*}(t, \cdot)$ is bounded for each $t \in[a, b]$, and $\phi^{*}(\cdot, x)$ is measurable for each $x \in P$. Consequently, by Proposition 2 of [4], the multifunction $H:[a, b] \times \mathbb{R} \rightarrow 2^{\mathbb{R}}$ defined by setting

$$
H(t, x)=\bigcap_{m \in \mathbb{N}} \overline{\operatorname{co}} \overline{\left(\bigcup_{y \in D,|y-x| \leq 1 / m}\left\{\phi^{*}(t, y)\right\}\right)}
$$

satisfies the following conditions:
(a) H has nonempty closed convex values;
(b) for all $x \in \mathbb{R}$, the multifunction $H(\cdot, x)$ is measurable;
(c) for each $t \in[a, b]$, the multifunction $H(t, \cdot)$ has closed graph;
(d) for all $t \in[a, b] \backslash K_{0}$ and all $x \in \mathbb{R} \backslash E$,

$$
H(t, x)=\{\phi(t, x)\}
$$

Moreover, by the above construction it follows that

$$
\begin{equation*}
H(t, x) \subseteq[\alpha(t), \beta(t)] \quad \text { for all } x \in \mathbb{R}, t \in[a, b] \tag{6}
\end{equation*}
$$

Now we want to apply Theorem 1 of [10] to the multifunction H, taking $T=[a, b], X=Y=\mathbb{R}, s=q=p$,

$$
V=\left\{u \in W^{1, p}([a, b]): \int_{a}^{b} u(t) d t=0\right\}
$$

$\Psi(u)=u^{\prime}, \Phi(u)(t)=\int_{a}^{t} u(\tau) d \tau, \varphi \equiv+\infty$ and $r=\|\beta\|_{L^{p}([a, b])}$. To this end, we observe that the operators Ψ and Φ satisfy all the conditions of Theorem 1 of [10] (see the proof of Theorem 3 of [10]) as does the multifunction H. Consequently, there exist a function $v \in V$ and a negligible set $K \subseteq[a, b]$, with $K_{0} \subseteq K$, such that

$$
\begin{equation*}
\Psi(v)(t) \in H(t, \Phi(v)(t)) \quad \text { for all } t \in[a, b] \backslash K \tag{7}
\end{equation*}
$$

Without loss of generality we can assume that v is continuous. Put $\gamma=\Phi(v)$. By (6) and (7) we have $\gamma^{\prime \prime}(t)=v^{\prime}(t) \geq \alpha(t)>0$ a.e. in $[a, b]$, hence $\gamma^{\prime}=v$ is strictly increasing. Since $\gamma(a)=\gamma(b)$, there exists $c \in] a, b[$ such that

$$
\begin{array}{ll}
\gamma^{\prime}(t)<0 & \text { for all } t \in[a, c[, \\
\gamma^{\prime}(t)>0 & \text { for all } t \in] c, b] .
\end{array}
$$

By Theorem 2 of [12], the functions $\left(\left.\gamma\right|_{[a, c]}\right)^{-1}$ and $\left(\left.\gamma\right|_{[c, b]}\right)^{-1}$ are absolutely continuous. By assumption (ii), there exists $K_{1} \subseteq[a, b]$, with $m\left(K_{1}\right)=0$, such that for all $t \in[a, b] \backslash K_{1}$ one has

$$
\{x \in \mathbb{R}: G(t, x) \nsubseteq F(t, x)\} \subseteq E_{0} .
$$

Clearly, we can assume that $K \subseteq K_{1}$. Put

$$
S:=\gamma^{-1}(E) \cup K_{1} .
$$

Since by Theorem 18.25 of [5] the sets $\left(\left.\gamma\right|_{[a, c]}\right)^{-1}(E)$ and $\left(\left.\gamma\right|_{[c, b]}\right)^{-1}(E)$ are negligible, it follows that $m(S)=0$. Now, observe that for all $t \in[a, b] \backslash S$ one has $\Phi(v)(t) \in \mathbb{R} \backslash E$, hence,

$$
H(t, \Phi(v)(t))=\{\phi(t, \Phi(v)(t))\} \subseteq G(t, \Phi(v)(t)) \subseteq F(t, \Phi(v)(t)) .
$$

Consequently, by (7) we get

$$
v^{\prime}(t) \in F\left(t, \int_{a}^{t} v(\tau) d \tau\right) \quad \text { for all } t \in[a, b] \backslash S .
$$

Then our conclusion follows by taking $u(t)=\int_{a}^{t} v(\tau) d \tau$.

References

[1] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547.
[2] F. Cammaroto and P. Cubiotti, Implicit integral equations with discontinuous righthand side, Comment. Math. Univ. Carolin. 38 (1997), 241-246.
[3] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
[4] P. Cubiotti, Non-autonomous vector integral equations with discontinuous righthand side, Comment. Math. Univ. Carolin. 42 (2001), 319-329.
[5] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, Berlin, 1965.
[6] T. Kim, K. Prikry and N. C. Yannelis, Carathéodory-type selections and random fixed point theorems, J. Math. Anal. Appl. 122 (1987), 393-407.
[7] E. Klein and A. C. Thompson, Theory of Correspondences, Wiley, New York, 1984.
[8] S. A. Marano, Elliptic boundary-value problems with discontinuous nonlinearities, Set-Valued Anal. 3 (1995), 167-180.
[9] E. Michael, Continuous selections II, Ann. of Math. 64 (1956), 562-580.
[10] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type $\Psi(u)(t) \in F(t, \Phi(u)(t))$ and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270.
[11] J. Saint-Raymond, Riemann-measurable selections, Set-Valued Anal. 2 (1994), 481-485.
[12] A. Villani, On Lusin condition for the inverse function, Rend. Circ. Mat. Palermo 33 (1984), 331-335.

Department of Mathematics
University of Messina
Contrada Papardo, Salita Sperone 31
98166 Messina, Italy
E-mail: anello@dipmat.unime.it
cubiotti@dipmat.unime.it

[^0]: 2000 Mathematics Subject Classification: 47H04, 28B20, 34A60.
 Key words and phrases: multifunctions, Riemann-measurable selections, lower semicontinuity, differential inclusions.

