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Hyperconvexity of non-smooth pseudoconvex domains

by Xu Wang (Shanghai)

Abstract. We show that a bounded pseudoconvex domain D ⊂ Cn is hyperconvex
if its boundary ∂D can be written locally as a complex continuous family of log-Lipschitz
curves. We also prove that the graph of a holomorphic motion of a bounded regular
domain Ω ⊂ C is hyperconvex provided every component of ∂Ω contains at least two
points. Furthermore, we show that hyperconvexity is a Hölder-homeomorphic invariant
for planar domains.

1. Introduction. This paper is an attempt to study hyperconvexity of
non-smooth pseudoconvex domains through the variational method. Recall
that a domain D ⊂ Cn is hyperconvex if there is a continuous plurisubhar-
monic function ρ < 0 on D such that Dc := {z ∈ D : ρ(z) < c} is relatively
compact in D for each c < 0 (see [29]). It is well known that a planar do-
main is hyperconvex if and only if its boundary is regular for the Dirichlet
problem. Thus every planar domain for which all connected components of
the boundary are continua is hyperconvex. Hyperconvexity is also a basic
concept in pluripotential theory (see e.g., [2], [3]).

The story of characterizing pseudoconvexity in terms of hypercon-
vexity starts from a fundamental paper of Diederich and Fornæss [10].
They proved that each bounded pseudoconvex domain with C2 boundary in
Cn is hyperconvex with −ρ � δα for some α > 0, where δ denotes the bound-
ary distance. Their result was generalized to the case of C1 and Lipschitz
boundaries by Kerzman and Rosay [18] and Demailly [9] respectively, but
with worse estimate −ρ � |log δ|−1. Only recently, Harrington [16] proved
a Diederich–Fornæss type result for pseudoconvex domains with Lipschitz
boundaries, basing on an ingenious quantitative analysis of Oka’s lemma.
Modifying Demailly’s technique slightly, Avelin–Hed–Persson [1] showed that
every pseudoconvex domain with log-Lipschitz boundary is hyperconvex.
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We also refer to [13], [22] and [11] for related results on complex mani-
folds.

Throughout this paper (unless otherwise stated), we shall assume the
boundedness of the domain considered.

A pseudoconvex domain in Cn is called a continuous pseudoconvex do-
main if its boundary can be written locally as the graph of a continuous
function. A longstanding problem in several complex variables is the follow-
ing:

Is every continuous pseudoconvex domain in Cn hyperconvex?

We shall give a partial answer as follows:

Theorem 1.1. A pseudoconvex domain in Cn is hyperconvex if its bound-
ary can be written locally as a complex continuous family of log-Lipschitz
curves.

A pseudoconvex domain in Cn is called a radial log-Lipschitz pseudocon-
vex domain if its boundary can be written locally as a complex continuous
family of log-Lipschitz curves. Roughly speaking, a radial log-Lipschitz pseu-
doconvex domain is a continuous pseudoconvex domain with log-Lipschitz
boundary along the “radial” direction (see Section 2 for more details). Since
every domain with log-Lipschitz boundary is radial log-Lipschitz, Theorem 1.1
can be seen as an improvement of the result of Avelin–Hed–Persson [1].

A trivial example supporting the above theorem is the Hartogs domain
defined by

Dφ := {(z, w) ∈ D × C : |w| < e−φ(z)},
where D is a smooth hyperconvex domain in Cn and φ is a continuous
plurisubharmonic function on D. Less obvious examples are graphs of holo-
morphic motions of planar domains with continuous boundaries.

Definition (cf. [20], see also [30], [27]). Let 4 (resp. 4r) be the disc
centered at the origin of C with radius 1 (resp. r) and Ω be a planar domain.
A map

(1.1) F : 4×Ω →4× C, (λ, z) 7→ (λ, f(λ, z)),

is called a holomorphic motion of Ω if

(i) f(0, z) = z for all z ∈ C,
(ii) for every z ∈ Ω, λ 7→ f(λ, z) is holomorphic on 4,
(iii) for every λ ∈ 4, z 7→ ζ = f(λ, z) is injective on Ω.

Indeed, F extends to a holomorphic motion of the whole plane and z 7→ ζ
= f(λ, z) is quasiconformal on C for every λ ∈ 4 (cf. [20], [27]).

We call the image of F the graph of the holomorphic motion ofΩ under F .
A local graph of the holomorphic motion of Ω under F is defined to be
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F (4r ×Ω), 0 < r < 1. In [6] and [7], Chen–Zhang studied complex analytic
properties of local graphs of a holomorphic motion of a planar domain. In
particular, they asked the following question:

Is the graph of a holomorphic motion of a regular planar domain hyper-
convex?

By use of Vâjâitu’s theorem (see [31]), the graph of a holomorphic motion
is hyperconvex if every local graph is hyperconvex. Thus we can give a partial
answer to Chen–Zhang’s question as follows:

Theorem 1.2. The graph of a holomorphic motion of a planar domain Ω
is hyperconvex if every component of ∂Ω contains at least two points (e.g., Ω
is simply-connected).

Our final result is on stability of hyperconvexity for planar domains under
Hörder continuous maps. We say that two planar domains D1 and D2 are
Hölder-homeomorphic if there exist two constants 0 < α ≤ 1, β > 1 and a
homeomorphism f from a neighborhood U1 of D1 to a neighborhood U2 of
D2 such that f(D1) = D2 and

(1.2)
1

β
|z − w|1/α ≤ |f(z)− f(w)| ≤ β|z − w|α, ∀z, w ∈ U1.

Theorem 1.3. Hyperconvexity of planar domains is a Hölder-homeo-
morphic invariant.

In particular, every quasiconformal deformation of a hyperconvex planar
domain is still hyperconvex.

If two planar domains D1 and D2 are Hölder-homeomorphic and D1

is an L2
h-domain of holomorphy, then so is D2 (see [8, Theorem 9.9] or [24,

Theorem 2]). Notice that the graph of a holomorphic motion of a planar
domain is a Levi flat pseudoconvex domain (maybe unbounded). Making
use of Theorem 1 of [24] and the Ohsawa–Takegoshi L2 extension theo-
rem (see [23]), we also infer that the graph of a holomorphic motion of an
L2
h-planar domain of holomorphy is an L2

h-domain of holomorphy as long as
the graph is bounded.

For other related results concerning variation of the Green’s function and
some other functions, one may consult [28], [15] and [19]. Since hyperconvex-
ity is closely related to the behavior of the Bergman kernel and the Bergman
metric (see [12], [14], [21], [4], [17], [5], [25], [34]), one may ask whether the
previous theorem is correct or not for these two notions. Unfortunately the
answer is negative. In fact, if we put f(α, 0) = 0 and

f(α, z) = e2α log |z|/z̄, ∀z ∈ C \ {0},
for every complex number α such that Re(α) > 1/2, then we get a holomor-
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phic motion of the whole plane

(α, z) 7→ (α, f(α, z)), (α, z) ∈ {Re(α) > 1/2} × C.

But z 7→ f(α, z) may map a Bergman complete (resp. exhaustive) planar
domain to a Bergman non-complete (resp. non-exhaustive) planar domain
(see [32]).

2. Proof of Theorem 1.1. Let D be a domain in Cn. Denote by
PSH(D) the space of plurisubharmonic functions on D. The key point of
the proof is to replace Oka’s lemma in previous works by the following vari-
ation:

D is pseudoconvex if and only if −log δD(z,X) ∈ PSH(D × Cn), where

δD(z,X) := δD∩(z+CX)(z) = sup{r > 0 : z + aX ⊂ D, ∀a ∈ C, |a| < r}.

The proof relies heavily on a quantitative analysis of the boundary. Before
we do it, we shall give a precise description of radial log-Lipschitz domains.

That the boundary of a domain D in Cn can be written locally as the
graph of a continuous function means that for any p ∈ ∂D, there exists
a ball B(p, 2rp) at p with radius 2rp and a complex affine transformation
Φp : w 7→ z = Ap(w − p), Ap ∈ U(n), such that

Φp(D ∩B(p, 2rp)) = {z = (z′, zn) ∈ B(0, 2rp) : Im zn > ϕp(z
′,Re zn)},

where ϕp is continuous on B(0, 3rp)∩ {Im zn = 0} and ϕp(0) = 0. Generally
speaking D∩B(p, 2rp) is not connected. We claim that Φp(∂D∩B(p, 2rp)) =
Φp(∂D) ∩B(0, 2rp) can be written as

(2.1) {z ∈ B(0, 2rp) : Im zn = ϕp(z
′,Re zn)}.

In fact, if z ∈ {z ∈ B(0, 2rp) : Im zn = ϕp(z
′,Re zn)}, then z + (0′,

√
−1 ε) ∈

Φp(D ∩B(p, 2rp)) for sufficiently small ε > 0. Thus

(2.2) {z ∈ B(0, 2rp) : Im zn = ϕp(z
′,Re zn)} ⊂ Φp(∂D ∩B(p, 2rp)).

If z ∈ Φp(∂D ∩ B(p, 2rp)), then there exists z(j) ∈ Φp(D ∩ B(p, 2rp)) such
that |z(j) − z| → 0. Since ϕp is continuous, we have

z ∈ {z ∈ B(0, 2rp) : Im zn ≥ ϕp(z′,Re zn)}.

Thus

(2.3) {z ∈ B(0, 2rp) : Im zn = ϕp(z
′,Re zn)} ⊃ Φp(∂D ∩B(p, 2rp))

and the proof of our claim is complete. Since ∂D is compact, we may choose
a finite set of points {pj} ⊂ ∂D such that

⋃
j B(pj , rpj ) ⊃ ∂D. Thus our

definition is equivalent to Definition 5 in [1]. Viewing

{Φp(D ∩B(p, 2rp)) ∩ ({z′} × C)}z′
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as a complex continuous family of planar domains with continuous bound-
aries, we see that ∂D can be written locally as a complex continuous family of
continuous curves. Suppose furthermore that there exist constants C,N > 0
such that

(2.4) |ϕp(z′, a)− ϕp(z′, b)| ≤ C|a− b| ·
∣∣log |a− b|

∣∣N
for all (z′, a), (z′, b) ∈ B(0, 2rp) ∩ {Im zn = 0}. Then we say that ∂D can be
written locally as a complex continuous family of log-Lipschitz curves.

By [18], we know that hyperconvexity is a local property (see [11] for
counterexamples in Pn), that is, we need only show that every point p ∈ ∂D
has a neighborhood Up such that every component of D∩Up is hyperconvex.

In general we say that an open set D is hyperconvex if every component
of D is hyperconvex.

We may assume that p = 0 ∈ Cn. Denote by B′r the ball centered at
0′ ∈ Cn−1 with radius r. Suppose Φ0 is the identity mapping and 0 < r0
< e−N . Since x

(
log 1

x

)N is a strictly increasing function on
(
0, 14e

−N) and
x
(
log 1

x

)N
> x on

(
0, 14e

−N), for every 0 < ε ≤ r0/4 there exists a unique
0 < g(ε) ≤ ε such that

(2.5) (C + 1)g(ε)

(
log

1

g(ε)

)N
= ε.

Clearly limε→0+ g(ε) = 0. Put g(0) = 0; then g(ε) is a strictly increasing
function on [0, r0/4). Choose a sufficiently small 0 < r < r0/4 such that

(2.6) |ϕ0(z
′, 0)| < r0/4, ∀z′ ∈ B′r.

For every 0 ≤ ε ≤ r0/4, put
Dε = {z ∈ B′r ×4r0/2+g(ε) : Im zn + ε > ϕ0(z

′,Re zn)},(2.7)

Dε,z′ = Dε ∩ ({z′} × C), z′ ∈ B′r.(2.8)

It suffices to show that D0 is hyperconvex.

Lemma 2.1. D0 is hyperconvex if there exists a continuous plurisubhar-
monic function ψ : D0 → (−∞, 0) such that

(2.9) ψ(z)→ 0 as δD0,z′(zn)→ 0.

Proof. We claim that (2.9) implies

(2.10) lim
D03z→ζ

ψ(z) = 0, ∀ζ ∈ ∂D0 ∩ ∂D.

To see this, let ρ(z) = ϕ0(z
′,Re zn) − Im zn and fix ζ ∈ ∂D0 ∩ ∂D. Since ρ

is continuous and ρ(ζ) = 0, we have ρ(z) → 0 (z → ζ). Thus δD0,z′(zn) ≤
|ρ(z)| → 0 (z → ζ), from which (2.10) immediately follows.

Now max{ψ(z), |z′| − r, |zn| − r0/2} is a bounded plurisubharmonic ex-
haustion function on D0, thus D0 is hyperconvex.
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Take X0 = (0′,
√
−1); we claim that

(2.11) Dε = (D − εX0) ∩ (B′r ×4r0/2+g(ε)).

In fact, if z ∈ Dε, then w := z + εX0 satisfies Imwn > ϕ0(w
′,Rewn)

and |w| < 2r0. Thus w ∈ D and Dε ⊂ (D − εX0) ∩ (B′r × 4r0/2+g(ε)). If
z ∈ (D − εX0) ∩ (B′r ×4r0/2+g(ε)), then z + εX0 ∈ D and |z + εX0| < 2r0.
Thus Im zn + ε > ϕ0(z

′,Re zn) and z ∈ Dε.
By (2.11), Dε is pseudoconvex so that

(2.12) −log δDε(z,X0) = − log δDε,z′ (zn) ∈ PSH(Dε).

Furthermore, we have

Lemma 2.2.

(2.13) δD0(z,X0) + g(ε) ≤ δDε(z,X0) ≤ δD0(z,X0) + ε, ∀z ∈ D0.

Proof. It suffices to show that

(2.14) g(ε) ≤ δDε(z,X0) ≤ ε, ∀z ∈
⋃
z′∈B′

r

∂D0,z′ .

Put

C1
ε,z′ = {(z′, zn) : |zn| < r0/2 + g(ε), Im zn + ε = ϕ0(z

′,Re zn)} ∩ ∂Dε,z′ ,

C2
ε,z′ = {(z′, zn) : |zn| = r0/2 + g(ε), Im zn + ε ≥ ϕ0(z

′,Re zn)} ∩ ∂Dε,z′ ,

for every 0 ≤ ε ≤ r0/4 and z′ ∈ B′r. Thus ∂Dε,z′ = C1
ε,z′ ∪ C2

ε,z′ . By (2.6),

(0′, (ϕ0(z
′, 0)− ε)

√
−1) ∈ C1

ε,z′ ,

thus C1
ε,z′ 6= ∅. For every z ∈ C1

0,z′ , we have z− εX0 /∈ Dε. Thus there exists
0 ≤ t ≤ ε such that z − tX0 ∈ ∂Dε. Hence

δDε(z,X0) ≤ ε.

Next we prove the other inequality. Take s ∈ C such that (z′, zn + s) ∈
C1
ε,z′ and |s| = d(z, C1

ε,z′). Since z ∈ C1
0,z′ and ϕ0(z

′,Re zn) = Im zn, we have

Im(zn + s) + ε = ϕ0(z
′,Re(zn + s))− ϕ0(z

′,Re zn) + Im zn.

By (2.4), we have
ε ≤ |s|+ C|s| ·

∣∣log |s|
∣∣N ,

thus |s| ≥ g(ε) by virtue of (2.5). Clearly, d(z, C2
ε,z′) ≥ g(ε). Since

δDε(z,X0) = δDε,z′(zn) = min{d(z, C1
ε,z′), d(z, C2

ε,z′)},

we get (2.14) for every z ∈ C1
0,z′ .

For every z ∈ C2
0,z′ , clearly

δDε(z,X0) ≤ g(ε) ≤ ε.
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Take s ∈ C such that (z′, zn + s) ∈ C1
ε,z′ and |s| = d(z, C1

ε,z′). Since z ∈ C2
0,z′

and ϕ0(z
′,Re zn) ≤ Im zn, we have

Im(zn + s) + ε ≤ ϕ0(z
′,Re(zn + s))− ϕ0(z

′,Re zn) + Im zn,

and we get (2.14) for every z ∈ C2
0,z′ exactly as before.

Now consider the following family of functions:

(2.15) ψε =
log g(ε)

δDε (z,X0)
− 1

log 1
g(ε)

, 0 < ε ≤ r0/4.

By (2.12), we have ψε ∈ PSH(Dε). By the previous lemma,

log g(ε)
δD0

(z,X0)+ε
− 1

log 1
g(ε)

≤ ψε ≤
log g(ε)

δD0
(z,X0)+g(ε)

− 1

log 1
g(ε)

, ∀z ∈ D0.

Put
ψ = sup

0<ε≤r0/4
ψε.

Since
log g(ε)

δD0
(z,X0)+g(ε)

− 1

log 1
g(ε)

≤ −
1 + log

(
1 +

δD0
(z,X0)

g(ε)

)
log 1

δD0
(z,X0)

+ log
(
1 +

δD0
(z,X0)

g(ε)

) ,
we get

ψ(z) ≤ −1

log 1
δD0

(z,X0)

for all z with δD0(z,X0) ≤ e−1. If δD0(z,X0) ≤ g(r0/4), we may take 0 <
ε ≤ r0/4 satisfying g(ε) = δD0(z,X0) so that

ψ(z) ≥ −
1 + log

(
1 + (C + 1)

(
log 1

δD0
(z,X0)

)N)
log 1

δD0
(z,X0)

for all z with δD0(z,X0) ≤ g(r0/4). Thus D0 is hyperconvex by virtue of
Lemma 2.1.

3. Proof of Theorem 1.2. It suffices to prove that every local graph
is hyperconvex.

Fix 0 < r < 1. Since every point in F ((∂4r) × Ω) admits a natural
plurisubharmonic barrier |λ|2 − r2, it suffices to show that every point in
F (4r × ∂Ω) admits a plurisubharmonic barrier.

Let z1 be a boundary point of Ω, and E be the component of ∂Ω con-
taining z1. Since E contains at least two points, we can choose z2 ∈ E \{z1}.
Since the connected component Γ of P\E containing Ω is simply connected,
F (4× Γ ) is simply connected. Thus we may take a single-valued branch of
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w = log ζ−f(λ,z1)
ζ−f(λ,z2) so that it is a well defined zero-free holomorphic function

on F (4×Ω). In fact, if we put

(3.1)
ζ − f(λ, z1)

ζ − f(λ, z2)
=

∣∣∣∣ζ − f(λ, z1)

ζ − f(λ, z2)

∣∣∣∣e√−1 θ
with θ = Imw (thus θ is continuous on F (4×Ω)), then for every k ∈ Z,

(3.2) φk(λ, ζ) := log

∣∣∣∣ζ − f(λ, z1)

ζ − f(λ, z2)

∣∣∣∣+
√
−1 (θ + 2kπ)

is a single-valued branch of log ζ−f(λ,z1)
ζ−f(λ,z2) . Put

(3.3) ϕ(λ, ζ) = Re(1/φ0(λ, ζ)).

By (3.2), we have

(3.4) ϕ(λ, ζ) =
log
∣∣ ζ−f(λ,z1)
ζ−f(λ,z2)

∣∣(
log
∣∣ ζ−f(λ,z1)
ζ−f(λ,z2)

∣∣)2 + θ2
.

By [27], z 7→ ζ = f(λ, z), z ∈ C, is a quasiconformal self-homeomorphism
with finite dilatation

(
no more than 1+|λ|

1−|λ|
)
for every λ ∈ 4r (see also λ-Lem-

ma in [20] for a simpler proof that only relies on Schwarz’s Lemma). Thus

(3.5)
(

1− |λ|
1 + |λ|

)2∣∣∣∣z − z1z − z2

∣∣∣∣ ≤ ∣∣∣∣f(λ, z)− f(λ, z1)

f(λ, z)− f(λ, z2)

∣∣∣∣ ≤ (1 + |λ|
1− |λ|

)2∣∣∣∣z − z1z − z2

∣∣∣∣.
Clearly ϕ is negative near the points F (λ, z1). What is more, we have

(3.6) lim
F (4×Ω)3(λ,ζ)→F (λ0,z1)=(λ0,f(λ0,z1))

ϕ(λ, ζ) = 0, ∀|λ0| < 1.

Thus there exist 0 < δ1 < δ2 < 1 and ε > 0 such that

ϕ(λ, ζ) ≥
log
∣∣ ζ−f(λ,z1)
ζ−f(λ,z2)

∣∣(
log
∣∣ ζ−f(λ,z1)
ζ−f(λ,z2)

∣∣)2 > −ε
on F (4r × {z ∈ Ω : |z − z1| ≤ δ1}), and

ϕ(λ, ζ) ≤
log
∣∣ ζ−f(λ,z1)
ζ−f(λ,z2)

∣∣(
log
∣∣ ζ−f(λ,z1)
ζ−f(λ,z2)

∣∣)2 + C
< −3ε

on F (4r × {z ∈ Ω : |z − z1| = δ2}), where
C = sup

(λ,ζ)∈F (4r×{z∈Ω: |z−z1|=δ2})
θ2 <∞,

since θ is continuous. Put

ψ(λ, ζ) = max{−2ε, ϕ(λ, ζ)}
for (λ, ζ) ∈ F (4r × {z ∈ Ω : |z − z1| < δ2}), and

ψ(λ, ζ) = −2ε
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for (λ, ζ) ∈ F (4r × {z ∈ Ω : |z − z1| ≥ δ2}). Then ψ ∈ PSH(F (4r ×Ω)) is
a plurisubharmonic barrier at every point (λ, ζ) ∈ F (4r × {z1}). The proof
is complete.

4. Proof of Theorem 1.3. Let F be an Fσ subset of C (i.e., a countable
union of closed sets). Put

(4.1) An = {z ∈ C : γn < |z| ≤ γn−1}, n ∈ Z+,

where 0 < γ < 1 is a constant. Denote by c(A) the logarithmic capacity
of a set A ⊂ C. A basic result in potential theory is Wiener’s criterion for
thinness (see Wiener [33], also Ransford [26, p. 146]):

F is thin at 0 if and only if
∑∞

n=1
n

log(2/c(An∩F )) <∞.

To prove Theorem 1.3, we need a modification of the “if ” part of Wiener’s
criterion:

Lemma 4.1. F is thin at 0 if there exist a family {Bn}n∈Z+ of Fσ subsets
of ∆ and 0 < ε, γ < 1 such that
∞⋃
n=1

Bn ⊃ {0 < |z| < ε}, Bn ∩ {|z| < γn} = ∅,
∞∑
n=1

n

log(2/c(Bn ∩ F ))
<∞.

The proof of this lemma is essentially the same as that of Wiener’s cri-
terion. The readers may find the proof in [26, pp. 147–149].

Proof of Theorem 1.3. Let f : D1 → D2 be a Hölder homeomorphism. It
suffices to show that D2 is non-hyperconvex if D1 is non-hyperconvex. We
may assume that the complement of D1 is thin at 0 ∈ ∂D1 and f(0) = 0.
It suffices to show that the complement of D2 is thin at 0 ∈ ∂D2. We may
also assume that U1 contains 4 and f(4) ⊂ 4. Put Bn = f(An). Since⋃∞
n=1An = 4 \ {0}, we have

⋃∞
n=1Bn ⊃ {0 < |z| < ε}. Furthermore,

|z| ≥ 1

β
(γn)1/α ≥ (γN )n, ∀z ∈ Bn,

where N > 1/α is sufficiently large. In view of Wiener’s criterion, we have
∞∑
n=1

n

log(2/c(Bn \D2))
=
∞∑
n=1

n

log(2/c(f(An \D1)))

≤
∞∑
n=1

n

log(2/(βc(An \D1)α))
<∞.

Thus the complement of D2 is thin at 0 by virtue of Lemma 4.1. The proof
is complete.
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