ANNALES
POLONICI MATHEMATICI
99.1 (2010)

Existence and multiplicity results for a nonlinear stationary
Schrodinger equation

by DANILA SANDRA MOSCHETTO (Catania)

Abstract. We revisit Kristaly’s result on the existence of weak solutions of the
Schrodinger equation of the form

—Au+ a(z)u = \b(z)f(u), zecRY ueH'RY),

where ) is a positive parameter, a and b are positive functions, while f : R — R is
sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent
three critical points theorem, we show that, under the same hypotheses, a much more
precise conclusion can be obtained.

1. Introduction and statement of the main result. Sufficient con-
ditions which ensure the multiplicity of weak solutions for nonlinear station-
ary Schrodinger-like equations have recently been proposed in the literature.
In particular, Kristaly [K] considers the Schrédinger equation of the form

(Py) —Au+a(x)u = Mb(x)f(u), xeRY uwe HYRY),

with a positive parameter \. He assumes that the potentials a and b satisfy
the following conditions:

(@) a € LZ(RY), essinfgn a > 0 and for any M > 0 and any r > 0,
mes({z € By(y) :a(x) < M}) -0 as |yl — +o0

where “mes” stands for the Lebesgue measure and B, (y) denotes
_ the open ball in RY with center y and radius r > 0.
(b) be LY(RN) N L*(RN), b> 0 and

sup essinf b(x) > 0.
R>0 [z|<R

(fo) f € C°(R) and there exist C > 0 and ¢ € ]0, 1] such that
|f(s)] <C|s|? for each s € R.
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(f1) f(s) = olls]) as s — 0.
(f2) supgeg F(s) > 0 where F(s) = {; f(t)dt.

Following the suggestions of Bartsch and Wang ([BW]), due to (a), Kristédly
defines the Hilbert space

E = {u e HY(RV) : S a(x)u? dr < —i—oo}
RN
endowed with the inner product

(u,v)p = S (Vu-Vv+a(zx)uv)dr for u,v,€ E
RN

and consequently with the induced norm which we denote by || - ||. The
condition (a) implies that the space E can be continuously embedded into
LZ(RN ) whenever 2 < ¢ < 2* and the embedding is compact when 2 <
¢ < 2% (see [Bal). Here, 2* denotes the critical Sobolev exponent, i.e., 2* =
2N/(N —2) for N > 3 and 2* = +oo for N = 1,2. By applying a result
established by Bonanno [B], Kristaly has proved in [K| that (P)) admits
at least two solutions in FE, provided that A belongs to a suitable open
interval. The aim of the present paper is to significantly improve Kristaly’s
result, showing that, essentially under the same hypotheses, a more exact
conclusion can be reached. Denoting by A the class of all Carathéodory
functions g : RY x R — R such that the functional

(@)
G(u) = S < S g(z,t) dt) dx

RN 0O

belongs to C'(E) and has compact derivative, our main result reads as
follows:

THEOREM 1.1. Assume (a), @); (ﬁ)), (]71); and (fz). Then, setting
— lin HUH2 - A F () da
' f{SRN b(z)F(u(x))dx €L, RSN b(z)F(u(z)) dz > 0},

for each compact interval [c,d] C |y, +o0[ there exists a number r > 0 with
the following property: for every \ € [c,d] and every g € A there exists § > 0
such that, for each u € [0, 9], the problem

(Pru)  —Au+a(x)u = Nb(x)f(u) + pg(z,u), x¢€ RN, ue Hl(RN),

has at least three weak solutions whose norms in E are less than r.

REMARK. This result covers, as a particular case, the problem studied
by Kristdly [K]. Here, we prove it by a different method and we provide
further information both on the size and location of the set containing the
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parameter A and the location of the possible weak solutions of the problem
at issue.

2. Proof of Theorem 1.1. First, we recall a theorem from [R] which
is the basic tool in the proof of our result. In the following, if X is a real
Banach space, the symbol Wx denotes the class of all functionals I : X — R
having the following property: if {u,} is a sequence in X converging weakly
to w € X and liminf, 4o I(u,) < I(u), then {u,} has a subsequence
converging strongly to w.

THEOREM 2.1 ([R] Theorem 2]). Let X be a separable and reflexive real
Banach space; @ : X — R a coercive, sequentially weakly lower semicontin-
uous C functional, belonging to Wx, bounded on each bounded subset of X
and whose derivative admits a continuous inverse on X*; and J : X — R
a C' functional with compact derivative. Assume that ® has a strict local
minimum at xo with @(xo) = J(zo) = 0. Finally, setting

: J(x) . J(ﬂf)}
a = max< 0, lim sup ,Jimsup —= o,
{ lzl|—+o0 P(2) " 2z P()
J(x)
= sup 2
2ed-1(]0,+00) P(T)

assume that o < 3. Then, for each compact interval [c,d] C |1/8,1/a[ (with
1 1

the conventions § = 400, = = 0) there exists v > 0 with the following
property: for every X € [c,d] and every C' functional ¥ : X — R with
compact derivative, there exists § > 0 such that, for each p € [0,0], the
equation

' (z) = \J'(z) + p¥'(z)
has at least three solutions whose norms are less than r.

To use this theorem in our particular case, we begin by defining the
functional F : E — R as

for each w € E. Standard arguments based on the hypothesis (@) and on
the fact that E is continuously embedded in L*(RY) when 2 < ¢ < 2* show
that the functional F is well defined, it is of class C", and satisfies

F(u)(v) = S b(x) f(u(z))v(z)dx for all u,v € E.
RN
Moreover, since the embedding £ < L*(RY) is compact for 2 < ¢ < 2%, F'

is a compact operator. In the following, we denote by x, > 0 the Sobolev
embedding constant for £ < LY(RY) where ¢ € [2,2*]. Finally, for any
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A > 0 and g > 0 we define the functional H : £ — R by
1
H(u) = 5”“”2 — AF(u) — pG(u) forallu € E.

Obviously, the weak solutions of the problem (Pj ,) are the critical points
of H.
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We apply Theorem 2.1 for X = E, &(u) = 5| ul|?
and J = F. Note that & is a coercive, sequentially weakly lower semi-
continuous C' functional which belongs to Wg. The latter assertion is a
classical result, since the space E is uniformly convex and ®(u) = h(]|ul|)
with h(t) = 3t : [0, +00[ — R, which is a continuous and strictly increasing
function. Because @ is continuous, it is bounded on each bounded subset
of E, its derivative is a homeomorphism between E and its dual (see [Z]
Theorem 26. A]), and the hypotheses on J of Theorem 2.1 are satisfied as
well. Putting ug = 0, where 0 is the zero element of E, observe that @
has at ug the only global minimum. Moreover, if u # 65 then @(u) > 0 by
(@) and ®(ug) = J(uo) = 0. Now, we fix a number € > 0; in view of (f) and

(f1) there exist p1, p2 with 0 < p; < pa such that
(2.1) b(x)F(s) < ea(z)|s|?

for a.e. z € RV and all s € R\ ([—p2, —p1] U[p1, p2]). Then, as F is bounded
on [—p2, —p1] U [p1, p2], we can choose D > 0 and 2 < ¢ < 2* in such a way
that

b(x)F(s) < ea(z)|s|* + D|s|?
for a.e. € RY and all s € R. Thus, by continuous embedding,
F(u) < eflull® + Drglul®
for all u € E. Hence,

H2 < 2e.

(2.2) lim sup

u—0

Further, by again, for each v € E '\ {0}, we obtain
F(u) S(|u|§p2) b(z)F(u(z)) dz N S(|u\>p2) b(z)F(u(x)) dx

2F (u)
I

ul lul? [l
SUD[_p, po] F' S 0() dae
- [l

+e.
So, we get

2
(2.3) lim sup F(u) < 2e.

fuf—+oo Ul 7~
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Since € is arbitrary, from (2.2)) and (2.3)) it follows that
2 2
max{ lim sup Fu 2),11 }—(2)} <0.
o T2 u0" Tlul
Thus, by using the notation of Theorem 2.1, we have o = 0 and by our

assumption 0 < 4 < +oo. Therefore, for v = 1/, the conclusion follows
from Theorem 2.1 with ¥ =G. »

ExAMPLE 2.2. Let k, h and £ be arbitrary real positive. We choose
f R — R defined by
s|s|[4mls| + 3n], |s| <&,

fs) =

where

ke " (hE + 1) ke (2 + he)
4—6_2, n:n(lﬁ‘/,h’g) == T-
Then, we take as potentials a(x) = |z|> + ¢ with ¢ a positive constant and
b(z) = e"ff, x € RV, Tt follows easily that the assumptions (a), (b), (fo),
(f1) and (f2) of Theorem 1.1 hold.

m:m(/{,h,f) ==
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