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Variability regions of close-to-convex functions

by Takao Kato (Yamaguchi), Toshiyuki Sugawa (Sendai)
and Li-Mei Wang (Beijing)

Abstract. M. Biernacki gave in 1936 concrete forms of the variability regions of
z/f(z) and zf ′(z)/f(z) of close-to-convex functions f for a fixed z with |z| < 1. The
forms are, however, not necessarily convenient to determine the shape of the full variability
region of zf ′(z)/f(z) over all close-to-convex functions f and all points z with |z| < 1.We
propose a couple of other forms of the variability regions and see that the full variability
region of zf ′(z)/f(z) is indeed the complex plane minus the origin. We also apply them
to study the variability regions of log[z/f(z)] and log[zf ′(z)/f(z)].

1. Introduction. Let A denote the class of analytic functions f on the
unit disk D = {z ∈ C : |z| < 1} and let A0 and A1 be its subclasses
described by the conditions f(0) = 1 and f(0) = f ′(0)− 1 = 0, respectively.
Traditionally, the subclass of A1 consisting of univalent functions is denoted
by S. A function f in A1 is called starlike (resp. convex) if f is univalent
and if f(D) is starlike with respect to 0 (resp. convex). It is well known
that f ∈ A1 is starlike (resp. convex) precisely when Re[zf ′(z)/f(z)] > 0
(resp. Re[1+zf ′′(z)/f ′(z)] > 0) in |z| < 1. The classes of starlike and convex
functions in A1 will be denoted by S∗ and K respectively.

A function f ∈ A1 is called close-to-convex if Re[eiλf ′(z)/g′(z)] > 0
in |z| < 1 for a convex function g ∈ K and a real constant λ. The set of
close-to-convex functions in A1 will be denoted by C. This class was first
introduced and shown to be contained in S by Kaplan [7]. A domain is
called close-to-convex if it is expressed as the image of D under the mapping
af + b for some f ∈ C and constants a, b ∈ C with a 6= 0. He also gave a
geometric characterization of a close-to-convex domain in terms of turning
of the boundary of the domain. We recommend the books [4], [5] and [13] as
general references on these topics.

Prior to the work of Kaplan, Biernacki [2] introduced the notion of lin-
early accessible domains (in the strict sense). Here, a domain in C is called
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linearly accessible if its complement is a union of half-lines which do not cross
each other. Lewandowski [11], [12] proved that the class of close-to-convex
domains is identical with that of linearly accessible domains (see also [1] and
[9] for simpler proofs of this fact). Therefore, the work of Biernacki on lin-
early accessible domains and their mapping functions can now be interpreted
as concerning close-to-convex domains and functions.

For a non-vanishing function g in A0, unless otherwise stated, log g will
mean the continuous branch of log g in D determined by log g(0) = 0. For
instance, f(z)/z can be regarded as a non-vanishing function in A0 for f ∈ S.
Therefore, we can define log[f(z)/z] in the above sense. In the present note,
we are interested in the following variability regions for a fixed z ∈ D:

Uz = {z/f(z) : f ∈ C}, LUz = {log(z/f(z)) : f ∈ C},
Vz = {f ′(z) : f ∈ C}, LVz = {log f ′(z) : f ∈ C},
Wz = {zf ′(z)/f(z) : f ∈ C}, LWz = {log(zf ′(z)/f(z)) : f ∈ C}.

We collect basic properties of these sets.

Lemma 1.1.

(1) Xz is a compact subset of C for z ∈ D and X = U, V,W,LU,LV,LW.
(2) Xz = exp(LXz) for z ∈ D and X = U, V,W.
(3) Xz = Xr for |z| = r < 1 and X = U, V,W,LU,LV,LW.
(4) Xr ⊂ Xs for 0 ≤ r < s < 1 and X = U, V,W,LU,LV,LW.

Proof. It is enough to outline the proof since the reader can fill in the
details easily. Assertion (1) follows from compactness of the family C, whereas
(2) is immediate by definition. To see (3) and (4), it is enough to show that
Xz ⊂ Xw for |z| ≤ |w| < 1. This follows from the fact that for f ∈ C and
a ∈ C with 0 < |a| ≤ 1 the function fa(z) = f(az)/a belongs to C again.

We remark that we can indeed show the stronger inclusion relation Xr ⊂
IntXs for 0 ≤ r < s < 1 by considering extremal functions corresponding
to boundary points of Xr. Here, IntE means the set of interior points of a
subset E of C. However, we do not use this property in what follows.

Set X1− =
⋃

0≤r<1Xr for X = U, V,W,LU,LV,LW. Below, D(a, r) will
stand for the open disk |z−a| < r in C and D(a, r) will stand for its closure,
that is, the closed disk |z − a| ≤ r.

Biernacki [2] described Uz and Wz in his study on linearly accessible
domains and their mapping functions. The results can be summarized as in
the following.

Lemma 1.2 (Biernacki (1936)). For 0 < r < 1, the following hold:

(1) Ur = {(1 + s)2/(1 + (s+ t)/2) : |s| ≤ r, |t| ≤ r} = {2u2/(u + v) :
|u− 1| ≤ r, |v − 1| ≤ r}.
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(2) Wr = (1− r2)−2Ur.
(3) U1− = D(1, 3) \ {0} and LU1− ⊂ {w ∈ C : |Imw| < 3π/2}.
(4) LW1− ⊂ {w ∈ C : |Imw| < 3π/2}.
The above expressions of Ur and Wr are simple but somewhat implicit.

For instance, the parametrization of the boundary curve cannot be obtained
immediately and the shape of the limit W1− is not clear (as we will see
below, this set is equal to C \ {0}). Therefore, it would be nice to have more
explicit or more convenient expressions of Ur and Wr. We propose two such
expressions in the present note.

Theorem 1.3. For 0 < r < 1, Ur = F (D(0, r)), where

F (z) =
(3 + z̄)(1 + z)3

3 + 3z + z̄ + z2
, z ∈ D.

We will prove the theorem by describing explicitly the envelope of the
family of circles Ms(∂D(0, r)) for s = reiθ, 0 ≤ θ < 2π, where Ms is the
Möbius transformation t 7→ (1 + s)2/(1 + (s+ t)/2). Lewandowski [12, p. 45]
used the envelope to prove that the inclusion Ur ⊂ {w ∈ C : Rew ≥ 0}
(equivalently,Wr ⊂ {w ∈ C : Rew ≥ 0}) is valid precisely when r ≤ 4

√
2−5.

(This implies that the radius of starlikeness of close-to-convex functions is
4
√

2− 5.) However, no explicit form of the envelope is given in [12] because
it is not necessary for the results there.

We note that F (eiθ) = 1 + 3eiθ for θ ∈ R, which agrees with Lemma
1.2(3). This does not, however, give enough information to determine the
boundary curve of the domain LU1− . It turns out that LU1− has a relatively
simple description though LUr does not. We indeed derive the following
result by making use of Theorem 1.3.

Theorem 1.4. The variability region LU1− is an unbounded Jordan do-
main with the boundary curve γ(t), −2π < t < 2π, given by

γ(t) =

Log(1 + 3eit) if |t| < π,

Log(1− eit) +
t

|t|
πi if π ≤ |t| < 2π.

Here and hereafter, Logw = log |w|+iArgw denotes the principal branch
of logw with −π < Im Logw = Argw ≤ π.

As we will see in the next section, the function logF is univalent in D.
Therefore, the last theorem tells us that F : D → U1− covers the disk
D(−1, 1) bivalently whereas it covers D(1, 3) \ (D(−1, 1) ∪ {0}) univalently.
See Figure 1 for the mapping behavior of F and G = logF.

The following expression of Wr is not very explicit but useful in some
situations.
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Fig. 1. U1− and LU1− as the images of D under F and G

Theorem 1.5. For 0 < r < 1,

Wr =

{
2u

v(u+ v)
: |u− 1| ≤ r, |v − 1| ≤ r

}
.

Indeed, as an application of the last theorem, we can show the following
result.

Theorem 1.6. LW1− = {w ∈ C : |Imw| < 3π/2}.
Since W1− = exp(LW1−), we obtain the following corollary, which was

used in [8].

Corollary 1.7. The full variability region {zf ′(z)/f(z) : z ∈ D, f ∈ C}
is equal to C \ {0}.

The corollary means that W1− = C \ {0}. We note here that this does
not seem to follow immediately from Lemma 1.2.



Variability regions 93

Krzyż [10] showed that LVr is convex and determined its shape for 0 <
r < 1.

Proposition 1.8 (Krzyż). For 0 < r < 1, the variability region LVr is
convex and its boundary is described by the curve σr(t) = log[(1 − reiθ2(t))/
(1− reiθ1(t))3], −π ≤ t ≤ π. Here,

θ1(t) = t− arcsin(r sin t), θ2(t) = π + t+ arcsin(r sin t).

He also proved that LVr is contained in the domain |Imw| < 4 arcsin r
for each 0 < r < 1 and that this bound is sharp. (See also [5, Chap. 11].) In
particular, LV1− ⊂ {w : |Imw| < 2π}. Since Reσr(t) → +∞ as r → 1− for
|t| < π/2 and Reσr(t)→ −∞ as r → 1− for π/2 < |t| ≤ π, it is not easy to
determine the limiting shape of LVr as r → 1− from the above proposition.
We thus complement Krzyż’ results by showing the following.

Theorem 1.9.

Vr = {(1 + s)/(1 + t)3 : |s| ≤ r, |t| ≤ r} = {u/v3 : |u− 1| ≤ r, |v − 1| ≤ r}
for 0 < r < 1. Moreover, LV1− = {w : |Imw| < 2π} and V1− = C \ {0}.

One might expect that LUr and LWr would also be convex for each
0 < r < 1. This, however, is not true.

Theorem 1.10. The variability regions LUr and LWr are closed Jordan
domains for each 0 < r < 1. Moreover, there exists a number 0 < r0 < 1
such that both LUr and LWr are non-convex for every r with r0 < r < 1.

We prove the above results in Section 3. Section 2 will be devoted to the
study of mapping properties of the function G = logF that are necessary to
show our results.

2. Univalence of the function G = logF . In order to analyze the
shape of LUr or LWr, we need to investigate mapping properties of the
functions F and G = logF, where F is given in Theorem 1.3. Therefore,
before showing the main results from the Introduction, we exhibit the basic
properties of the functions F andG. Here, we remark that F can be expressed
in the form

F (z) =
(1 + z)3

1 + z(3 + z)/(3 + z̄)
.

Therefore, the continuous branch G of logF with G(0) = 0 is represented
by

(2.1) G(z) = 3 Log(1 + z)− Log(1 + ze2iφ), φ = Arg(3 + z).

The goal in this section is to prove the following:

Theorem 2.1. The function G = logF is a homeomorphism of the unit
disk D onto a domain in C.
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For r ∈ (0, 1) and x ∈ (0, π), we set

Φr(x) = Arg(1 + reix).

We will use the following elementary properties of the function Φr.

Lemma 2.2. Let r ∈ (0, 1). Then

Φ′r(x) =
r(r + cosx)

1 + 2r cosx+ r2
, x ∈ (0, π).

In particular, Φr is increasing in (0, xr) and decreasing in (xr, π), where
xr = π − arccos r. Furthermore, Φ′r is decreasing in (0, π) and therefore Φr
is concave in (0, π).

We also need the following information.

Lemma 2.3. Let 0 < r < 1. Then the inequalities 0 < θ + 2φ < π hold
for 0 < θ < π and φ = Arg(3 + reiθ).

Proof. Set hr(θ) = θ + 2φ = θ + 2 Arg(3 + reiθ), 0 ≤ θ ≤ π. Then

h′r(θ) = 1 + 2
∂φ

∂θ
=

3(3 + 4r cos θ + r2)

9 + 6r cos θ + r2

≥ 3(3− 4r + r2)

9 + 6r cos θ + r2
=

3(1− r)(3− r)
9 + 6r cos θ + r2

> 0.

Therefore, hr is increasing in (0, π), which implies that 0 = hr(0) < hr(θ) <
hr(π) = π for 0 < θ < π.

As for the function G, we first show its local univalence.

Lemma 2.4. The function G is orientation-preserving and locally univa-
lent in D.

Proof. The partial derivatives of G are given by

Gz(z) =
6 + 4z + 3z̄ + z2

(1 + z)(3 + 3z + z̄ + z2)
,(2.2)

Gz̄(z) =
z(3 + z)

(3 + z̄)(3 + 3z + z̄ + z2)
.(2.3)

It suffices to show that the Jacobian JG = |Gz|2 − |Gz̄|2 is positive in D,
which is equivalent to the condition |6 + 4z+ 3z̄+ z2| > |z(1 + z)| in |z| < 1.
If we write z = reiθ, then

|6 + 4z + 3z̄ + z2|2 − |z(1 + z)|2

= 6(6 + 14r cos θ + 4r2 + 6r2 cos 2θ + r3 cos θ + r3 cos 3θ)

= 12(1 + r cos θ)
(
2(1 + r cos θ)2 + 1− r2

)
> 0.

Lemma 2.5. For a fixed 0 < r < 1, the real part of G(reiθ) is a decreasing
function of θ in [0, π].
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Proof. Letting z = reiθ, we first have the expression
∂

∂θ
G(reiθ) = izGz(z)− iz̄Gz̄(z) =

3iz(6 + 4z + 4z̄ + z2 + z̄2)

P (z)
.

Here, we have put

P (z) = (1 + z)(3 + z̄)(3 + 3z + z̄ + z2)

and used (2.2) and (2.3). Thus,
∂

∂θ
ReG(reiθ) = −6(3 + 4r cos θ + r2 cos 2θ) Im

z

P (z)
.

Since

Im
z

P (z)
=

1

2i

(
z

P (z)
− z̄

P (z̄)

)
=

(z − z̄)(9 + 12 Re z + 2 Re z2 − 2|z|2(1 + 2 Re z)− |z|4)

2i|P (z)|2
,

we obtain the expression
∂

∂θ
ReG(reiθ) = −6r sin θ(3 + 4r cos θ + r2 cos 2θ)H(r, θ)

|P (reiθ)|2
,

where
H(r, θ) = 9 + 12r cos θ − 4r2 sin2 θ − 4r3 cos θ − r4.

Firstly, we note that

3 + 4r cos θ + r2 cos 2θ = 1− r2 + 2(1 + r cos θ)2 > 0.

Secondly, we compute
∂H(r, θ)

∂θ
= −4r(3 + 2r cos θ − r2) sin θ.

In particular, H(r, θ) is decreasing as a function of θ ∈ (0, π) for each fixed
0 < r < 1. Hence,

H(r, θ) ≥ H(r, π) = (1− r)(3− r)(3− r2) > 0.

Summarizing, we conclude that ∂(ReG)/∂θ < 0 for 0 < θ < π.

We next prove the following:

Lemma 2.6. ImG(z) > 0 for z ∈ D with Im z > 0.

Proof. Fix r ∈ (0, 1). Let θ ∈ (0, π) and let φ be given in (2.1). Note that
0 < φ < θ. We need to show that

(2.4) gr(θ) = ImG(reiθ) = 3Φr(θ)− Φr(θ + 2φ)

is positive. Note that 0 < θ < θ+ 2φ < π by Lemma 2.3. Lemma 2.2 implies
that Φr takes its maximum value Φr(xr) = arcsin r in (0, π). In particular,
we have Φr(θ + 2φ) ≤ arcsin r. Therefore, gr(θ) > 0 for x−r < θ < x+

r ,
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where x−r and x+
r are the solutions to the equation 3Φr(x) = arcsin r with

0 < x−r < xr < x+
r < π.

We next assume that x+
r ≤ θ < π. Since Φr is decreasing in (x+

r , π) by
Lemma 2.2, we see that gr(θ) > Φr(θ)− Φr(θ+ 2φ) > 0. Finally, we assume
that 0 < θ ≤ x−r . In view of concavity of Φr (see Lemma 2.2) together with
Φr(0) = 0, we have Φr(x−r ) = Φr(xr)/3 ≤ Φr(xr/3). Hence, x−r ≤ xr/3. In
particular, θ + 2φ ≤ 3θ ≤ 3x−r ≤ xr. Since Φr is increasing and concave in
(0, xr), the inequalities Φr(θ + 2φ) < Φr(3θ) ≤ 3Φr(θ) follow. Thus we have
shown that gr(θ) > 0 in this case, too.

The following property will be used for the proof of Theorem 1.4.

Lemma 2.7. The function gr defined in (2.4) satisfies g′r(θ) > 0 for
0 < θ < xr = π − arccos r.

Proof. By definition, we have

g′r(θ) = 3Φ′r(θ)−
(

1 + 2
∂φ

∂θ

)
Φ′r(θ + 2φ).

Since 1 + 2∂φ/∂θ > 0 (see the proof of Lemma 2.3), Lemma 2.2 implies

g′r(θ) ≥ 3Φ′r(θ)−
(

1 + 2
∂φ

∂θ

)
Φ′r(θ) = 2

(
1− ∂φ

∂θ

)
Φ′r(θ).

We note here that

1− ∂φ

∂θ
=

3(3 + r cos θ)

9 + 6r cos θ + r2
> 0.

Since Φ′r(θ) > 0 for 0 < θ < xr by Lemma 2.2, the required assertion
follows.

We are now ready to prove the theorem.

Proof of Theorem 2.1. Since G is orientation-preserving and locally uni-
valent by Lemma 2.4, it is enough to show that G is injective on the circle
|z| = r for each r ∈ (0, 1).We note here that G is symmetric in the real axis,
in other words, G(z̄) = G(z) for z ∈ D. By Lemmas 2.5 and 2.6, G maps the
upper half of the circle |z| = r univalently onto a Jordan arc in the upper
half-plane. Taking into account symmetry, we have shown that G maps the
circle |z| = r univalently onto a Jordan curve which is symmetric in the real
axis. Thus the proof is complete.

3. Proof of main results. In this section, we prove the main results
presented in Section 1. In the proofs, we will make use of a weakened version
of Lemma 5.1 in Greiner and Roth [6], which is an outcome of the duality
methods developed by Ruscheweyh and Sheil–Small.
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For complex numbers a, b with |a| ≤ 1, |b| ≤ 1, define a function fa,b ∈ A1

by

fa,b(z) = z
1 + (a+ b)z/2

(1 + bz)2
.

It is easy to see that fa,b belongs to the class C of close-to-convex func-
tions. The linear space A is naturally equipped with the topology of uniform
convergence on compact subsets in D.

Lemma 3.1 ([6, Lemma 5.1]). Let λ1 and λ2 be continuous linear func-
tionals on A such that λ2 does not vanish on C. Then for every f ∈ C there
exist complex numbers a, b with |a|, |b| ≤ 1 such that

λ1(f)

λ2(f)
=
λ1(fa,b)

λ2(fa,b)
.

As an application of this lemma, one can give a simple proof of Theo-
rem 1.5.

Proof of Theorem 1.5. Fix 0 < r < 1. Let f ∈ C. We now apply
Lemma 3.1 to the choice λ1(f) = rf ′(r) and λ2(f) = f(r) to see that

rf ′(r)

f(r)
=
λ1(f)

λ2(f)
=
λ1(fa,b)

λ2(fa,b)
=

2(1 + ar)

(1 + br)(2 + (a+ b)r)

for some a, b ∈ D. The proof is completed by letting u = 1 + ar and v =
1 + br.

We need a topological observation for the proof of Theorem 1.3. The
following result is a basis of it.

Lemma 3.2. Let D be a domain in the Riemann sphere Ĉ = C ∪ {∞}.
Suppose that the boundary ∂E of a compact set E in Ĉ is contained in ∂D.
Then either E ∩D = ∅ or D ⊂ E.

Proof. Suppose that the open set D \E is non-empty. Let D0 be a con-
nected component of D \ E. Then ∂D0 ⊂ ∂D ∪ ∂E = ∂D by assumption.
This means that D0 is open and closed in D. Since D is connected, D0 must
be equal to D; in other words, D ∩ E = ∅.

Let J be a Jordan curve in Ĉ. We recall that the Jordan curve theorem
implies that Ĉ\J consists of exactly two connected components, say D1 and
D2, and that J = ∂Dj for j = 1, 2 (see, for instance, [13, Theorem 1.10]).
As a corollary of the above lemma, we have the following.

Lemma 3.3. Let J be a Jordan curve in Ĉ and let D1 and D2 be the
connected components of Ĉ \ J. Suppose that the boundary ∂E of a compact
set E in Ĉ is a non-empty subset of J. Then one of the following three cases
occurs: (1) E ⊂ J, (2) E = J ∪D1, (3) E = J ∪D2.
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Proof. We apply Lemma 3.2 to the domain D1 to obtain either E ⊂ Ĉ \
D1 = J ∪D2 or D1 ⊂ E, which implies J ∪D1 = D1 ⊂ E. Similarly, we have
either E ⊂ J ∪D1 or J ∪D2 ⊂ E. Since the case when Ĉ = J ∪D1∪D2 ⊂ E
is excluded by assumption, the required assertion follows.

We prepare one more lemma for the proof of Theorem 1.3.
Let c(α) and ρ(α) be continuously differentiable functions of the real

variable α with values in C and R+ = (0,+∞), respectively. Denote by
∆α and Γα the disk |w − c(α)| < ρ(α) and its boundary, respectively. If
|ρ′(α0)| < |c′(α0)| for an α0 ∈ R, then we can find a δ > 0 so that

(3.1) |ρ(α)2 − ρ(α0)2 − |c(α)− c(α0)|2| < 2ρ(α0)|c(α)− c(α0)|

whenever 0 < |α− α0| < δ. This can be shown by observing that

|ρ(α)2 − ρ(α0)2 − |c(α)− c(α0)|2|
|c(α)− c(α0)|

→ 2ρ(α0)|ρ′(α0)|
|c′(α0)|

< 2ρ(α0)

as α → α0. In this situation, the possible boundary points of the union⋃
|α−α0|<δ∆α lying on Γα0 are described by the next lemma. We recall here

that θ = arccosx is a decreasing function in −1 ≤ x ≤ 1 with 0 = arccos 1 ≤
θ ≤ π = arccos(−1).

Lemma 3.4. Suppose that |ρ′(α0)| < |c′(α0)| for an α0 ∈ R and fix a δ
as above. Then, for α ∈ R with 0 < |α − α0| < δ, Γα intersects Γα0 exactly
in the two points ζ+(α, α0) and ζ−(α, α0) given by

ζ±(α, α0) = c(α0) + ρ(α0)
c(α)− c(α0)

|c(α)− c(α0)|
e±iεθ(α,α0),

where

θ(α, α0) = arccos

[
−ρ(α)2 − ρ(α0)2 − |c(α)− c(α0)|2

2ρ(α0)|c(α)− c(α0)|

]
,

and

ε = sgn(α− α0) =
α− α0

|α− α0|
.

Moreover,

lim
α→α0

ζ±(α, α0) = c(α0) + ρ(α0)
c′(α0)

|c′(α0)|
e±iθ(α0,α0) =: ζ±(α0, α0),

where

θ(α0, α0) = arccos

[
− ρ′(α0)

|c′(α0)|

]
,

and for any ζ ∈ Γα0 \ {ζ+(α0, α0), ζ−(α0, α0)}, there exists an α ∈ R with
0 < |α− α0| < δ such that ζ ∈ ∆α.
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Proof. It is elementary to see that the inequality (3.1) is equivalent to
the double inequality

(3.2) |ρ(α)− ρ(α0)| < |c(α)− c(α0)| < ρ(α) + ρ(α0),

which means that the two circles Γα and Γα0 intersect in exactly two points.
It is easily verified that the two intersection points are ζ±(α, α0), which are
defined above. Noting that

lim
α→α0−

θ(α, α0) = arccos

[
ρ′(α0)

|c′(α0)|

]
= π − lim

α→α0+
θ(α, α0),

one can show that the limit of ζ±(α, α0) as α→ α0 is as given in the above
formula.

Finally, we fix α with 0 < |α − α0| < δ. Let ω = c(α0) + ρ(α0)(c(α) −
c(α0))/|c(α)− c(α0)|. Then,

|ω − c(α)| =
∣∣|c(α0)− c(α)| − ρ(α0)

∣∣,
which is smaller than ρ(α) by (3.2). We have thus obtained ω ∈ ∆α. Hence,
the connected component of Γα0 \ {ζ+(α, α0), ζ−(α, α0)} containing ω is
contained in ∆α. In other words, the component in the direction of the
vector c(α)− c(α0) is contained in ∆α. Noting that c(α)− c(α0) = (α−α0)
· {c′(α0) + o(1)}, the direction is chosen according to the sign of α− α0. In
view of the continuity of ζ±(α, α0) in α, we obtain the final assertion.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Fix 0 < r < 1.We will prove the stronger assertion
that LUr = G(D(0, r)). Here, we recall that G = logF, which is univalent
on D by Theorem 2.1. In particular, ∂G(D(0, r)) = G(∂D(0, r)) is a bounded
Jordan curve. Let H(s, t) = (1+(s+ t)/2)/(1+s)2 and h(s, t) = 2 Log(1+s)
− Log(1 + (s+ t)/2) = − logH(s, t).

By Lemma 1.2(1), we have the relation LUr = h(D(0, r)×D(0, r)). Since
LUr is a compact subset of C with non-empty interior, it is enough to show
the inclusion ∂LUr ⊂ G(∂D(0, r)) by Lemma 3.3.

Let z0 be a boundary point of LUr. Then z0 = h(s0, t0) for some s0, t0 ∈
D(0, r). Since s 7→ h(s, t0) is an open mapping, s0 must be on the boundary;
in other words, |s0| = r. Similarly, we have |t0| = r. We note that ζ0 =
e−z0 = H(s0, t0). Let α0 = arg s0.

Let Γα denote the boundary circle of the disk ∆α = H(reiα,D(0, r)).
Then ζ0 is a boundary point of the union of ∆α over a neighborhood of α0.
(Note that ζ0 might not necessarily appear in the boundary of the union of
∆α over all α ∈ R.) Observe that the center c(α) and the radius ρ(α) of Γα
are given respectively by

c(α) = H(s, 0) =
1 + s/2

(1 + s)2
and ρ(α) =

r

2|1 + s|2
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for s = reiα. We compute

(3.3) c′(α) = − is(3 + s)

2(1 + s)3
and ρ′(α) =

r2 sinα

|1 + s|4
.

We now see that

− ρ′(α)

|c′(α)|
=

−2r sinα

|1 + s| |3 + s|
∈ (−1, 1)

for any α ∈ R, because

1− ρ′(α)2

|c′(α)|2
=

(3 + 4r cosα+ r2)2

|1 + s|2|3 + s|2
> 0.

Hence, by Lemma 3.4, the boundary point ζ0 has to be of the form ζ±(α0, α0).

We now find a concrete form of ζ±(α) := ζ±(α, α). Recall that ζ±(α) =
c(α) + ρ(α)e±iθ(α,α)c′(α)/|c′(α)|, where, by the above computations,

e±iθ(α,α) =
−2r sinα

|1 + s| |3 + s|
± i3 + 4r cosα+ r2

|1 + s| |3 + s|
.

Hence,

eiθ(α,α) = i
(1 + s)(3 + s̄)

|1 + s| |3 + s|
and e−iθ(α,α) = −i(1 + s̄)(3 + s)

|1 + s| |3 + s|
.

Since
c′(α)

|c′(α)|
= − is(3 + s)

(1 + s)3
· |1 + s|3

r|3 + s|
,

we finally obtain

ζ+(α) =
1 + s/2

(1 + s)2
+

r

2|1 + s|2
· s|1 + s|2

r(1 + s)2
=

1

1 + s
,

ζ−(α) =
1 + s/2

(1 + s)2
− r

2|1 + s|2
· s(3 + s)(1 + s̄)2

r(3 + s̄)(1 + s)2

=
3 + 3s+ s̄+ s2

(3 + s̄)(1 + s)3
=

1

F (s)
.

We now show that the point ζ+(α) is contained in the interior of Ur.
To this end, it is enough to show that the function ϕ(z) = 1/(1 + z) is
subordinate to ψ(z) = (1 + z/2)/(1 + z)2 = H(z, 0); in other words, there is
an analytic function ω with |ω(z)| ≤ |z| on the unit disk |z| < 1 such that
ϕ = ψ ◦ ω. Indeed, this would imply that

ζ+(α) ∈ ϕ(D(0, r)) ⊂ ψ(D(0, r)) = H(D(0, r), 0) ⊂ IntUr.

To see the above subordination, it suffices to show ϕ(D) ⊂ ψ(D) because ψ
is univalent on D as we can verify directly. We note here that ϕ(D) is the



Variability regions 101

half-plane Rew > 1/2. On the other hand,

Reψ(eiθ) =
cos θ + 1/2

4 cos2(θ/2)
=

1

2
− 1

8 cos2(θ/2)
<

1

2
.

Though ψ has a singularity at z = −1, it is easily checked that Reψ(z) →
−∞ as z → −1 in D. Hence, we conclude that ψ(D) contains ϕ(D) = {w :
Rew > 1/2} and therefore that ϕ is subordinate to ψ.

What we have shown above tells us that − log ζ+(α) does not lie on the
boundary of LUr. Hence, z0 ∈ ∂LUr is of the form G(reiα0) = − log ζ−(α0).
We conclude that the boundary of LUr is contained in the curve {G(reiα) :
−π < α ≤ π}.

Remark 3.5. The curves ζ+(α) and ζ−(α) are the inner and outer en-
velopes of {Γα}α∈R (see [3] as a general reference for the envelope of a
family of curves). Figure 2 illustrates the curves Γα and the inner and
outer envelopes in the case when r = 3/4. In view of the above proof,
we can get precise information about the extremal functions for the func-
tional z/f(z) in the class of close-to-convex functions. Indeed, for a given
complex number s = reiα with 0 < r < 1, a function f ∈ C satisfies
log[r/f(r)] = G(reiα) ∈ ∂LUr if and only if f = fa,b for

a = −s
r
· 1 + s̄

1 + s
· 3 + s

3 + s̄
and b =

s

r
= eiα.

Fig. 2. Circles Γα and their inner and outer envelopes for r = 3/4
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Proof of Theorem 1.4. By Theorem 2.1 and the proof of Theorem 1.3, we
see that the mapping G = logF is a homeomorphism of D onto LU1− . We
now observe that G extends continuously to D \ {−1}. Since G(eit) = γ(t)
for |t| < π, the boundary of LU1− contains the arc γ([−π, π]).

We next investigate the limit points of G(z) as z → −1. Let α(δ) =
(aδ)1/3 and put z = (1− δ)ei(π−α(δ)) for 0 < δ < 1 and a positive constant a.
Then

z = −(1− δ)
(

1− iα(δ)− α(δ)2

2
+
iα(δ)3

6
+O(δ4/3)

)
= −1 + i(aδ)1/3 +

(aδ)2/3

2
+

(
1− ia

6

)
δ +O(δ4/3)

as δ → 0+. Therefore,

3 + z

3 + z̄
= 1 + i(aδ)1/3 − (aδ)2/3

2
− 2iaδ

3
+O(δ4/3)

and

1 + z
3 + z

3 + z̄
=

(
1 +

ia

2

)
δ +O(δ4/3).

Since (1 + z)3 = −iaδ +O(δ4/3), we have

(1 + z)3

1 + z(3 + z)/(3 + z̄)
= −

(
1 +

a+ 2i

a− 2i

)
+O(δ1/3)

as δ → 0+. Thus

lim
δ→0+

G((1− δ)ei(π−α(δ))) = πi+ log

(
1 +

a+ 2i

a− 2i

)
.

Since a is an arbitrary positive real number, the boundary of LU1− = G(D)
contains the curve γ(t) : π < t < 2π. The same is true for −2π < t < −π
by the symmetry of the function G.

We have seen that the Jordan curve J = {γ(t) : |t| < 2π} ∪ {∞} is
contained in ∂LU1− . The remaining thing is to prove the converse implication
∂LU1− ⊂ J. We denote by D the domain bounded by J and containing the
origin.

Note that LUr is convex in the direction of the imaginary axis for each
0 < r < 1 by Lemma 2.5. Therefore, the same is true for the limit LU1− . We
observe also that D is convex in the direction of the imaginary axis.

Suppose that there is a boundary point p0 of LU1− with p0 /∈ J. We
may assume that Im p0 > 0. Let p1 be the point in J with Im p1 > 0
and Re p1 = Re p0. Then the convexity of LU1− in the direction of the
imaginary axis implies that the segment [p0, p1] is contained in ∂LU1− . We
can choose p0 so that the segment is maximal. Since the family of smooth
Jordan domains LUr, 0 < r < 1, exhausts the domain LU1− , for a small



Variability regions 103

enough δ > 0 there exist three points z−1 (δ), z0(δ), z+
1 (δ) on the circle |z| =

1−δ with 0 < Arg z−1 (δ) < Arg z0(δ) < Arg z+
1 (δ) such that G(z−1 (δ))→ p1,

G(z0(δ)) → p0, G(z+
1 (δ)) → p1 as δ → 0+. In particular, ImG(z0(δ)) <

ImG(z±1 (δ)) for sufficiently small δ > 0. Hence, g1−δ(θ) = ImG((1 − δ)eiθ)
takes a local minimum at a point θ0 with Arg z−1 (δ) < θ0 < Arg z+

1 (δ). In
particular, g′1−δ(θ0) = 0. Note here that

ReG((1− δ)eiθ0)→ Re p0 (δ → 0+).

We write θ0 = π − β(δ). Then, by Lemma 2.7, we see that θ0 ≥ x1−δ,
equivalently, β(δ) ≤ arccos(1 − δ). This implies that β(δ) = O(δ1/2) as
δ → 0+. Therefore, z = (1−δ)ei(π−β(δ)) = −1+iβ(δ)+O(δ), (3+z)/(3+z̄) =
1+iβ(δ)+O(δ) and thus 1+z(3+z)/(3+z̄) = O(δ) as δ → 0+. In particular,

ReG((1− δ)eiθ0)→ −∞ (δ → 0+),

which is a contradiction.
We now conclude that ∂LU1− = J.

Proof of Theorem 1.6. Let Ω = {(r, s, t) ∈ R3 : 0 < s < 2, 0 < rs2 < 2,
−π/2 < t < π/2}. Then u = rs2eit cos2 t and v = se−it cos t satisfy |u−1| < 1
and |v − 1| < 1, whence the point

w(r, s, t) = log
2u

v(u+ v)
= log(2r) + 3it− log(1 + rse2it cos t)

belongs to the region LW1− for (r, s, t) ∈ Ω by Theorem 1.5.
For a given point z0 = x0 + iy0 with |y0| < 3π/2, we now look for

(r, s, t) ∈ Ω such that w(r, s, t) = z0. Let r0 = ex0/2 and take 0 < s0 < 1
small enough that r0s0 < 1/2. Then r0s

2
0 < s0 < 2 and x0 ± 3πi/2 are the

endpoints of the curve α(t) = w(r0, s0, t), − π/2 < t < π/2. We now take a
t0 ∈ (−π/2, π/2) such that Imα(t0) = y0 and let x1 = x0 − Reα(t0). Since
the function − log(1 − x) is convex, we have the inequality − log(1 − x) ≤
2x log 2 for 0 ≤ x < 1/2. We now estimate −x1 in the following way:

−x1 = − log |1 + r0s0e
2it0 cos t0| ≤ − log(1− r0s0) ≤ 2r0s0 log 2,

which implies

r0s
2
0e
−x1 < s0e

−x1 ≤ s0e
2r0s0 log 2 < s0e

log 2 = 2s0 < 2.

Therefore (r0e
x1 , s0e

−x1 , t0) ∈ Ω and

w(r0e
x1 , s0e

−x1 , t0) = x1 + w(r0, s0, t0) = x0 + iy0 = z0

as desired.

Proof of Theorem 1.9. For a fixed 0 < r < 1, we consider the continuous
linear functionals λ1 and λ2 on A defined by λ1(f) = f ′(r) and λ2(f) = f ′(0)
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for f ∈ A. Then Lemma 3.1 implies that for any f ∈ C,

f ′(r) =
λ1(f)

λ2(f)
=
λ1(fa,b)

λ2(fa,b)
=

1 + ar

(1 + br)3

for some a, b ∈ D. Thus the first part of the theorem has been proved.
By the first part, we have LV1− = {Log(1+z)−3 Log(1+w) : z, w ∈ D}.

Let a and b be real numbers with |b| < π/2. We shall show that a + 4bi ∈
LV1− . It is easy to observe that the domain {Log(1 + z) : z ∈ D} is convex
and its boundary curve

τ(t) = Log(1 + eit) = log(2 cos (t/2)) + ti/2 (−π < t < π)

satisfies Re τ(t) → −∞ and Im τ(t) → ±π/2 as t → ±π∓. Therefore, there
are z, w ∈ D such that a−3c+ bi = Log(1 + z) and −c− bi = Log(1 +w) for
a sufficiently large c > 0. In particular, a+4bi = Log(1+z)−3 Log(1+w) ∈
LV1− .

Proof of Theorem 1.10. Since LUr = LWr + 2 log(1 − r2) by Lemma
1.2(2), it suffices to prove the assertion for LUr. If there is no r0 as in the
assertion, then the limiting domain LU1− must be convex. Note that LU1−

is convex if and only if d
dt arg γ′(t) ≥ 0, where γ is given in Theorem 1.4.

A simple computation gives us
d

dt
arg γ′(t) = Im

d

dt
log γ′(t) = Re

1

1 + 3eit
=

1 + 3 cos t

|1 + 3eit|2

for |t| < π. This is negative when cos t < −1/3 and thus we get a contradic-
tion.
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