Variability regions of close-to-convex functions

by TAKAO KATO (Yamaguchi), TOSHIYUKI SUGAWA (Sendai) and LI-MEI WANG (Beijing)

Abstract. M. Biernacki gave in 1936 concrete forms of the variability regions of z/f(z) and zf'(z)/f(z) of close-to-convex functions f for a fixed z with |z| < 1. The forms are, however, not necessarily convenient to determine the shape of the full variability region of zf'(z)/f(z) over all close-to-convex functions f and all points z with |z| < 1. We propose a couple of other forms of the variability regions and see that the full variability region of zf'(z)/f(z) is indeed the complex plane minus the origin. We also apply them to study the variability regions of $\log[z/f(z)]$ and $\log[zf'(z)/f(z)]$.

1. Introduction. Let \mathcal{A} denote the class of analytic functions f on the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and let \mathcal{A}_0 and \mathcal{A}_1 be its subclasses described by the conditions f(0) = 1 and f(0) = f'(0) - 1 = 0, respectively. Traditionally, the subclass of \mathcal{A}_1 consisting of univalent functions is denoted by \mathcal{S} . A function f in \mathcal{A}_1 is called *starlike* (resp. *convex*) if f is univalent and if $f(\mathbb{D})$ is starlike with respect to 0 (resp. convex). It is well known that $f \in \mathcal{A}_1$ is starlike (resp. convex) precisely when $\operatorname{Re}[zf'(z)/f(z)] > 0$ (resp. $\operatorname{Re}[1+zf''(z)/f'(z)] > 0$) in |z| < 1. The classes of starlike and convex functions in \mathcal{A}_1 will be denoted by \mathcal{S}^* and \mathcal{K} respectively.

A function $f \in \mathcal{A}_1$ is called *close-to-convex* if $\operatorname{Re}[e^{i\lambda}f'(z)/g'(z)] > 0$ in |z| < 1 for a convex function $g \in \mathcal{K}$ and a real constant λ . The set of close-to-convex functions in \mathcal{A}_1 will be denoted by \mathcal{C} . This class was first introduced and shown to be contained in \mathcal{S} by Kaplan [7]. A domain is called *close-to-convex* if it is expressed as the image of \mathbb{D} under the mapping af + b for some $f \in \mathcal{C}$ and constants $a, b \in \mathbb{C}$ with $a \neq 0$. He also gave a geometric characterization of a close-to-convex domain in terms of turning of the boundary of the domain. We recommend the books [4], [5] and [13] as general references on these topics.

Prior to the work of Kaplan, Biernacki [2] introduced the notion of linearly accessible domains (in the strict sense). Here, a domain in \mathbb{C} is called

²⁰¹⁰ Mathematics Subject Classification: Primary 30C45; Secondary 30C75.

Key words and phrases: close-to-convex function, variability region, linearly accessible.

T. Kato et al.

linearly accessible if its complement is a union of half-lines which do not cross each other. Lewandowski [11], [12] proved that the class of close-to-convex domains is identical with that of linearly accessible domains (see also [1] and [9] for simpler proofs of this fact). Therefore, the work of Biernacki on linearly accessible domains and their mapping functions can now be interpreted as concerning close-to-convex domains and functions.

For a non-vanishing function g in \mathcal{A}_0 , unless otherwise stated, $\log g$ will mean the continuous branch of $\log g$ in \mathbb{D} determined by $\log g(0) = 0$. For instance, f(z)/z can be regarded as a non-vanishing function in \mathcal{A}_0 for $f \in \mathcal{S}$. Therefore, we can define $\log[f(z)/z]$ in the above sense. In the present note, we are interested in the following variability regions for a fixed $z \in \mathbb{D}$:

$$U_{z} = \{z/f(z) : f \in \mathcal{C}\}, \qquad LU_{z} = \{\log(z/f(z)) : f \in \mathcal{C}\}, \\ V_{z} = \{f'(z) : f \in \mathcal{C}\}, \qquad LV_{z} = \{\log f'(z) : f \in \mathcal{C}\}, \\ W_{z} = \{zf'(z)/f(z) : f \in \mathcal{C}\}, \qquad LW_{z} = \{\log(zf'(z)/f(z)) : f \in \mathcal{C}\}.$$

We collect basic properties of these sets.

LEMMA 1.1.

- (1) X_z is a compact subset of \mathbb{C} for $z \in \mathbb{D}$ and X = U, V, W, LU, LV, LW.
- (2) $X_z = \exp(LX_z)$ for $z \in \mathbb{D}$ and X = U, V, W.
- (3) $X_z = X_r$ for |z| = r < 1 and X = U, V, W, LU, LV, LW.
- (4) $X_r \subset X_s$ for $0 \le r < s < 1$ and X = U, V, W, LU, LV, LW.

Proof. It is enough to outline the proof since the reader can fill in the details easily. Assertion (1) follows from compactness of the family \mathcal{C} , whereas (2) is immediate by definition. To see (3) and (4), it is enough to show that $X_z \subset X_w$ for $|z| \leq |w| < 1$. This follows from the fact that for $f \in \mathcal{C}$ and $a \in \mathbb{C}$ with $0 < |a| \leq 1$ the function $f_a(z) = f(az)/a$ belongs to \mathcal{C} again.

We remark that we can indeed show the stronger inclusion relation $X_r \subset$ Int X_s for $0 \leq r < s < 1$ by considering extremal functions corresponding to boundary points of X_r . Here, Int E means the set of interior points of a subset E of \mathbb{C} . However, we do not use this property in what follows.

Set $X_{1^-} = \bigcup_{0 \le r < 1} X_r$ for X = U, V, W, LU, LV, LW. Below, $\mathbb{D}(a, r)$ will stand for the open disk |z - a| < r in \mathbb{C} and $\overline{\mathbb{D}}(a, r)$ will stand for its closure, that is, the closed disk $|z - a| \le r$.

Biernacki [2] described U_z and W_z in his study on linearly accessible domains and their mapping functions. The results can be summarized as in the following.

LEMMA 1.2 (Biernacki (1936)). For 0 < r < 1, the following hold: (1) $U_r = \{(1+s)^2/(1+(s+t)/2) : |s| \le r, |t| \le r\} = \{2u^2/(u+v) : |u-1| \le r, |v-1| \le r\}.$

- (2) $W_r = (1 r^2)^{-2} U_r$.
- (3) $U_{1^-} = \mathbb{D}(1,3) \setminus \{0\}$ and $LU_{1^-} \subset \{w \in \mathbb{C} : |\mathrm{Im}\,w| < 3\pi/2\}.$
- (4) $LW_{1^-} \subset \{ w \in \mathbb{C} : |\mathrm{Im}\,w| < 3\pi/2 \}.$

The above expressions of U_r and W_r are simple but somewhat implicit. For instance, the parametrization of the boundary curve cannot be obtained immediately and the shape of the limit W_{1^-} is not clear (as we will see below, this set is equal to $\mathbb{C} \setminus \{0\}$). Therefore, it would be nice to have more explicit or more convenient expressions of U_r and W_r . We propose two such expressions in the present note.

THEOREM 1.3. For 0 < r < 1, $U_r = F(\overline{\mathbb{D}}(0, r))$, where $(3 + \bar{z})(1 + z)^3$

$$F(z) = \frac{(3+z)(1+z)^3}{3+3z+\bar{z}+z^2}, \quad z \in \mathbb{D}.$$

We will prove the theorem by describing explicitly the envelope of the family of circles $M_s(\partial \mathbb{D}(0,r))$ for $s = re^{i\theta}$, $0 \leq \theta < 2\pi$, where M_s is the Möbius transformation $t \mapsto (1+s)^2/(1+(s+t)/2)$. Lewandowski [12, p. 45] used the envelope to prove that the inclusion $U_r \subset \{w \in \mathbb{C} : \operatorname{Re} w \geq 0\}$ (equivalently, $W_r \subset \{w \in \mathbb{C} : \operatorname{Re} w \geq 0\}$) is valid precisely when $r \leq 4\sqrt{2}-5$. (This implies that the radius of starlikeness of close-to-convex functions is $4\sqrt{2}-5$.) However, no explicit form of the envelope is given in [12] because it is not necessary for the results there.

We note that $F(e^{i\theta}) = 1 + 3e^{i\theta}$ for $\theta \in \mathbb{R}$, which agrees with Lemma 1.2(3). This does not, however, give enough information to determine the boundary curve of the domain LU_{1^-} . It turns out that LU_{1^-} has a relatively simple description though LU_r does not. We indeed derive the following result by making use of Theorem 1.3.

THEOREM 1.4. The variability region $LU_{1^{-}}$ is an unbounded Jordan domain with the boundary curve $\gamma(t)$, $-2\pi < t < 2\pi$, given by

$$\gamma(t) = \begin{cases} \log(1+3e^{it}) & \text{if } |t| < \pi, \\ \log(1-e^{it}) + \frac{t}{|t|}\pi i & \text{if } \pi \le |t| < 2\pi. \end{cases}$$

Here and hereafter, $\operatorname{Log} w = \log |w| + i \operatorname{Arg} w$ denotes the principal branch of $\log w$ with $-\pi < \operatorname{Im} \operatorname{Log} w = \operatorname{Arg} w \le \pi$.

As we will see in the next section, the function $\log F$ is univalent in \mathbb{D} . Therefore, the last theorem tells us that $F : \mathbb{D} \to U_{1^-}$ covers the disk $\mathbb{D}(-1,1)$ bivalently whereas it covers $\mathbb{D}(1,3) \setminus (\mathbb{D}(-1,1) \cup \{0\})$ univalently. See Figure 1 for the mapping behavior of F and $G = \log F$.

The following expression of W_r is not very explicit but useful in some situations.

Fig. 1. U_{1^-} and LU_{1^-} as the images of $\mathbb D$ under F and G

Theorem 1.5. For 0 < r < 1,

$$W_r = \left\{ \frac{2u}{v(u+v)} : |u-1| \le r, |v-1| \le r \right\}.$$

Indeed, as an application of the last theorem, we can show the following result.

THEOREM 1.6. $LW_{1^-} = \{ w \in \mathbb{C} : |\mathrm{Im} w| < 3\pi/2 \}.$

Since $W_{1^-} = \exp(LW_{1^-})$, we obtain the following corollary, which was used in [8].

COROLLARY 1.7. The full variability region $\{zf'(z)/f(z) : z \in \mathbb{D}, f \in \mathcal{C}\}$ is equal to $\mathbb{C} \setminus \{0\}$.

The corollary means that $W_{1^-} = \mathbb{C} \setminus \{0\}$. We note here that this does not seem to follow immediately from Lemma 1.2.

Krzyż [10] showed that LV_r is convex and determined its shape for 0 < r < 1.

PROPOSITION 1.8 (Krzyż). For 0 < r < 1, the variability region LV_r is convex and its boundary is described by the curve $\sigma_r(t) = \log[(1 - re^{i\theta_2(t)})/((1 - re^{i\theta_1(t)})^3], -\pi \le t \le \pi$. Here,

$$\theta_1(t) = t - \arcsin(r\sin t), \quad \theta_2(t) = \pi + t + \arcsin(r\sin t).$$

He also proved that LV_r is contained in the domain $|\text{Im } w| < 4 \arcsin r$ for each 0 < r < 1 and that this bound is sharp. (See also [5, Chap. 11].) In particular, $LV_{1-} \subset \{w : |\text{Im } w| < 2\pi\}$. Since $\text{Re } \sigma_r(t) \to +\infty$ as $r \to 1^-$ for $|t| < \pi/2$ and $\text{Re } \sigma_r(t) \to -\infty$ as $r \to 1^-$ for $\pi/2 < |t| \le \pi$, it is not easy to determine the limiting shape of LV_r as $r \to 1^-$ from the above proposition. We thus complement Krzyż' results by showing the following.

THEOREM 1.9.

$$V_r = \{(1+s)/(1+t)^3 : |s| \le r, |t| \le r\} = \{u/v^3 : |u-1| \le r, |v-1| \le r\}$$

for $0 < r < 1$. Moreover, $LV_{1^-} = \{w : |\operatorname{Im} w| < 2\pi\}$ and $V_{1^-} = \mathbb{C} \setminus \{0\}$.

One might expect that LU_r and LW_r would also be convex for each 0 < r < 1. This, however, is not true.

THEOREM 1.10. The variability regions LU_r and LW_r are closed Jordan domains for each 0 < r < 1. Moreover, there exists a number $0 < r_0 < 1$ such that both LU_r and LW_r are non-convex for every r with $r_0 < r < 1$.

We prove the above results in Section 3. Section 2 will be devoted to the study of mapping properties of the function $G = \log F$ that are necessary to show our results.

2. Univalence of the function $G = \log F$. In order to analyze the shape of LU_r or LW_r , we need to investigate mapping properties of the functions F and $G = \log F$, where F is given in Theorem 1.3. Therefore, before showing the main results from the Introduction, we exhibit the basic properties of the functions F and G. Here, we remark that F can be expressed in the form

$$F(z) = \frac{(1+z)^3}{1+z(3+z)/(3+\bar{z})}$$

Therefore, the continuous branch G of $\log F$ with G(0) = 0 is represented by

(2.1)
$$G(z) = 3 \operatorname{Log}(1+z) - \operatorname{Log}(1+ze^{2i\phi}), \quad \phi = \operatorname{Arg}(3+z).$$

The goal in this section is to prove the following:

THEOREM 2.1. The function $G = \log F$ is a homeomorphism of the unit disk \mathbb{D} onto a domain in \mathbb{C} .

For $r \in (0, 1)$ and $x \in (0, \pi)$, we set

$$\Phi_r(x) = \operatorname{Arg}(1 + re^{ix}).$$

We will use the following elementary properties of the function Φ_r .

LEMMA 2.2. Let $r \in (0, 1)$. Then

$$\varPhi'_r(x) = \frac{r(r + \cos x)}{1 + 2r\cos x + r^2}, \quad x \in (0, \pi).$$

In particular, Φ_r is increasing in $(0, x_r)$ and decreasing in (x_r, π) , where $x_r = \pi - \arccos r$. Furthermore, Φ'_r is decreasing in $(0, \pi)$ and therefore Φ_r is concave in $(0, \pi)$.

We also need the following information.

LEMMA 2.3. Let 0 < r < 1. Then the inequalities $0 < \theta + 2\phi < \pi$ hold for $0 < \theta < \pi$ and $\phi = \operatorname{Arg}(3 + re^{i\theta})$.

Proof. Set
$$h_r(\theta) = \theta + 2\phi = \theta + 2\operatorname{Arg}(3 + re^{i\theta}), \ 0 \le \theta \le \pi$$
. Then

$$h'_{r}(\theta) = 1 + 2\frac{\partial\phi}{\partial\theta} = \frac{3(3 + 4r\cos\theta + r^{2})}{9 + 6r\cos\theta + r^{2}}$$
$$\geq \frac{3(3 - 4r + r^{2})}{9 + 6r\cos\theta + r^{2}} = \frac{3(1 - r)(3 - r)}{9 + 6r\cos\theta + r^{2}} > 0.$$

Therefore, h_r is increasing in $(0, \pi)$, which implies that $0 = h_r(0) < h_r(\theta) < h_r(\pi) = \pi$ for $0 < \theta < \pi$.

As for the function G, we first show its local univalence.

LEMMA 2.4. The function G is orientation-preserving and locally univalent in \mathbb{D} .

Proof. The partial derivatives of G are given by

(2.2)
$$G_z(z) = \frac{6+4z+3\bar{z}+z^2}{(1+z)(3+3z+\bar{z}+z^2)},$$

(2.3)
$$G_{\bar{z}}(z) = \frac{z(3+z)}{(3+\bar{z})(3+3z+\bar{z}+z^2)}.$$

It suffices to show that the Jacobian $J_G = |G_z|^2 - |G_{\bar{z}}|^2$ is positive in \mathbb{D} , which is equivalent to the condition $|6+4z+3\bar{z}+z^2| > |z(1+z)|$ in |z| < 1. If we write $z = re^{i\theta}$, then

$$\begin{split} |6+4z+3\bar{z}+z^2|^2 &-|z(1+z)|^2\\ &=6(6+14r\cos\theta+4r^2+6r^2\cos2\theta+r^3\cos\theta+r^3\cos3\theta)\\ &=12(1+r\cos\theta)\big(2(1+r\cos\theta)^2+1-r^2\big)>0. \ \bullet \end{split}$$

LEMMA 2.5. For a fixed 0 < r < 1, the real part of $G(re^{i\theta})$ is a decreasing function of θ in $[0, \pi]$.

94

Proof. Letting $z = re^{i\theta}$, we first have the expression

$$\frac{\partial}{\partial \theta}G(re^{i\theta}) = izG_z(z) - i\bar{z}G_{\bar{z}}(z) = \frac{3iz(6+4z+4\bar{z}+z^2+\bar{z}^2)}{P(z)}.$$

Here, we have put

$$P(z) = (1+z)(3+\bar{z})(3+3z+\bar{z}+z^2)$$

and used (2.2) and (2.3). Thus,

$$\frac{\partial}{\partial \theta} \operatorname{Re} G(re^{i\theta}) = -6(3 + 4r\cos\theta + r^2\cos 2\theta) \operatorname{Im} \frac{z}{P(z)}$$

Since

$$\operatorname{Im} \frac{z}{P(z)} = \frac{1}{2i} \left(\frac{z}{P(z)} - \frac{\bar{z}}{P(\bar{z})} \right)$$
$$= \frac{(z - \bar{z})(9 + 12\operatorname{Re} z + 2\operatorname{Re} z^2 - 2|z|^2(1 + 2\operatorname{Re} z) - |z|^4)}{2i|P(z)|^2}$$

we obtain the expression

$$\frac{\partial}{\partial \theta} \operatorname{Re} G(re^{i\theta}) = -\frac{6r\sin\theta(3 + 4r\cos\theta + r^2\cos2\theta)H(r,\theta)}{|P(re^{i\theta})|^2},$$

where

$$H(r,\theta) = 9 + 12r\cos\theta - 4r^2\sin^2\theta - 4r^3\cos\theta - r^4.$$

Firstly, we note that

$$3 + 4r\cos\theta + r^2\cos 2\theta = 1 - r^2 + 2(1 + r\cos\theta)^2 > 0.$$

Secondly, we compute

$$\frac{\partial H(r,\theta)}{\partial \theta} = -4r(3+2r\cos\theta-r^2)\sin\theta.$$

In particular, $H(r, \theta)$ is decreasing as a function of $\theta \in (0, \pi)$ for each fixed 0 < r < 1. Hence,

$$H(r,\theta) \ge H(r,\pi) = (1-r)(3-r)(3-r^2) > 0.$$

Summarizing, we conclude that $\partial(\operatorname{Re} G)/\partial\theta < 0$ for $0 < \theta < \pi$.

We next prove the following:

LEMMA 2.6. Im G(z) > 0 for $z \in \mathbb{D}$ with Im z > 0.

Proof. Fix $r \in (0, 1)$. Let $\theta \in (0, \pi)$ and let ϕ be given in (2.1). Note that $0 < \phi < \theta$. We need to show that

(2.4)
$$g_r(\theta) = \operatorname{Im} G(re^{i\theta}) = 3\Phi_r(\theta) - \Phi_r(\theta + 2\phi)$$

is positive. Note that $0 < \theta < \theta + 2\phi < \pi$ by Lemma 2.3. Lemma 2.2 implies that Φ_r takes its maximum value $\Phi_r(x_r) = \arcsin r$ in $(0, \pi)$. In particular, we have $\Phi_r(\theta + 2\phi) \leq \arcsin r$. Therefore, $g_r(\theta) > 0$ for $x_r^- < \theta < x_r^+$,

where x_r^- and x_r^+ are the solutions to the equation $3\Phi_r(x) = \arcsin r$ with $0 < x_r^- < x_r < x_r^+ < \pi$.

We next assume that $x_r^+ \leq \theta < \pi$. Since Φ_r is decreasing in (x_r^+, π) by Lemma 2.2, we see that $g_r(\theta) > \Phi_r(\theta) - \Phi_r(\theta + 2\phi) > 0$. Finally, we assume that $0 < \theta \leq x_r^-$. In view of concavity of Φ_r (see Lemma 2.2) together with $\Phi_r(0) = 0$, we have $\Phi_r(x_r^-) = \Phi_r(x_r)/3 \leq \Phi_r(x_r/3)$. Hence, $x_r^- \leq x_r/3$. In particular, $\theta + 2\phi \leq 3\theta \leq 3x_r^- \leq x_r$. Since Φ_r is increasing and concave in $(0, x_r)$, the inequalities $\Phi_r(\theta + 2\phi) < \Phi_r(3\theta) \leq 3\Phi_r(\theta)$ follow. Thus we have shown that $g_r(\theta) > 0$ in this case, too.

The following property will be used for the proof of Theorem 1.4.

LEMMA 2.7. The function g_r defined in (2.4) satisfies $g'_r(\theta) > 0$ for $0 < \theta < x_r = \pi - \arccos r$.

Proof. By definition, we have

$$g'_r(\theta) = 3\Phi'_r(\theta) - \left(1 + 2\frac{\partial\phi}{\partial\theta}\right)\Phi'_r(\theta + 2\phi).$$

Since $1 + 2\partial \phi / \partial \theta > 0$ (see the proof of Lemma 2.3), Lemma 2.2 implies

$$g'_r(\theta) \ge 3\Phi'_r(\theta) - \left(1 + 2\frac{\partial\phi}{\partial\theta}\right)\Phi'_r(\theta) = 2\left(1 - \frac{\partial\phi}{\partial\theta}\right)\Phi'_r(\theta).$$

We note here that

$$1 - \frac{\partial \phi}{\partial \theta} = \frac{3(3 + r\cos\theta)}{9 + 6r\cos\theta + r^2} > 0.$$

Since $\Phi'_r(\theta) > 0$ for $0 < \theta < x_r$ by Lemma 2.2, the required assertion follows.

We are now ready to prove the theorem.

Proof of Theorem 2.1. Since G is orientation-preserving and locally univalent by Lemma 2.4, it is enough to show that G is injective on the circle |z| = r for each $r \in (0, 1)$. We note here that G is symmetric in the real axis, in other words, $G(\bar{z}) = \overline{G(z)}$ for $z \in \mathbb{D}$. By Lemmas 2.5 and 2.6, G maps the upper half of the circle |z| = r univalently onto a Jordan arc in the upper half-plane. Taking into account symmetry, we have shown that G maps the circle |z| = r univalently onto a Jordan curve which is symmetric in the real axis. Thus the proof is complete.

3. Proof of main results. In this section, we prove the main results presented in Section 1. In the proofs, we will make use of a weakened version of Lemma 5.1 in Greiner and Roth [6], which is an outcome of the duality methods developed by Ruscheweyh and Sheil–Small.

For complex numbers a, b with $|a| \leq 1$, $|b| \leq 1$, define a function $f_{a,b} \in \mathcal{A}_1$ by

$$f_{a,b}(z) = z \frac{1 + (a+b)z/2}{(1+bz)^2}.$$

It is easy to see that $f_{a,b}$ belongs to the class C of close-to-convex functions. The linear space A is naturally equipped with the topology of uniform convergence on compact subsets in \mathbb{D} .

LEMMA 3.1 ([6, Lemma 5.1]). Let λ_1 and λ_2 be continuous linear functionals on \mathcal{A} such that λ_2 does not vanish on \mathcal{C} . Then for every $f \in \mathcal{C}$ there exist complex numbers a, b with $|a|, |b| \leq 1$ such that

$$\frac{\lambda_1(f)}{\lambda_2(f)} = \frac{\lambda_1(f_{a,b})}{\lambda_2(f_{a,b})}.$$

As an application of this lemma, one can give a simple proof of Theorem 1.5.

Proof of Theorem 1.5. Fix 0 < r < 1. Let $f \in \mathcal{C}$. We now apply Lemma 3.1 to the choice $\lambda_1(f) = rf'(r)$ and $\lambda_2(f) = f(r)$ to see that

$$\frac{rf'(r)}{f(r)} = \frac{\lambda_1(f)}{\lambda_2(f)} = \frac{\lambda_1(f_{a,b})}{\lambda_2(f_{a,b})} = \frac{2(1+ar)}{(1+br)(2+(a+b)r)}$$

for some $a, b \in \overline{\mathbb{D}}$. The proof is completed by letting u = 1 + ar and v = 1 + br.

We need a topological observation for the proof of Theorem 1.3. The following result is a basis of it.

LEMMA 3.2. Let D be a domain in the Riemann sphere $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Suppose that the boundary ∂E of a compact set E in $\widehat{\mathbb{C}}$ is contained in ∂D . Then either $E \cap D = \emptyset$ or $D \subset E$.

Proof. Suppose that the open set $D \setminus E$ is non-empty. Let D_0 be a connected component of $D \setminus E$. Then $\partial D_0 \subset \partial D \cup \partial E = \partial D$ by assumption. This means that D_0 is open and closed in D. Since D is connected, D_0 must be equal to D; in other words, $D \cap E = \emptyset$.

Let J be a Jordan curve in $\widehat{\mathbb{C}}$. We recall that the Jordan curve theorem implies that $\widehat{\mathbb{C}} \setminus J$ consists of exactly two connected components, say D_1 and D_2 , and that $J = \partial D_j$ for j = 1, 2 (see, for instance, [13, Theorem 1.10]). As a corollary of the above lemma, we have the following.

LEMMA 3.3. Let J be a Jordan curve in $\widehat{\mathbb{C}}$ and let D_1 and D_2 be the connected components of $\widehat{\mathbb{C}} \setminus J$. Suppose that the boundary ∂E of a compact set E in $\widehat{\mathbb{C}}$ is a non-empty subset of J. Then one of the following three cases occurs: (1) $E \subset J$, (2) $E = J \cup D_1$, (3) $E = J \cup D_2$.

T. Kato et al.

Proof. We apply Lemma 3.2 to the domain D_1 to obtain either $E \subset \widehat{\mathbb{C}} \setminus D_1 = J \cup D_2$ or $D_1 \subset E$, which implies $J \cup D_1 = \overline{D_1} \subset E$. Similarly, we have either $E \subset J \cup D_1$ or $J \cup D_2 \subset E$. Since the case when $\widehat{\mathbb{C}} = J \cup D_1 \cup D_2 \subset E$ is excluded by assumption, the required assertion follows.

We prepare one more lemma for the proof of Theorem 1.3.

Let $c(\alpha)$ and $\rho(\alpha)$ be continuously differentiable functions of the real variable α with values in \mathbb{C} and $\mathbb{R}_+ = (0, +\infty)$, respectively. Denote by Δ_{α} and Γ_{α} the disk $|w - c(\alpha)| < \rho(\alpha)$ and its boundary, respectively. If $|\rho'(\alpha_0)| < |c'(\alpha_0)|$ for an $\alpha_0 \in \mathbb{R}$, then we can find a $\delta > 0$ so that

(3.1)
$$|\rho(\alpha)^2 - \rho(\alpha_0)^2 - |c(\alpha) - c(\alpha_0)|^2| < 2\rho(\alpha_0)|c(\alpha) - c(\alpha_0)|$$

whenever $0 < |\alpha - \alpha_0| < \delta$. This can be shown by observing that

$$\frac{|\rho(\alpha)^2 - \rho(\alpha_0)^2 - |c(\alpha) - c(\alpha_0)|^2|}{|c(\alpha) - c(\alpha_0)|} \to \frac{2\rho(\alpha_0)|\rho'(\alpha_0)|}{|c'(\alpha_0)|} < 2\rho(\alpha_0)$$

as $\alpha \to \alpha_0$. In this situation, the possible boundary points of the union $\bigcup_{|\alpha-\alpha_0|<\delta} \Delta_{\alpha}$ lying on Γ_{α_0} are described by the next lemma. We recall here that $\theta = \arccos x$ is a decreasing function in $-1 \le x \le 1$ with $0 = \arccos 1 \le \theta \le \pi = \arccos(-1)$.

LEMMA 3.4. Suppose that $|\rho'(\alpha_0)| < |c'(\alpha_0)|$ for an $\alpha_0 \in \mathbb{R}$ and fix a δ as above. Then, for $\alpha \in \mathbb{R}$ with $0 < |\alpha - \alpha_0| < \delta$, Γ_{α} intersects Γ_{α_0} exactly in the two points $\zeta_+(\alpha, \alpha_0)$ and $\zeta_-(\alpha, \alpha_0)$ given by

$$\zeta_{\pm}(\alpha,\alpha_0) = c(\alpha_0) + \rho(\alpha_0) \frac{c(\alpha) - c(\alpha_0)}{|c(\alpha) - c(\alpha_0)|} e^{\pm i\varepsilon\theta(\alpha,\alpha_0)},$$

where

$$\theta(\alpha, \alpha_0) = \arccos\left[-\frac{\rho(\alpha)^2 - \rho(\alpha_0)^2 - |c(\alpha) - c(\alpha_0)|^2}{2\rho(\alpha_0)|c(\alpha) - c(\alpha_0)|}\right],$$

and

$$\varepsilon = \operatorname{sgn}(\alpha - \alpha_0) = \frac{\alpha - \alpha_0}{|\alpha - \alpha_0|}.$$

Moreover,

$$\lim_{\alpha \to \alpha_0} \zeta_{\pm}(\alpha, \alpha_0) = c(\alpha_0) + \rho(\alpha_0) \frac{c'(\alpha_0)}{|c'(\alpha_0)|} e^{\pm i\theta(\alpha_0, \alpha_0)} =: \zeta_{\pm}(\alpha_0, \alpha_0),$$

where

$$\theta(\alpha_0, \alpha_0) = \arccos\left[-\frac{\rho'(\alpha_0)}{|c'(\alpha_0)|}\right],$$

and for any $\zeta \in \Gamma_{\alpha_0} \setminus \{\zeta_+(\alpha_0, \alpha_0), \zeta_-(\alpha_0, \alpha_0)\}$, there exists an $\alpha \in \mathbb{R}$ with $0 < |\alpha - \alpha_0| < \delta$ such that $\zeta \in \Delta_{\alpha}$.

Proof. It is elementary to see that the inequality (3.1) is equivalent to the double inequality

(3.2)
$$|\rho(\alpha) - \rho(\alpha_0)| < |c(\alpha) - c(\alpha_0)| < \rho(\alpha) + \rho(\alpha_0),$$

which means that the two circles Γ_{α} and Γ_{α_0} intersect in exactly two points. It is easily verified that the two intersection points are $\zeta_{\pm}(\alpha, \alpha_0)$, which are defined above. Noting that

$$\lim_{\alpha \to \alpha_0 -} \theta(\alpha, \alpha_0) = \arccos\left[\frac{\rho'(\alpha_0)}{|c'(\alpha_0)|}\right] = \pi - \lim_{\alpha \to \alpha_0 +} \theta(\alpha, \alpha_0),$$

one can show that the limit of $\zeta_{\pm}(\alpha, \alpha_0)$ as $\alpha \to \alpha_0$ is as given in the above formula.

Finally, we fix α with $0 < |\alpha - \alpha_0| < \delta$. Let $\omega = c(\alpha_0) + \rho(\alpha_0)(c(\alpha) - c(\alpha_0))/|c(\alpha) - c(\alpha_0)|$. Then,

$$|\omega - c(\alpha)| = \left| |c(\alpha_0) - c(\alpha)| - \rho(\alpha_0) \right|,$$

which is smaller than $\rho(\alpha)$ by (3.2). We have thus obtained $\omega \in \Delta_{\alpha}$. Hence, the connected component of $\Gamma_{\alpha_0} \setminus \{\zeta_+(\alpha, \alpha_0), \zeta_-(\alpha, \alpha_0)\}$ containing ω is contained in Δ_{α} . In other words, the component in the direction of the vector $c(\alpha) - c(\alpha_0)$ is contained in Δ_{α} . Noting that $c(\alpha) - c(\alpha_0) = (\alpha - \alpha_0)$ $\cdot \{c'(\alpha_0) + o(1)\}$, the direction is chosen according to the sign of $\alpha - \alpha_0$. In view of the continuity of $\zeta_{\pm}(\alpha, \alpha_0)$ in α , we obtain the final assertion.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Fix 0 < r < 1. We will prove the stronger assertion that $LU_r = G(\overline{\mathbb{D}}(0,r))$. Here, we recall that $G = \log F$, which is univalent on \mathbb{D} by Theorem 2.1. In particular, $\partial G(\mathbb{D}(0,r)) = G(\partial \mathbb{D}(0,r))$ is a bounded Jordan curve. Let $H(s,t) = (1+(s+t)/2)/(1+s)^2$ and $h(s,t) = 2\log(1+s) - \log(1+(s+t)/2) = -\log H(s,t)$.

By Lemma 1.2(1), we have the relation $LU_r = h(\mathbb{D}(0, r) \times \mathbb{D}(0, r))$. Since LU_r is a compact subset of \mathbb{C} with non-empty interior, it is enough to show the inclusion $\partial LU_r \subset G(\partial \overline{\mathbb{D}}(0, r))$ by Lemma 3.3.

Let z_0 be a boundary point of LU_r . Then $z_0 = h(s_0, t_0)$ for some $s_0, t_0 \in \overline{\mathbb{D}}(0, r)$. Since $s \mapsto h(s, t_0)$ is an open mapping, s_0 must be on the boundary; in other words, $|s_0| = r$. Similarly, we have $|t_0| = r$. We note that $\zeta_0 = e^{-z_0} = H(s_0, t_0)$. Let $\alpha_0 = \arg s_0$.

Let Γ_{α} denote the boundary circle of the disk $\Delta_{\alpha} = H(re^{i\alpha}, \mathbb{D}(0, r))$. Then ζ_0 is a boundary point of the union of Δ_{α} over a neighborhood of α_0 . (Note that ζ_0 might not necessarily appear in the boundary of the union of Δ_{α} over all $\alpha \in \mathbb{R}$.) Observe that the center $c(\alpha)$ and the radius $\rho(\alpha)$ of Γ_{α} are given respectively by

$$c(\alpha) = H(s, 0) = \frac{1 + s/2}{(1 + s)^2}$$
 and $\rho(\alpha) = \frac{r}{2|1 + s|^2}$

for $s = re^{i\alpha}$. We compute

(3.3) $c'(\alpha) = -\frac{is(3+s)}{2(1+s)^3}$ and $\rho'(\alpha) = \frac{r^2 \sin \alpha}{|1+s|^4}.$

We now see that

$$-\frac{\rho'(\alpha)}{|c'(\alpha)|} = \frac{-2r\sin\alpha}{|1+s|\,|3+s|} \in (-1,1)$$

for any $\alpha \in \mathbb{R}$, because

$$1 - \frac{\rho'(\alpha)^2}{|c'(\alpha)|^2} = \frac{(3 + 4r\cos\alpha + r^2)^2}{|1 + s|^2|3 + s|^2} > 0.$$

Hence, by Lemma 3.4, the boundary point ζ_0 has to be of the form $\zeta_{\pm}(\alpha_0, \alpha_0)$.

We now find a concrete form of $\zeta_{\pm}(\alpha) := \zeta_{\pm}(\alpha, \alpha)$. Recall that $\zeta_{\pm}(\alpha) = c(\alpha) + \rho(\alpha)e^{\pm i\theta(\alpha,\alpha)}c'(\alpha)/|c'(\alpha)|$, where, by the above computations,

$$e^{\pm i\theta(\alpha,\alpha)} = \frac{-2r\sin\alpha}{|1+s|\,|3+s|} \pm i\frac{3+4r\cos\alpha+r^2}{|1+s|\,|3+s|}$$

Hence,

$$e^{i\theta(\alpha,\alpha)} = i \frac{(1+s)(3+\bar{s})}{|1+s||3+s|}$$
 and $e^{-i\theta(\alpha,\alpha)} = -i \frac{(1+\bar{s})(3+s)}{|1+s||3+s|}$.

Since

$$\frac{c'(\alpha)}{|c'(\alpha)|} = -\frac{is(3+s)}{(1+s)^3} \cdot \frac{|1+s|^3}{r|3+s|},$$

we finally obtain

$$\begin{split} \zeta_{+}(\alpha) &= \frac{1+s/2}{(1+s)^2} + \frac{r}{2|1+s|^2} \cdot \frac{s|1+s|^2}{r(1+s)^2} = \frac{1}{1+s}, \\ \zeta_{-}(\alpha) &= \frac{1+s/2}{(1+s)^2} - \frac{r}{2|1+s|^2} \cdot \frac{s(3+s)(1+\bar{s})^2}{r(3+\bar{s})(1+s)^2} \\ &= \frac{3+3s+\bar{s}+s^2}{(3+\bar{s})(1+s)^3} = \frac{1}{F(s)}. \end{split}$$

We now show that the point $\zeta_+(\alpha)$ is contained in the interior of U_r . To this end, it is enough to show that the function $\varphi(z) = 1/(1+z)$ is subordinate to $\psi(z) = (1+z/2)/(1+z)^2 = H(z,0)$; in other words, there is an analytic function ω with $|\omega(z)| \leq |z|$ on the unit disk |z| < 1 such that $\varphi = \psi \circ \omega$. Indeed, this would imply that

$$\zeta_{+}(\alpha) \in \varphi(\overline{\mathbb{D}}(0,r)) \subset \psi(\overline{\mathbb{D}}(0,r)) = H(\overline{\mathbb{D}}(0,r),0) \subset \operatorname{Int} U_{r}$$

To see the above subordination, it suffices to show $\varphi(\mathbb{D}) \subset \psi(\mathbb{D})$ because ψ is univalent on \mathbb{D} as we can verify directly. We note here that $\varphi(\mathbb{D})$ is the

100

half-plane $\operatorname{Re} w > 1/2$. On the other hand,

$$\operatorname{Re}\psi(e^{i\theta}) = \frac{\cos\theta + 1/2}{4\cos^2(\theta/2)} = \frac{1}{2} - \frac{1}{8\cos^2(\theta/2)} < \frac{1}{2}.$$

Though ψ has a singularity at z = -1, it is easily checked that $\operatorname{Re} \psi(z) \to -\infty$ as $z \to -1$ in \mathbb{D} . Hence, we conclude that $\psi(\mathbb{D})$ contains $\varphi(\mathbb{D}) = \{w : \operatorname{Re} w > 1/2\}$ and therefore that φ is subordinate to ψ .

What we have shown above tells us that $-\log \zeta_+(\alpha)$ does not lie on the boundary of LU_r . Hence, $z_0 \in \partial LU_r$ is of the form $G(re^{i\alpha_0}) = -\log \zeta_-(\alpha_0)$. We conclude that the boundary of LU_r is contained in the curve $\{G(re^{i\alpha}) : -\pi < \alpha \leq \pi\}$.

REMARK 3.5. The curves $\zeta_{+}(\alpha)$ and $\zeta_{-}(\alpha)$ are the inner and outer envelopes of $\{\Gamma_{\alpha}\}_{\alpha\in\mathbb{R}}$ (see [3] as a general reference for the envelope of a family of curves). Figure 2 illustrates the curves Γ_{α} and the inner and outer envelopes in the case when r = 3/4. In view of the above proof, we can get precise information about the extremal functions for the functional z/f(z) in the class of close-to-convex functions. Indeed, for a given complex number $s = re^{i\alpha}$ with 0 < r < 1, a function $f \in \mathcal{C}$ satisfies $\log[r/f(r)] = G(re^{i\alpha}) \in \partial LU_r$ if and only if $f = f_{a,b}$ for

$$a = -\frac{s}{r} \cdot \frac{1+\bar{s}}{1+s} \cdot \frac{3+s}{3+\bar{s}}$$
 and $b = \frac{s}{r} = e^{i\alpha}$.

Fig. 2. Circles Γ_{α} and their inner and outer envelopes for r = 3/4

T. Kato et al.

Proof of Theorem 1.4. By Theorem 2.1 and the proof of Theorem 1.3, we see that the mapping $G = \log F$ is a homeomorphism of \mathbb{D} onto $LU_{1^{-}}$. We now observe that G extends continuously to $\overline{\mathbb{D}} \setminus \{-1\}$. Since $G(e^{it}) = \gamma(t)$ for $|t| < \pi$, the boundary of $LU_{1^{-}}$ contains the arc $\gamma([-\pi, \pi])$.

We next investigate the limit points of G(z) as $z \to -1$. Let $\alpha(\delta) = (a\delta)^{1/3}$ and put $z = (1-\delta)e^{i(\pi-\alpha(\delta))}$ for $0 < \delta < 1$ and a positive constant a. Then

$$z = -(1-\delta) \left(1 - i\alpha(\delta) - \frac{\alpha(\delta)^2}{2} + \frac{i\alpha(\delta)^3}{6} + O(\delta^{4/3}) \right)$$
$$= -1 + i(a\delta)^{1/3} + \frac{(a\delta)^{2/3}}{2} + \left(1 - \frac{ia}{6} \right) \delta + O(\delta^{4/3})$$

as $\delta \to 0^+$. Therefore,

$$\frac{3+z}{3+\bar{z}} = 1 + i(a\delta)^{1/3} - \frac{(a\delta)^{2/3}}{2} - \frac{2ia\delta}{3} + O(\delta^{4/3})$$

and

$$1 + z\frac{3+z}{3+\bar{z}} = \left(1 + \frac{ia}{2}\right)\delta + O(\delta^{4/3}).$$

Since $(1+z)^3 = -ia\delta + O(\delta^{4/3})$, we have

$$\frac{(1+z)^3}{1+z(3+z)/(3+\bar{z})} = -\left(1+\frac{a+2i}{a-2i}\right) + O(\delta^{1/3})$$

as $\delta \to 0^+$. Thus

$$\lim_{\delta \to 0^+} G((1-\delta)e^{i(\pi-\alpha(\delta))}) = \pi i + \log\left(1 + \frac{a+2i}{a-2i}\right).$$

Since a is an arbitrary positive real number, the boundary of $LU_{1^-} = G(\mathbb{D})$ contains the curve $\gamma(t)$: $\pi < t < 2\pi$. The same is true for $-2\pi < t < -\pi$ by the symmetry of the function G.

We have seen that the Jordan curve $J = \{\gamma(t) : |t| < 2\pi\} \cup \{\infty\}$ is contained in ∂LU_{1^-} . The remaining thing is to prove the converse implication $\partial LU_{1^-} \subset J$. We denote by D the domain bounded by J and containing the origin.

Note that LU_r is convex in the direction of the imaginary axis for each 0 < r < 1 by Lemma 2.5. Therefore, the same is true for the limit $LU_{1^{-}}$. We observe also that D is convex in the direction of the imaginary axis.

Suppose that there is a boundary point p_0 of LU_{1^-} with $p_0 \notin J$. We may assume that $\operatorname{Im} p_0 > 0$. Let p_1 be the point in J with $\operatorname{Im} p_1 > 0$ and $\operatorname{Re} p_1 = \operatorname{Re} p_0$. Then the convexity of LU_{1^-} in the direction of the imaginary axis implies that the segment $[p_0, p_1]$ is contained in ∂LU_{1^-} . We can choose p_0 so that the segment is maximal. Since the family of smooth Jordan domains LU_r , 0 < r < 1, exhausts the domain LU_{1^-} , for a small enough $\delta > 0$ there exist three points $z_1^-(\delta), z_0(\delta), z_1^+(\delta)$ on the circle $|z| = 1 - \delta$ with $0 < \operatorname{Arg} z_1^-(\delta) < \operatorname{Arg} z_0(\delta) < \operatorname{Arg} z_1^+(\delta)$ such that $G(z_1^-(\delta)) \to p_1$, $G(z_0(\delta)) \to p_0, G(z_1^+(\delta)) \to p_1$ as $\delta \to 0^+$. In particular, $\operatorname{Im} G(z_0(\delta)) < \operatorname{Im} G(z_1^\pm(\delta))$ for sufficiently small $\delta > 0$. Hence, $g_{1-\delta}(\theta) = \operatorname{Im} G((1-\delta)e^{i\theta})$ takes a local minimum at a point θ_0 with $\operatorname{Arg} z_1^-(\delta) < \theta_0 < \operatorname{Arg} z_1^+(\delta)$. In particular, $g'_{1-\delta}(\theta_0) = 0$. Note here that

$$\operatorname{Re} G((1-\delta)e^{i\theta_0}) \to \operatorname{Re} p_0 \quad (\delta \to 0^+).$$

We write $\theta_0 = \pi - \beta(\delta)$. Then, by Lemma 2.7, we see that $\theta_0 \geq x_{1-\delta}$, equivalently, $\beta(\delta) \leq \arccos(1-\delta)$. This implies that $\beta(\delta) = O(\delta^{1/2})$ as $\delta \to 0^+$. Therefore, $z = (1-\delta)e^{i(\pi-\beta(\delta))} = -1 + i\beta(\delta) + O(\delta), (3+z)/(3+\bar{z}) =$ $1 + i\beta(\delta) + O(\delta)$ and thus $1 + z(3+z)/(3+\bar{z}) = O(\delta)$ as $\delta \to 0^+$. In particular,

$$\operatorname{Re} G((1-\delta)e^{i\theta_0}) \to -\infty \quad (\delta \to 0^+),$$

which is a contradiction.

We now conclude that $\partial LU_{1^{-}} = J$.

Proof of Theorem 1.6. Let $\Omega = \{(r, s, t) \in \mathbb{R}^3 : 0 < s < 2, 0 < rs^2 < 2, -\pi/2 < t < \pi/2\}$. Then $u = rs^2 e^{it} \cos^2 t$ and $v = se^{-it} \cos t$ satisfy |u-1| < 1 and |v-1| < 1, whence the point

$$w(r, s, t) = \log \frac{2u}{v(u+v)} = \log(2r) + 3it - \log(1 + rse^{2it}\cos t)$$

belongs to the region $LW_{1^{-}}$ for $(r, s, t) \in \Omega$ by Theorem 1.5.

For a given point $z_0 = x_0 + iy_0$ with $|y_0| < 3\pi/2$, we now look for $(r, s, t) \in \Omega$ such that $w(r, s, t) = z_0$. Let $r_0 = e^{x_0}/2$ and take $0 < s_0 < 1$ small enough that $r_0 s_0 < 1/2$. Then $r_0 s_0^2 < s_0 < 2$ and $x_0 \pm 3\pi i/2$ are the endpoints of the curve $\alpha(t) = w(r_0, s_0, t), -\pi/2 < t < \pi/2$. We now take a $t_0 \in (-\pi/2, \pi/2)$ such that $\operatorname{Im} \alpha(t_0) = y_0$ and let $x_1 = x_0 - \operatorname{Re} \alpha(t_0)$. Since the function $-\log(1-x)$ is convex, we have the inequality $-\log(1-x) \leq 2x \log 2$ for $0 \leq x < 1/2$. We now estimate $-x_1$ in the following way:

$$-x_1 = -\log|1 + r_0 s_0 e^{2it_0} \cos t_0| \le -\log(1 - r_0 s_0) \le 2r_0 s_0 \log 2,$$

which implies

$$r_0 s_0^2 e^{-x_1} < s_0 e^{-x_1} \le s_0 e^{2r_0 s_0 \log 2} < s_0 e^{\log 2} = 2s_0 < 2.$$

Therefore $(r_0 e^{x_1}, s_0 e^{-x_1}, t_0) \in \Omega$ and

$$w(r_0e^{x_1}, s_0e^{-x_1}, t_0) = x_1 + w(r_0, s_0, t_0) = x_0 + iy_0 = z_0$$

as desired. \blacksquare

Proof of Theorem 1.9. For a fixed 0 < r < 1, we consider the continuous linear functionals λ_1 and λ_2 on \mathcal{A} defined by $\lambda_1(f) = f'(r)$ and $\lambda_2(f) = f'(0)$

for $f \in \mathcal{A}$. Then Lemma 3.1 implies that for any $f \in \mathcal{C}$,

$$f'(r) = \frac{\lambda_1(f)}{\lambda_2(f)} = \frac{\lambda_1(f_{a,b})}{\lambda_2(f_{a,b})} = \frac{1+ar}{(1+br)^3}$$

for some $a, b \in \overline{\mathbb{D}}$. Thus the first part of the theorem has been proved.

By the first part, we have $LV_{1^-} = \{ \text{Log}(1+z) - 3 \text{Log}(1+w) : z, w \in \mathbb{D} \}$. Let *a* and *b* be real numbers with $|b| < \pi/2$. We shall show that $a + 4bi \in LV_{1^-}$. It is easy to observe that the domain $\{ \text{Log}(1+z) : z \in \mathbb{D} \}$ is convex and its boundary curve

$$\tau(t) = \text{Log}(1 + e^{it}) = \log(2\cos(t/2)) + ti/2 \quad (-\pi < t < \pi)$$

satisfies $\operatorname{Re} \tau(t) \to -\infty$ and $\operatorname{Im} \tau(t) \to \pm \pi/2$ as $t \to \pm \pi^{\mp}$. Therefore, there are $z, w \in \mathbb{D}$ such that $a - 3c + bi = \operatorname{Log}(1+z)$ and $-c - bi = \operatorname{Log}(1+w)$ for a sufficiently large c > 0. In particular, $a + 4bi = \operatorname{Log}(1+z) - 3\operatorname{Log}(1+w) \in LV_{1^-}$.

Proof of Theorem 1.10. Since $LU_r = LW_r + 2\log(1-r^2)$ by Lemma 1.2(2), it suffices to prove the assertion for LU_r . If there is no r_0 as in the assertion, then the limiting domain LU_{1^-} must be convex. Note that LU_{1^-} is convex if and only if $\frac{d}{dt} \arg \gamma'(t) \geq 0$, where γ is given in Theorem 1.4. A simple computation gives us

$$\frac{d}{dt}\arg\gamma'(t) = \operatorname{Im}\frac{d}{dt}\log\gamma'(t) = \operatorname{Re}\frac{1}{1+3e^{it}} = \frac{1+3\cos t}{|1+3e^{it}|^2}$$

for $|t| < \pi$. This is negative when $\cos t < -1/3$ and thus we get a contradiction.

Acknowledgements. The authors are grateful to the referee for corrections and constructive suggestions, which greatly improved the exposition. Especially, the proof of Lemma 2.5 became more transparent thanks to a suggestion of the referee.

The present research was supported in part by JSPS Grant-in-Aid for Scientific Research (B) 22340025 and (C) 23540209, and by National Natural Science Foundation of China (No. 11326080).

References

- A. Bielecki and Z. Lewandowski, Sur un théorème concernant les fonctions univalentes linéairement accessibles de M. Biernacki, Ann. Polon. Math. 12 (1962), 61–63.
- M. Biernacki, Sur la représentation conforme des domaines linéairement accessibles, Prace Mat.-Fiz. 44 (1937), 293–314.
- [3] J. W. Bruce and P. J. Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory, 2nd ed., Cambridge Univ. Press, Cambridge, 1992.
- [4] P. L. Duren, Univalent Functions, Springer, New York, 1983.

Variability regions

- [5] A. W. Goodman, Univalent Functions, Vols. I, II, Mariner, Tampa, FL, 1983.
- [6] R. Greiner and O. Roth, On the radius of convexity of linear combinations of univalent functions and their derivatives, Math. Nachr. 254/255 (2003), 153–164.
- [7] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185.
- Y. C. Kim and T. Sugawa, On power deformations of univalent functions, Monatsh. Math. 167 (2012), 231–240.
- W. Koepf, On close-to-convex functions and linearly accessible domains, Complex Variables Theory Appl. 11 (1989), 269–279.
- [10] J. Krzyż, Some remarks on close-to-convex functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astoronom. Phys. 12 (1964), 25–28.
- Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes I, Ann. Univ. Mariae Curie-Skłodowska Sect. A 12 (1958), 131–145.
- [12] Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes II, Ann. Univ. Mariae Curie-Skłodowska Sect. A 14 (1960), 19–46.
- [13] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

Takao KatoToshiyuki SugawaGraduate School of Science and Engineering
Yamaguchi University
Yoshida, Yamaguchi 753-8512, Japan
E-mail: kato@yamaguchi-u.ac.jpGraduate School of Information Sciences
Tohoku University
Aoba-ku, Sendai 980-8579, Japan
E-mail: sugawa@math.is.tohoku.ac.jp

Li-Mei Wang School of Statistics University of International Business and Economics No. 10, Huixin Dongjie, Chaoyang District Beijing 100009, China E-mail: wangmabel@163.com

> Received 2.2.2012 and in final form 19.10.2013

(2687)