Parametrization of Riemann-measurable selections for multifunctions of two variables with application to differential inclusions

by Giovanni Anello and Paolo Cubiotti (Messina)

Abstract. We consider a multifunction $F : T \times X \to 2^E$, where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.

1. Introduction. If X is a topological space, we denote by $\mathcal{B}(X)$ the Borel σ-algebra of X. Moreover, if μ is measure on $\mathcal{B}(X)$, we denote by $\mathcal{T}_\mu(X)$ the completion of $\mathcal{B}(X)$ with respect to μ. We briefly put $\mathcal{T}_\mu = \mathcal{T}_\mu(X)$ when ambiguities do not occur. For the basic definitions about multifunctions, we refer the reader to [6] and [7].

This note is motivated by the main result of [11], which concerns the existence of Riemann-measurable selections (i.e., selections which are a.e. continuous) for a given multifunction. For the reader’s convenience, we now state the main result of [11] (as usual, by a Polish space we mean a complete separable metric space).

Theorem 1 (Theorem 3 of [11]). Let X be a Polish space equipped with a σ-finite regular Borel measure, E a metric space and $F : X \to 2^E$ a multifunction with nonempty complete values. If F is lower semicontinuous at almost every point of X, then there exists a selection of F which is continuous at almost every point of X.

We refer to [11] for motivations leading to Theorem 1. Applications of Theorem 1 to implicit integral equations and to elliptic differential equations can be found in [2] and [8], respectively.

2000 Mathematics Subject Classification: 47H04, 28B20, 34A60.

Key words and phrases: multifunctions, Riemann-measurable selections, lower semicontinuity, differential inclusions.
Our aim in this paper is to prove a parametrized version of Theorem 1 for multifunctions of two variables, obtaining, in particular, sufficient conditions for the existence of a selection which is measurable with respect to the first variable and a.e. continuous with respect to the second one. More precisely, we prove the following result.

Theorem 2. Let T,X be two Polish spaces and let μ, ψ be two positive regular Borel measures on T and X, respectively, with μ finite and ψ σ-finite. Let S be a separable metric space, $F : T \times X \to 2^S$ a multifunction with nonempty complete values, and let $E \subseteq X$ be a given set. Assume that:

1. F is $T_\mu \otimes \mathcal{B}(X)$-measurable;
2. for a.a. $t \in T$,

\[\{ x \in X : F(t, \cdot) \text{ is not lower semicontinuous at } x \} \subseteq E. \]

Then there exist a selection $\phi : T \times X \to S$ of F and a set $R \in \mathcal{B}(X)$, with $\psi(R) = 0$, such that

1. $\phi(\cdot, x)$ is T_μ-measurable for each $x \in X \setminus (E \cup R)$;
2. for a.a. $t \in T$,

\[\{ x \in X : \phi(t, \cdot) \text{ is not continuous at } x \} \subseteq E \cup R. \]

The proof of Theorem 2 will be given in Section 2, while in Section 3 we shall provide an application of Theorem 2 to differential inclusions.

2. Proof of Theorem 2. Before proving Theorem 2, we need the following preliminary results.

Lemma 1. Let T,X be two Polish spaces and let μ, ψ be two positive σ-finite regular Borel measure on X and Y, respectively. Then there exist two sets $Q \in \mathcal{B}(T)$ and $R \in \mathcal{B}(X)$, with $\mu(Q) = \psi(R) = 0$, a continuous open function $\pi : \mathbb{N}^T \to T \times X$, and a function $\sigma : T \times X \to \mathbb{N}^T$ which is continuous at each point of $(T \setminus Q) \times (X \setminus R)$ and satisfies $\pi(\sigma(t,x)) = (t,x)$ for all $(t,x) \in T \times X$.

Proof. By Lemma 1 of [11], there exist $Q \in \mathcal{B}(T)$ and $R \in \mathcal{B}(X)$ with $\mu(Q) = \psi(R) = 0$, two continuous open functions $\pi_1 : \mathbb{N}^T \to T$, $\pi_2 : \mathbb{N}^T \to X$, a function $\sigma_1 : T \to \mathbb{N}^T$ which is continuous at each point of $T \setminus Q$, and a function $\sigma_2 : X \to \mathbb{N}^T$ which is continuous at each point of $X \setminus R$, such that $\pi_1(\sigma_1(t)) = t$ and $\pi_2(\sigma_2(x)) = x$ for all $(t,x) \in T \times X$. For each $\alpha := \{ n_k \}_{k \in \mathbb{N}}$, we denote by α_e and α_o the sequences $\{ n_{2k} \}_k$ and $\{ n_{2k-1} \}_k$, respectively. If we put $\pi(\sigma) = (\pi_1(\alpha_e), \pi_2(\alpha_o))$ for all $\alpha \in \mathbb{N}^T$, then $\pi : \mathbb{N}^T \to T \times X$ is a continuous open function. Moreover, if we put $\sigma(t,x) = \{ n(t,x)_k \}_k$, where $\{ n(t,x)_k \}_k = \sigma_1(t)$ and $\{ n(t,x)_{2k-1} \}_k = \sigma_2(x)$, then $\sigma : T \times X \to \mathbb{N}^T$ is continuous at each point of $(T \setminus Q) \times (X \setminus R)$ and one has $\pi(\sigma(t,x)) = (t,x)$ for all $(t,x) \in T \times X$.

LEMMA 2. Let $T, X, Q, R, \mu, \psi, \pi, \sigma$ be as in Lemma 1. Let E be a metric space, $B \subseteq T \times X$ and $V \subseteq B$ two given sets, and $F : B \to 2^E$ a multifunction with nonempty complete values which is lower semicontinuous at each point of $B \setminus V$. Then there exists a selection g of F which is continuous at each point of $[B \cap ((T \setminus Q) \times (X \setminus R))] \setminus V$.

Proof. Put $Z = \pi^{-1}(B)$ and $G = F \circ \pi|_Z$. Observe that Z is 0-dimensional and G is lower semicontinuous at each point of $Z \setminus \pi^{-1}(V)$. Consequently, by the proof of Lemma 2 of [11], there exists a selection s of G which is continuous at each point of $Z \setminus \pi^{-1}(V)$. Since $\sigma(t, x) \in \pi^{-1}(t, x) \subseteq Z$ for all $(t, x) \in B$, we can put $g(t, x) = s(\sigma(t, x))$ for all $(t, x) \in B$. Then $g(t, x) \in F(\pi(\sigma(t, x))) = F(t, x)$ for all $(t, x) \in B$. Further, it is easily seen that g is continuous at each point of $[B \cap ((T \setminus Q) \times (X \setminus R))] \setminus V$.

The next lemma follows from the proof of Lemma 2.3 of [1].

LEMMA 3. Let X and S be metric spaces, with S separable, $F : X \to 2^S$ a multifunction with nonempty values, $\{s_n\}$ a dense sequence in S, and $x_0 \in X$. Denote by d the distance in S.

(i) If F is lower semicontinuous at x_0, then for each $s \in S$ the function $x \in X \mapsto d(s, F(x))$ is upper semicontinuous at x_0.

(ii) If for each $n \in \mathbb{N}$ the function $x \in X \mapsto d(s_n, F(x))$ is upper semicontinuous at x_0, then F is lower semicontinuous at x_0.

LEMMA 4. Let T, X, μ, ψ be as in Lemma 1, with μ finite. Let $f : T \times X \to \mathbb{R}$ be a single-valued function and $E \subseteq X$ a given set. Assume that:

(i) f is $T_\mu \otimes \mathcal{B}(X)$-measurable;

(ii) $\inf_{T \times X} f > -\infty$;

(iii) for a.a. $t \in T$,

$\{x \in X : f(t, \cdot) \text{ is not lower semicontinuous at } x\} \subseteq E.$

Then for each $\varepsilon > 0$ there exists a T_μ-measurable set $K \subseteq T$ such that $\mu(T \setminus K) \leq \varepsilon$ and the function $f|_{K \times X}$ is lower semicontinuous at each point $(t, x) \in K \times (X \setminus E)$.

Proof. Without loss of generality, we can suppose $f \geq 0$ in $T \times X$. Let $T_0 \in \mathcal{B}(X)$ be such that $\mu(T \setminus T_0) = 0$ and (2) holds for all $t \in T_0$. For each $n \in \mathbb{N}$, let $f_n : T \times X \to [0, \infty[$ be the function defined by putting, for all $(t, x) \in T \times X$,

$\begin{equation}
 f_n(t, x) := \inf_{y \in X} [nd(x, y) + f(t, y)].
\end{equation}$

We observe the following facts.

(a) For each $x \in X$, the function $f_n(\cdot, x)$ is T_μ-measurable over T. This follows from Lemma III.39 of [3], since the function
\[(t, y) \mapsto nd(x, y) + f(t, y)\]
is $T_\mu \otimes \mathcal{B}(X)$-measurable for each fixed $n \in \mathbb{N}$ and $x \in X$.

(b) For each $n \in \mathbb{N}$ and each $(t, x) \in T \times X$, one has
\[
f_n(t, x) \leq f(t, x).
\]
Indeed, it is enough to put $y = x$ in (3).

(c) For each $n \in \mathbb{N}$ and each $(t, x) \in T \times X$, one has
\[
f_n(t, x) = \inf_{y \in X} [nd(x, z) + nd(z, y) + f(t, y)] = nd(x, z) + f_n(t, z),
\]
hence
\[
f_n(t, x) - f_n(t, z) \leq nd(x, z).
\]
By the latter inequality, upon interchanging the roles of x and z, our assertion follows.

(d) For all $(t, x) \in T \times X$, set
\[
f^*(t, x) := \sup_{n \in \mathbb{N}} f_n(t, x).
\]
Then
\[
f^*(t, x) = f(t, x) \quad \text{for all } (t, x) \in T_0 \times (X \setminus E).
\]
To see this, let $(t, x) \in T_0 \times (X \setminus E)$ and $\eta > 0$. Since $f(t, \cdot)$ is lower semicontinuous at x, there exists $\delta > 0$ such that for each $y \in X$ with $d(x, y) < \delta$ one has
\[
f(t, y) > \beta := f(t, x) - \eta.
\]
Pick $n^* > \beta/\delta$. For each $y \in X$ we get
\[
n^*d(x, y) + f(t, y) \geq \begin{cases} f(t, y) > \beta & \text{if } d(x, y) < \delta, \\ n^*\delta + f(t, y) > \beta + f(t, y) \geq \beta & \text{if } d(x, y) \geq \delta. \end{cases}
\]
It follows that $f_{n^*}(t, x) \geq \beta$ and thus, by taking into account (4), the equality (5) holds.

At this point, fix $\varepsilon > 0$. For each $n \in \mathbb{N}$, by the Scorza Dragoni Theorem, there exists a T_μ-measurable set $K_n \subseteq T_0$ such that
\[
\mu(T \setminus K_n) \leq \varepsilon/2^n
\]
and $f_n|_{K_n \times X}$ is continuous. The set $K := \bigcap_{n \in \mathbb{N}} K_n$ is T_μ-measurable and
\[
\mu(T \setminus K) = \mu\left(\bigcup_{n \in \mathbb{N}} (T \setminus K_n) \right) \leq \sum_{n=1}^{\infty} \mu(T \setminus K_n) \leq \varepsilon.
\]
Since each $f_n|_{K \times X}$ is continuous, $f^*|_{K \times X}$ is lower semicontinuous (as the upper envelope of a sequence of continuous functions). Now, choose any $(t^*, x^*) \in K \times (X \setminus E)$, and let us show that $f|_{K \times X}$ is lower semicontinuous.
at \((t^*, x^*)\). To this end, fix \(\gamma > 0\). Since \(f^*|_{K \times X}\) is lower semicontinuous, there exists a neighborhood \(U\) of \((t^*, x^*)\) in \(K \times X\) such that
\[
 f^*(t^*, x^*) - \gamma < f^*(t, x) \quad \text{for all } (t, x) \in U.
\]
Taking into account (4) and (5), it follows that for all \((t, x) \in U\) one has
\[
 f(t, x) \geq f^*(t, x) > f^*(t^*, x^*) - \gamma = f(t^*, x^*) - \gamma.
\]
Hence, \(f|_{K \times X}\) is lower semicontinuous at \((t^*, x^*)\), as claimed. The proof is complete.

Lemma 5. Let \(T, X, \mu, \psi\) be as in Lemma 1, with \(\mu\) finite, \(S\) a separable metric space, \(F : T \times X \to 2^S\) a multifunction with nonempty closed values, and \(E \subseteq X\) a given set. Assume that:

(i) \(F\) is \(T \otimes \mathcal{B}(X)\)-measurable;

(ii) for a.a. \(t \in T\),

\[
 \{x \in X : F(t, \cdot) \text{ is not lower semicontinuous at } x\} \subseteq E.
\]

Then for each \(\varepsilon > 0\) there exists a \(T \mu\)-measurable set \(K \subseteq T\) such that \(\mu(T \setminus K) \leq \varepsilon\) and the multifunction \(F|_{K \times X}\) is lower semicontinuous at each \((t, x) \in K \times (X \setminus E)\).

Proof. Let \(\varrho\) be an equivalent distance over \(S\) such that \(\varrho \leq 1\), and let \(\{y_n\}\) be a dense sequence in \(S\). By Proposition 13.2.2 of [7], for each \(y \in S\) the function \(\varrho(y, F(\cdot, \cdot))\) is \(T \otimes \mathcal{B}(X)\)-measurable. Moreover, by Lemma 3, for each \(y \in E\) and for a.a. \(t \in T\) the function \(\varrho(y, F(t, \cdot))\) is upper semicontinuous at each \(x \in X \setminus E\). Now, fix \(\varepsilon > 0\). For each \(n \in \mathbb{N}\), by Lemma 4 applied to the function \(-\varrho(y_n, F(\cdot, \cdot))\), there exists a \(T \mu\)-measurable set \(K_n \subseteq T\) such that
\[
 \mu(T \setminus K_n) \leq \varepsilon / 2^n
\]
and the function \(\varrho(y_n, F(\cdot, \cdot))|_{K_n \times X}\) is upper semicontinuous at each \((t, x) \in K_n \times (X \setminus E)\). Putting \(K := \bigcap_{n \in \mathbb{N}} K_n\), we see that \(K\) is \(T \mu\)-measurable, \(\mu(T \setminus K) \leq \varepsilon\), and for each \(n \in \mathbb{N}\) the function \(\varrho(y_n, F(\cdot, \cdot))|_{K \times X}\) is upper semicontinuous at each \((t, x) \in K \times (X \setminus E)\). By Lemma 3, this implies our conclusion.

Proof of Theorem 2. By Lemma 5, there exists a sequence \(\{K_n\}_{n \in \mathbb{N}}\) of pairwise disjoint \(T \mu\)-measurable subsets of \(T\) such that the set
\[
 Y := T \setminus \bigcup_{n \in \mathbb{N}} K_n
\]
is negligible and, for each \(n \in \mathbb{N}\), the multifunction \(F|_{K_n \times X}\) is lower semicontinuous at each point of \(K_n \times (X \setminus E)\). We can assume that inclusion (1) holds for all \(t \in \bigcup_{n \in \mathbb{N}} K_n\). Let \(Q\) and \(R\) be as in Lemma 1. By Lemma 2,
for each \(n \in \mathbb{N} \) there exists a selection \(g_n : K_n \times X \to S \) of \(F|_{K_n \times X} \) which is continuous at each point of
\[
(K_n \setminus Q) \times (X \setminus (R \cup E)).
\]
For all \(t \in Y \), let \(h_t : X \to S \) be any selection of the multifunction \(F(t, \cdot) \).
Define \(\phi : T \times X \to S \) by putting
\[
\phi(t, x) = \begin{cases}
 g_n(t, x) & \text{if } t \in K_n, \\
 h_t(x) & \text{if } t \in Y.
\end{cases}
\]
Clearly, \(\phi \) is a selection of \(F \). Let us show that \(\phi \) satisfies our conclusion. To this end, choose any \(x^* \in X \setminus (E \cup R) \). Since by construction each function \(g_n(\cdot, x^*)|_{K_n \setminus Q} \) is continuous, it is \(T_n \)-measurable. Since \(Y \cup Q \) is negligible, \(\phi \) satisfies (i). In order to prove (ii), choose any \(t^* \in T \setminus (Y \cup Q) \), and let \(n \in \mathbb{N} \) be such that \(t^* \in K_n \). Since
\[
\{ x \in X : g_n(t^*, \cdot) \text{ is discontinuous at } x \} \subseteq E \cup R
\]
and \(g_n(t^*, \cdot) = \phi(t^*, \cdot) \), our claim follows. This completes the proof.

3. An application to differential inclusions. In this section we provide an application of Theorem 2 to differential inclusions. In particular we stress that a multifunction \(F \) satisfying the assumptions of Theorem 3 below can fail to be lower semicontinuous in the second variable at each \(x \in \mathbb{R} \). Moreover, unlike other recent results in the field (see, for instance, [10] and references therein), the convexity of the values of \(F \) is not assumed. Our result is as follows (as usual, we denote by \(m \) the Lebesgue measure in \(\mathbb{R} \)).

Theorem 3. Let \([a, b]\) be a real interval, \(F : [a, b] \times \mathbb{R} \to 2^{\mathbb{R}} \) a multifunction and \(p \in [1, \infty[\). Assume that there exists a multifunction \(G : [a, b] \times \mathbb{R} \to 2^{\mathbb{R}} \), with nonempty closed values, satisfying the following conditions:

(i) \(G \) is \(\mathcal{L}([a, b]) \otimes \mathcal{B}(\mathbb{R}) \)-measurable;

(ii) there exists \(E_0 \subseteq \mathbb{R} \), with \(m(E_0) = 0 \), such that for a.a. \(t \in [a, b] \),
\[
\{ x \in \mathbb{R} : G(t, \cdot) \text{ is not lower semicontinuous at } x \}
\]
\[
\cup \{ x \in \mathbb{R} : G(t, x) \not\subseteq F(t, x) \} \subseteq E_0;
\]

(iii) there exist \(\beta \in \mathcal{L}^p([a, b]) \) and \(\alpha : [a, b] \to]0, \infty[\) such that for a.a. \(t \in [a, b] \) and all \(x \in \mathbb{R} \)
\[
G(t, x) \subseteq [\alpha(t), \beta(t)].
\]
Then there exists \(u \in W^{2,p}([a, b]) \) such that
\[
\begin{cases}
 u''(t) \in F(t, u(t)) & \text{for a.a. } t \in [a, b], \\
 u(a) = u(b) = 0.
\end{cases}
\]

Proof. By Theorem 2, there exist a selection \(\phi : [a, b] \times \mathbb{R} \to \mathbb{R} \) of the multifunction \(G \), and two \(m \)-negligible sets \(K_0 \subseteq [a, b] \) and \(E \subseteq \mathbb{R} \), with
$E_0 \subseteq E$, such that for all $x \in \mathbb{R} \setminus E$ the function $\phi(\cdot, x)$ is measurable and for all $t \in [a, b] \setminus K_0$ one has

$$ \{ x \in \mathbb{R} : \phi(t, \cdot) \text{ is discontinuous at } x \} \subseteq E. $$

Since $\mathbb{R} \setminus E$ a separable dense subset of \mathbb{R}, we can find a countable set $P \subset \mathbb{R} \setminus E$ which is dense in \mathbb{R}.

Without loss of generality we can assume that

$$ G(t, x) \subseteq [\alpha(t), \beta(t)] \quad \text{for all } x \in \mathbb{R}, t \in [a, b] \setminus K_0. $$

Let $\phi^* : [a, b] \times \mathbb{R} \to \mathbb{R}$ be defined by

$$ \phi^*(t, x) = \begin{cases} \phi(t, x) & \text{if } t \in [a, b] \setminus K_0, \\ \beta(t) & \text{if } t \in K_0. \end{cases} $$

Since ϕ is a selection of G, by assumption (iii) we have

$$ \alpha(t) \leq \phi^*(t, x) \leq \beta(t) \quad \text{for all } x \in \mathbb{R}, t \in [a, b]. $$

In particular, observe that $\phi^*(t, \cdot)$ is bounded for each $t \in [a, b]$, and $\phi^*(\cdot, x)$ is measurable for each $x \in P$. Consequently, by Proposition 2 of [4], the multifunction $H : [a, b] \times \mathbb{R} \to 2^\mathbb{R}$ defined by setting

$$ H(t, x) = \bigcap_{m \in \mathbb{N}} \overline{\operatorname{co}} \left(\bigcup_{y \in D, |y-x| \leq 1/m} \{ \phi^*(t, y) \} \right) $$

satisfies the following conditions:

(a) H has nonempty closed convex values;
(b) for all $x \in \mathbb{R}$, the multifunction $H(\cdot, x)$ is measurable;
(c) for each $t \in [a, b]$, the multifunction $H(t, \cdot)$ has closed graph;
(d) for all $t \in [a, b] \setminus K_0$ and all $x \in \mathbb{R} \setminus E$,

$$ H(t, x) = \{ \phi(t, x) \}. $$

Moreover, by the above construction it follows that

$$ H(t, x) \subseteq [\alpha(t), \beta(t)] \quad \text{for all } x \in \mathbb{R}, t \in [a, b]. $$

Now we want to apply Theorem 1 of [10] to the multifunction H, taking $T = [a, b], X = Y = \mathbb{R}$, $s = q = p$,

$$ V = \left\{ u \in W^{1,p}([a, b]) : \int_a^b u(t) \, dt = 0 \right\}, $$

$$ \Psi(u) = u', \Phi(u)(t) = \int_a^t u(\tau) \, d\tau, \varphi \equiv +\infty \text{ and } r = ||\beta||_{L^p([a, b])}. $$

To this end, we observe that the operators Ψ and Φ satisfy all the conditions of Theorem 1 of [10] (see the proof of Theorem 3 of [10]) as does the multifunction H. Consequently, there exist a function $v \in V$ and a negligible set $K \subseteq [a, b]$, with $K_0 \subseteq K$, such that

$$ \Psi(v)(t) \in H(t, \Phi(v)(t)) \quad \text{for all } t \in [a, b] \setminus K. $$

In particular, observe that $\phi^*(t, \cdot)$ is bounded for each $t \in [a, b]$, and $\phi^*(\cdot, x)$ is measurable for each $x \in P$. Consequently, by Proposition 2 of [4], the multifunction $H : [a, b] \times \mathbb{R} \to 2^\mathbb{R}$ defined by setting

$$ H(t, x) = \bigcap_{m \in \mathbb{N}} \overline{\operatorname{co}} \left(\bigcup_{y \in D, |y-x| \leq 1/m} \{ \phi^*(t, y) \} \right) $$

satisfies the following conditions:

(a) H has nonempty closed convex values;
(b) for all $x \in \mathbb{R}$, the multifunction $H(\cdot, x)$ is measurable;
(c) for each $t \in [a, b]$, the multifunction $H(t, \cdot)$ has closed graph;
(d) for all $t \in [a, b] \setminus K_0$ and all $x \in \mathbb{R} \setminus E$,

$$ H(t, x) = \{ \phi(t, x) \}. $$

Moreover, by the above construction it follows that

$$ H(t, x) \subseteq [\alpha(t), \beta(t)] \quad \text{for all } x \in \mathbb{R}, t \in [a, b]. $$

Now we want to apply Theorem 1 of [10] to the multifunction H, taking $T = [a, b], X = Y = \mathbb{R}$, $s = q = p$,

$$ V = \left\{ u \in W^{1,p}([a, b]) : \int_a^b u(t) \, dt = 0 \right\}, $$

$$ \Psi(u) = u', \Phi(u)(t) = \int_a^t u(\tau) \, d\tau, \varphi \equiv +\infty \text{ and } r = ||\beta||_{L^p([a, b])}. $$

To this end, we observe that the operators Ψ and Φ satisfy all the conditions of Theorem 1 of [10] (see the proof of Theorem 3 of [10]) as does the multifunction H. Consequently, there exist a function $v \in V$ and a negligible set $K \subseteq [a, b]$, with $K_0 \subseteq K$, such that

$$ \Psi(v)(t) \in H(t, \Phi(v)(t)) \quad \text{for all } t \in [a, b] \setminus K. $$
Without loss of generality we can assume that v is continuous. Put $\gamma = \Phi(v)$. By (6) and (7) we have $\gamma''(t) = v'(t) \geq \alpha(t) > 0$ a.e. in $[a, b]$, hence $\gamma' = v$ is strictly increasing. Since $\gamma(a) = \gamma(b)$, there exists $c \in]a, b]$ such that
\[
\gamma'(t) < 0 \quad \text{for all } t \in [a, c],
\]
\[
\gamma'(t) > 0 \quad \text{for all } t \in [c, b].
\]
By Theorem 2 of [12], the functions $(\gamma|_{[a,c]})^{-1}$ and $(\gamma|_{[c,b]})^{-1}$ are absolutely continuous. By assumption (ii), there exists $K_1 \subseteq [a, b]$, with $m(K_1) = 0$, such that for all $t \in [a, b] \setminus K_1$ one has
\[
E \ni x < \overline{G(t, x)} \subseteq F(t, x).
\]

Then our conclusion follows by taking $u(t) = \int_a^t v(\tau) \, d\tau$.

References

[10] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type $\Psi(u)(t) \in F(t, \Phi(u)(t))$ and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259–270.

Department of Mathematics
University of Messina
Contrada Papardo, Salita Sperone 31
98166 Messina, Italy
E-mail: anello@dipmat.unime.it
cubiotti@dipmat.unime.it

Reçu par la Rédaction le 31.10.2003