ANNALES
POLONICI MATHEMATICI
99.1 (2010)

Uniqueness of two analytic functions sharing four values in
an angular domain

by HONG-YAN XU (Jingdezhen) and TING-BIN CAO (Nanchang)

Abstract. We deal with the uniqueness problem for analytic functions sharing four
distinct values in an angular domain and obtain some theorems which improve the result
given by Cao and Yi [J. Math. Anal. Appl. 358 (2009)].

1. Introduction and main results. We use C to denote the open
complex plane, C (= CU{c0}) to denote the extended complex plane, and X
(C C) to denote an angular domain. Let g be a transcendental meromorphic
(analytic) function defined in the whole C and not rational. It is assumed
that the readers are familiar with the notations of Nevanlinna theory such
as T(r, f),m(r, f), N(r, f) and so on, that can be found, for instance, in
[, [14].

For a € @, if two meromorphic functions f and g share the value a CM
[IM] in X C C, then we say that f(z) — a and g(z) — a have the same zeros
with the same multiplicities [ignoring multiplicities] in X C C, and if a is
shared IM in X C C by f and g and the multiplicities of zeros of f —a and
g — a are different, then we say that the value a is shared DM in X C C by
f and g. In addition, we write f =a = g = a in X C C to indicate that f
and g share the value a CM in X, f =a < g =a in X C C to indicate that
f and g share the value ¢ IM in X, and f = a = g = a in X to indicate
that f = a implies g = a in X.

R. Nevanlinna (see [10]) proved the following well-known theorem.

THEOREM 1.1 (see [10]). If f and g are two nonconstant meromorphic
functions that share five distinct values ay, a9, as,aq,a5 IM in X = C, then

f(z) = g(2).
After his theorems, the uniqueness of meromorphic functions sharing
values in the whole complex plane attracted much investigation (see [16]).
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E. Mues [9] dealt with the uniqueness of analytic functions sharing values
DM in the whole complex plane and proved the following theorem.

THEOREM 1.2 (see [9]). There are no two distinct nonconstant analytic
functions f and g that share three distinct values DM in X = C.

In [18], J. H. Zheng studied the uniqueness problem under the condition
that five values are shared in some angular domain in C. It is an interesting
topic to investigate the uniqueness with shared values in the complement
of an unbounded closed set in the complex plane (see [1, 2, [0} [7, 8, 12} 13}
17, 18, 19]). J. H. Zheng [14], T. B. Cao and H. X. Yi [2], and J. F. Xu
and H. X. Yi [I3] continued the investigation of uniqueness of meromorphic
functions sharing five values and four values, and W. C. Lin, S. Mori and
K. Tohge [6] and W. C. Lin, S. Mori and H. X. Yi [7] investigated the
uniqueness of meromorphic and entire functions sharing sets in an angular
domain.

To state our results, we need the following basic notations and definitions
for meromorphic functions in an angular domain (see [5, [18, [19]).

Let f be a meromorphic function on the angular domain 2(c, 8) = {2 :
a<argz < [} with 0 < f — a < 27. Define

Aaplr,f) == (f - tw){loy 7(te)] + Tog™ 7 (1)}
1
2w g .
Bap(r f) = — {log™ | f(re")| sinw(0 — o) db,
Cap(r f) =2 Z < w— >smw«9 —a)
1<|by|<r bl
Da,ﬁ(rvf): aﬁ(rf)+Ba5(rf) (T,f) ( f)+07/3( f)

where w = /(8 —«) and b, = ]bu\ew*‘ (b = 1,2,...) are the poles of
f on 2(a, 8) counted according to their multiplicities. S, g(r, f) is called
the Nevanlinna angular characteristic; Cq g(r, f) is the angular counting
function of the poles of f on 2(«a, 8); and Cy g(r, f) is the reduced function
of Cy (7, f).

In 2008, T. B. Cao and H. X. Yi [1] investigated the problem of unique-
ness of transcendental analytic functions sharing three values DM in an
angular domain and obtained the following result which extended Theorem
1.2 to an angular domain.

THEOREM 1.3 (see [I, Theorem 1]). There are no two distinct transcen-
dental analytic functions f and g that share three distinct values aqi,ao,as
DM in an angular domain X = {z:a < argz < 8} with0 < a < 3 < 2«
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provided that
. Soz,ﬁ(r7 f)
im —————
r—oo log(rT'(r, f))
In 2009, T. B. Cao and H. X. Yi [2] investigated the uniqueness of tran-
scendental meromorphic functions sharing five values IM in an angular do-
main and obtained the following result which extended Theorem 1.1 to an
angular domain.

=00 (r¢kp).

THEOREM 1.4 (see [2, Theorem 1.3]). Let f and g be transcendental
meromorphic functions, and X = {z:a < argz < 8} with 0 < f —a < 27.
Assume that f and g share five distinct values a; (7 =1,2,3,4,5) IM in X.
Then f(z) = g(z) provided that

lim Sap(ryf)
r—oc log(rT'(r, f))
Moreover, T. B. Cao and H. X. Yi [2] also investigated the uniqueness of
transcendental meromorphic functions f, g sharing four distinct values CM
in an angular domain X, and of f, g sharing two distinct values CM in X
and another two distinct values IM in X, and they obtained two interesting
results which extended the analogous results in the whole complex plane to
an angular domain.
From Theorem 1.3, it is natural to ask what will happen when analytic
functions f, g share some values CM or IM in an angular domain.
In this paper, we investigate the above question and obtain the following
results.

=o0 (r¢kp).

THEOREM 1.5. Let f and g be transcendental analytic functions, and
X={z:ra<argz < f} with0 < —«a < 2xr. Assume that f and g share
two distinct values a1, a3 CMin X; f=a3=>g=a3inX; f=a4=9g=ua4
m X; and

Sa,ﬁ (7“, f)

(1) Tli_{gom =00 (rgk),

where T'(r) = max{T(r, f),T(r,g)}. Then f =g.
THEOREM 1.6. Let f and g be transcendental analytic functions, and
X=A{z:ra<argz < g} with0 < —a < 2n. Assume that f and g share

two distinct values a1, a2 IMin X; f=a3=>g=a3nX;g=a1= f=a4
in X; and f,g satisfy (1). Then either f =g, or
asg — a1a
f=BI 0By = ag+ aa
g—aq
and as, aq are exceptional values of f and g in X, respectively.

REMARK 1.1. Theorems 1.5 and 1.6 improve Theorem 1.4.
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2. Some lemmas. To prove our results, we need the following lemmas.

LEMMA 2.1 (see [4,[I5]). Let f be a nonconstant meromorphic function
on 2(a, 3). Then for every complex number a, we have

1
Sas (1 ) = Suslr )+ e0r0),
where £(r,a) = O(1) as r — oo.

LEMMA 2.2 (see [4, p. 138]). Let f be a nonconstant meromorphic func-
tion on 2(a, B). Then for any 1 <r < R, we have

wR
1! R log™ T'(r, f) LT R
A — ) <K< |— —_— 1 —— +log—+1
aﬁ(r,f < " § Arw dt + log R—r+ ogT—I—

)

wherew = w/( — «) and K is a positive constant not depending onr and R.

and

REMARK 2.1. Nevanlinna conjectured that

/ / , 1
o o)t ) s ) <ol )

when r tends to +o0o outside an exceptional set of finite linear measure,
and he proved that D, g(r, f’/f) = O(1) when f is meromorphic in C and
has finite order. In 1974, Gol’dberg [3] constructed a counterexample to (2).
However, it follows from Lemma 2.2 that

Daﬂ (T, {;) = Aaﬁ <T‘, ff> + Ba”g <T, §> = R(T‘, f),

where R(r, f) = O{log(rT(r, f))} asr — oo (r € E) and E is a set with
finite linear measure.
Throughout, we denote by R(r,*) quantities satisfying

R(r,x) = O(log(rT(r,*))), r¢E,
where E is a set with finite linear measure.

LEMMA 2.3 (see [I, Lemma 1]). Suppose that f is a nonconstant mero-
morphic function and X = {z : a < argz < 8}, where 0 < f — a < 27.
Let P(f) = aof? + a1fP" 1 + -+ 4+ a, (ap # 0), where the coefficients a;
(=0,1,...,p) are constants, and let b; (j =1,...,q,q > p+1) be distinct
finite complex numbers. Then

Pif)-f
Deus (7'7 (f=b1) - (f = bg)

) = ).
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LEMMA 2.4 (see [19]). Suppose that f is a nonconstant meromorphic
function in 2(a, B) with 0 < 8 —a < 2. Then for arbitrary distinct a; € C
(1<J<4q), we have

(q—z>sa,ﬁ<r,f>gzca,ﬁ<r e >+R<r 9.

j=1
with Co5(r,1/(f — a;)) replaced by Cqo 5(r, f) if a; = 0o.

LEMMA 2.5. Let f and g be distinct transcendental analytic functions,
and X ={z:a < argz < B} with 0 < f — a < 2. Assume that f and g
share ay,a9 IMin X; f =a3=g=a3 in X; f=a4=9g=a4 in X; and
a; € C (1 =1,2,3,4) are four distinct finite complex numbers. Then

(1) Sa,ﬁ(ra g) = QSCVﬂ(r’ f) + R(T);

(ii) Sa(r, f —9g) = 3Sap(r, ) + R(r);

(iii) Sa,s(r, f) = Cap(r, 72 )+Caﬁ( =) + R(r);

(iv) Sap(r, f) = Cap(r: 1) =12

(V) Sa,p(r,g) = a,ﬂ(?”ag az) =3,4;

(Vi) Sap(r, f') = Sap(r, f) + R(r )7 S ( ,9") = Sap(r,g) + R(r),

(
where R(r) = max{R(r, ), R(r,g)}.

Proof. Since f, g are distinct transcendental analytic functions and share
ai,az IM in X, by Lemma 2.4 we have S, g(r, f) < Sap(r,g9) + R(r, f) and
Sa,ﬁ(r)g) < Soa,ﬁ(ra f) + R(T‘,g).

Let

- 1'9'(f ~9)

T e - a)lg-a)lg— )
From the conditions of the lemma, we deduce that 7 is analytic in X and
n # 0 unless f = g. By Lemma 2.3, we have D, g(r,n) = R(r, f) + R(r,g9) =
R(r). Thus, we get S, g(r,n) = R(r).

Since f,g are transcendental analytic functions in X, share ai,as IM
in X,and f=a3 = ¢g=a3and f = a4 = g = a4 in X, again by Lemma
2.4 we have

oy 1
@) 35000 1) < Y- Ca(r 20 ) + RO

=1
(5) < T ( - g) F R ) = Sap(r,f —9) + RO f)
(©) < Sup(r ) + Sus(rg) + R),
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and
— 1 — 1
D Suplri0) < T (r 2 )+ Cap(n ) + ROg)
— 1 — 1
(8) = CO[’ﬁ (7", f _ a1> + Ca,ﬁ (7‘, f_a2> + R(’f’)
) <25, 5(r, 1) + B().

From (6) and (9), we get (i); from (5), (6) and (i), we get (ii); and from
(4), (6), (8), (9) and (i), we get (iii). We can easily deduce (iv) and (v) from
(4)—(9) and (i)—(iii). Now, we prove (vi). First, we rewrite (3) as

g f'9'(asf + asf — azas — fg)
(9—a1)(g—a2)  n(f—a3)(f—as)(g—a1)(g—a2)

From (10) and Lemma 2.3, we get D, 5(r, f) < Dq g(r, f') + R(r, f). Since
[ is analytic in X, we have S, g(r, f') = Sag(r, f) + R(r, f). Similarly,
Sa,8(r,g") = Sap(r,g) + R(r,g). =

(10) f=f17

3. Proof of Theorem 1.5. Suppose that f % g. Then conclusions
(i)—(vi) of Lemma 2.5 hold. We denote

b = f'(f—as)  g'(g—as)
(f—a)(f —a2)  (9—a1)(g—a2)’
by = f'(f—as) — g(g—a4)

(f —a)(f —a2)  (9—a1)(g—az)
By Lemma 2.3, we get

(11) Do g(r,10i) = R(r, f) + R(r,9) = R(r), i=1,2.

Moreover, we can prove Cq g(r, ;) = O(1) (i = 1,2). In fact, the poles of
¥ in X can only occur at the zeros of f —a; and g —a; (4,5 = 1,2) in X.
Since f, g share ai,as CM in X, we see that if zgp € X is a zero of f — a;
with multiplicity m (> 1), then it is a zero of g — a; with multiplicity m.
Suppose that

f—ai=(z=20)"(2), g—ai=(z—2)"6(2)
where «(z), 3(z) are analytic functions in X. By a simple calculation,
o/ (2) 6’(2)) :
i = K — y 1= 1, 2,
LICER s

where K is a constant. Therefore, ¥; (i = 1,2) are analytic in X . Thus, from
(11), we get Sq g(r, ;) = R(r) (i = 1,2).
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If 4 2 0,5 = 1,2, then
— 1 1
(12) o (r 52 ) < Ca (1 ) < Sualrvin) + Rl ) = RO,
f—a3 (31

13) a0 ) < Co(r ) < Suslrvvn) 4 Bl ) = RO,

From (12), (13) and Lemma 2.5(iv), we have S, g(r, f) < R(r). Thus, from
(1) and the definition of R(r), we get a contradiction.

Assume that one of ¥; and 15 is identically zero, say ¥ = 0. Then

—(2 1 ) @( 1 >
14 C 5 :Ca ) ’
(14 e e =

where 6&2 3 (r, ﬁ) is the counting function of the distinct zeros of f — ay

in X with multiplicity ¢ > 2, and similarly for 6&2, 3 (r L)

’ g—aq
From (3), we see that g(z1) = a4 implies f(z1) = a4 for z; € X satisfying
n(z1) # 0. Since Sa,ﬁ(T, n) = R(r), we have

_ 1 . 1
(15) Ciy),,a (7’, > = Ci),ﬁ <7°7 f—a4> + R(r),

g— a4

where 6(11) 3 (r, f_—Z4) is the counting function of the distinct simple zeros of

f — a4 in X, and similarly for 6(11) 8 (r L)

From (14) and (15), we get o
(16) Cop (r, ! ) =Cup (7“, 1) + R(r).
g—ay J—aq
Similarly, when 19 = 0, we get
(17) Ca (r, 1) —Cus <r, 1) + R(r).
g —as f—as
From (16) or (17) and Lemma 2.5(1)&(v), we get
2505(r, f) = Cn <7“, ! ) + R(r)
f—as

or

1
2Sa”g(7", f) = Caﬁ (T’, f—a4> + R(’I“)

Therefore, from (1) and the definition of R(r), we get a contradiction again.
Thus, we complete the proof of Theorem 1.5. m
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4. Proof of Theorem 1.6. Suppose that f # g. By Lemma 2.4, we
have

— 1
25,30, )+ Cuoglr,
B f) ﬂ( g_a4>

_ 1 — 1 = 1
SCap|(rm 77— ) +Cap|r7—— ) +Cap|r 77—
— 1

+Ca5<r, 7 —a4> + R(r, f)
<Cap <r, 7 i g> + R(r, f) < Sap(r, f)+ Sap(r,g) + R(r).
Therefore,
(18) S, ) + T <r, - _1a4) < Sup(r,g) + R(r).
Similarly,
(19) S(r.9) + Caus <7“, — ag) < Sup(r. ) + R(r).

From (18) and (19), we see that S, g(r, f) = Sa,s(r, g) + R(r), and

— 1 — 1
(20) Cap (r, = a3> =R(r), Cap <r, = a4> = R(r).
Thus, we get
_ 1 — 1
(21) 25,5(r, f) =Cap <r, = al) +Cap <r, f—a2> + R(r).

From (21), we can see that “almost all” zeros of f —a; (i =1,2) in X
are simple. Similarly, “almost all” zeros of g —a; (i = 1,2) in X are simple.
Let

oy i L= @) f'(f —az) (01— a1)g'(g — a2)
(f —a1)(f — as) (9—a)(g—as) ’

Py 1= (a2 — a3) f'(f —a1) _ (a2 — as)g'(g — a1)
(f —a2)(f — a3) (9 —a2)(g — a4)

By Lemma 2.3, we get D, 5(r, ;) = R(r) (i = 1,2). Since f, g share ay,as
IM in X and from (20), we have Cy g(r,¢;) = R(r) (i = 1,2). Therefore,
Sus(r i) = R(r) = 1.2).

It ¢1 =0, then Cy (r, N —r ) <C ﬂ( ) = R(r). Thus, from (21), we
easily get a contradiction. Slmllarly, when goz = 0, we get a contradiction,
too. Hence, ¢1, po are identically zero. Then we have % =0, ie.,

I q I q f! N q

f—a3 g—as f—-a1 g—a1 f—-a g-—a
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which implies that

f—as (9—ai)(g—a2)
g—as (f—a)(f - a2
where ¢ is a nonzero constant. Rewrite (22) as

(23) g2 . <a1 +ag — C’Y(f) )g+a1 C(I4’7(f)

ay + AN —
f—a3 2T —as

where v(f) := (f — a1)(f — a2). The discriminant of (23) is

a0 = (v = Yy (g WD) QD)

(22)

)

where

Q(2) = ((a1 + a2) (2 — a3) — ev(2))” — daraz(z — a3)* — dcayy(2) (2 — as)
is a polynomial of degree 4 in z. If a is a zero of Q(z) in X, obviously a # as.
Then from (23), f(z) = a implies that

(24) g(z) = ;<a1 +as — :Y_(C;)g) —: b.
Set
by = fg(f—g)
- (f-a)(g —a2)(f —a3)(g —as)’
by i fgd(f—g)

(f —a2)(g — a1)(f —as)(g — as)’
b= ¢2 _ (f—a1)(g —a2)
h (f-ax)(g—ar)

By Lemma 2.3, we get Do (1, ¢;) = R(r) (i = 1,2), and by a simple
calculation, Cy (7, ¢;) = R(r) (i = 1,2). Then S, g(r, i) = R(r) (i =1,2),
and thus S, g(r, ¢) = R(r).

Assume that f is not a Mobius transformation of g. Then ¢ is a noncon-
stant function. Since

Q(a1) = (a1 — az)*(a1 — az)* # 0,
Q(az) = (az — a3)*(a1 — az)® #0,
from a # a; (i = 1,2) and (22), we get

(25) caﬁ(r,f;)gc <¢ 5) Sa,p(r,¢) = R(r),

where £ = 78:238:23

(20), we get

Sulrf) < Cop(n 5= ) + Cap(n 52, ) + RO) = RO,

Since f is analytic in X, and by Lemma 2.4 and
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The above inequality contradicts (1). Therefore f is a M6bius transformation
of g. Since f, g are analytic functions in X, by a simple calculation we can
easily get a1 + a2 = a3 + a4 and

asg — a1az

f=
g—aq
furthermore, ag, a4 are exceptional values of f and g in X, respectively.
Thus, we complete the proof of Theorem 1.6. =

Acknowledgments. This research was supported by the Youth Foun-
dation of Education Department of Jiangxi (grant no. GJJ10223 and no.
GJJ10050), China.

References

[1]] T. B. Cao and H. X. Yi, Analytic functions sharing three values DM in one angular
domain, J. Korean Math. Soc. 45 (2008), 1523-1534.

[2] —, —, On the uniqueness of meromorphic functions that share four values in one
angular domain, J. Math. Anal. Appl. 358 (2009), 81-97.

[3] A. A. Gol'dberg, Nevanlinna’s lemma on the logarithmic derivative of a meromor-
phic function, Math. Notes 17 (1975), 310-312.

[4] A. A. Gol'dberg and I. V. Ostrovskii, The Distribution of Values of Meromorphic
Functions, Nauka, Moscow, 1970 (in Russian).

[6] W. K. Hayman, Meromorphic Functions, Oxford Univ. Press, London, 1964.

[6] W. C. Lin, S. Mori and K. Tohge, Uniqueness theorems in an angular domain,
Tohoku Math. J. 58 (2006), 509-527.

[7] W. C. Lin, S. Mori and H. X. Yi, Uniqueness theorems of entire functions with
shared-set in an angular domain, Acta Math. Sinica 24 (2008), 1925-1934.

[8] Z. Q. Miao and H. F. Liu, Meromorphic functions in the unit disc that share values
in an angular domain, J. Math. Anal. Appl., doi:10.1016/j.jmaa.2009.05.043.

[9] E. Mues, Bemerkungen zum vier-Punkte-Satz, in: Complex Methods on Partial Dif-
ferential Equations, Math. Res. 53, Akademie-Verlag, Berlin, 1989, 109-117.

[10] R. Nevanlinna, Le théoréme de Picard—Borel et la théorie des fonctions méromorphes,
reprint of the 1929 original, Chelsea, New York, 1974.

[11] M. Reinders, A new characterization of Gundersen’s example of two meromorphic
functions sharing four values, Results Math. 24 (1993), 174-179.

[12] Z.J. Wu and D. C. Sun, A remark on uniqueness theorems in an angular domain,
Proc. Japan Acad. Ser. A 64 (2008), no. 6, 73-77.

[13] J. F. Xu and H. X. Yi, On uniqueness of meromorphic functions with shared four
values in some angular domains, Bull. Malays. Math. Sci. Soc. 31 (2008), 57-65.

[14] L. Yang, Value Distribution Theory, Springer, Berlin, and Science Press, Beijing,
1993.

[15] L. Yang and C. C. Yang, Angular distribution of ff’, Sci. China Ser. A 37 (1994),
284-294.

[16] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science
Press/Kluwer, Beijing, 2003.

[17]] Q. C. Zhang, Meromorphic functions sharing values in an angular domain, J. Math.
Anal. Appl. 349 (2009), 100-112.


http://dx.doi.org/10.4134/JKMS.2008.45.6.1523
http://dx.doi.org/10.1016/j.jmaa.2009.04.043
http://dx.doi.org/10.2748/tmj/1170347687
http://dx.doi.org/10.1007/s10114-008-5479-y
http://dx.doi.org/10.1016/j.jmaa.2009.05.043
http://dx.doi.org/10.1016/j.jmaa.2008.08.014

Uniqueness of functions sharing four values 65

[18] J. H. Zheng, On uniqueness of meromorphic functions with shared values in some
angular domains, Canad J. Math. 47 (2004), 152-160.

[19] —, On uniqueness of meromorphic functions with shared values in one angular
domains, Complex Var. Elliptic Equations 48 (2003), 777-785.

Hong-Yan Xu (corresponding author) Ting-Bin Cao
Department of Informatics and Engineering Department of Mathematics
Jingdezhen Ceramic Institute (XiangHu XiaoQu) Nanchang University
Jingdezhen, Jiangxi 333403, China Nanchang, Jiangxi 330031, China
E-mail: xhyhhh@126.com E-mail: tbcao@ncu.edu.cn or ctb97@163.com

Received 9.9.2009
and in final form 19.11.2009 (2074)






	Introduction and main results
	Some lemmas
	Proof of Theorem 1.5
	Proof of Theorem 1.6

