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On a Monge–Ampère type equation in the Cegrell class Eχ

by Rafał Czyż (Kraków)

Abstract. Let Ω be a bounded hyperconvex domain in Cn and let µ be a positive
and finite measure which vanishes on all pluripolar subsets of Ω. We prove that for every
continuous and strictly increasing function χ : (−∞, 0)→ (−∞, 0) there exists a negative
plurisubharmonic function u which solves the Monge–Ampère type equation

−χ(u)(ddcu)n = dµ.

Under some additional assumption the solution u is uniquely determined.

1. Introduction. It is a classical problem in analysis to find, for a given
function F , solutions u to the equation
(1.1) (ddcu)n = F (z, u(z))dµ,

where (ddcu)n is the complex Monge–Ampère operator. Equations of the
type (1.1) have played a significant role not only within the fields of fully
nonlinear second order elliptic equations and pluripotential theory, but also
in applications. We refer to [7, 8, 11, 12, 17, 20, 21] and the references therein
for further information about equations of Monge–Ampère type.

Let E0, Ep, F , N and E be as in [13–15]. These are some of the so called
Cegrell classes. The class E is the largest set of non-positive plurisubharmonic
functions for which the complex Monge–Ampère operator is well-defined
(Theorem 4.5 in [14]) and N ⊂ E denotes the Cegrell class for which the
smallest maximal plurisubharmonic majorant is identically equal to 0. It
follows from [13–15] that Ep,F ⊆ N .

These classes play a prominent role in today’s pluripotential theory both
in Cn and on compact Kähler manifolds. For further information about
the Cegrell classes see e.g. [1–6, 13–15] and the references therein. In [18]
(see also [10]), Guedj and Zeriahi introduced the following formalism: Let
χ : (−∞, 0] → (−∞, 0] be a continuous and nondecreasing function. Fur-
thermore, let Eχ contain those plurisubharmonic functions u such that there
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exists a decreasing sequence uj ∈ E0 that converges pointwise to u on Ω, as
j tends to ∞, and

sup
j

�

Ω

−χ(uj)(ddcuj)n <∞.

For example, if χ = −(−t)p, then Eχ = Ep, and if χ = −1, then Eχ = F .
It should be pointed out that it is not known whether Eχ ⊆ E without any
assumption on χ. But it was proved in [9] that if χ : (−∞, 0]→ (−∞, 0] is a
continuous strictly increasing, convex or concave function such that χ(0) = 0
and limt→−∞ χ(t) = −∞, then Eχ ⊂ E .

The measure (ddcu)n might have infinite total mass, i.e. (ddcu)n(Ω) =∞.
On the other hand, if u ∈ Eχ(Ω), then with some additional assumptions on
the function χ, the measure (ddcu)n vanishes on all pluripolar sets in Ω, and�

Ω

−χ(u)(ddcu)n <∞.

Thus, −χ(u)(ddcu)n is a positive and finite measure defined on Ω. For this
reason it is natural to consider the following Monge–Ampère type equation:

−χ(u)(ddcu)n = dµ,

where µ ≥ 0 is a given measure on Ω with finite total mass and that vanishes
on all pluripolar subsets of Ω. In this article we prove the following theorem.

Main Theorem. Assume that Ω is a bounded hyperconvex domain in
Cn, n ≥ 1. Let χ : (−∞, 0] → (−∞, 0] be a continuous strictly increasing
function such that χ(0) = 0 and limt→−∞ χ(t) = −∞. Furthermore, assume
that Eχ ⊂ E. If µ is a positive and finite measure defined on Ω such that
µ(P ) = 0 for all pluripolar sets P ⊂ Ω, then there exists a function u ∈ Eχ
such that

−χ(u)(ddcu)n = dµ.

Furthermore, if Eχ ⊂ N , then the solution of the above equation is uniquely
determined.

Let us briefly state two immediate consequences of our Main Theorem.
Let χ(t) = −(−t)p (p > 0). Then we have: If µ is a positive and finite
measure in Ω such that µ(P ) = 0 for all pluripolar sets P ⊂ Ω, then there
exists a unique function u ∈ Ep such that

(−u)p(ddcu)n = dµ.

Furthermore, if χ : (−∞, 0] → (−∞, 0] is a continuous function such that
χ(0) < 0, and limt→−∞ χ(t) = −∞, then the existence of solution to the
Monge–Ampère type equation given by

−χ(u)(ddcu)n = dµ

is a consequence of [17] under the assumption that −χ(t)−1 is bounded.
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2. Proof of the Main Theorem

Lemma 2.1. Let Ω be a bounded hyperconvex domain in Cn. If a sequence
uj ∈ F satisfies the condition

sup
j

�

Ω

(ddcuj)n <∞,

and if there exists u ∈ PSH(Ω) such that uj → u weakly, then u ∈ F .
Proof. From [14, Theorem 2.1] there exists wj ∈ E0 ∩ C(Ω̄) such that

wj ↘ u, j → ∞. Note that since uj → u weakly, we have u = limj→∞ vj ,
where

vj = (sup
k≥j

uk)∗.

Observe that vj is a decreasing sequence, vj ≥ uj , so vj ∈ F and from the
comparison principle (see Theorem 5.15 in [14]) we have�

Ω

(ddcvj)n ≤
�

Ω

(ddcuj)n.

Define
ϕj = max(wj , vj) ∈ E0.

Then ϕj is a decreasing sequence, ϕj ↘ u, and again by the same comparison
principle we get

sup
j

�

Ω

(ddcϕj)n ≤ sup
j

�

Ω

(ddcvj)n ≤ sup
j

�

Ω

(ddcuj)n <∞.

Thus, u ∈ F .
Next we shall prove our Main Theorem in the case of compactly sup-

ported measures.

Lemma 2.2. Let Ω be a bounded hyperconvex domain in Cn, and let
χ : (−∞, 0]→ (−∞, 0] be a continuous strictly increasing function such that
limt→−∞ χ(t) = −∞ and χ(0) = 0. If µ is a positive, finite, and compactly
supported measure defined on Ω, such that µ(P ) = 0 for all pluripolar sets
P ⊂ Ω, then there exists a unique function u ∈ F ∩ Eχ such that

(2.1) − χ(u)(ddcu)n = dµ.

Proof. If µ ≡ 0, then it is clear that u = 0 is a solution of (2.1). Assume
now that µ 6≡ 0. For k ∈ N consider the equation

(2.2) (ddcuk)n = min
(
−1
χ(uk)

, k

)
dµ.

The function defined by

Fk(t) = min
(
−1
χ(t)

, k

)



92 R. Czyż

is bounded and continuous. Therefore it follows from [17, Theorem 3.3] that
there exists uk ∈ F that satisfies (2.2). We also have

(ddcuk)n = min
(
−1
χ(uk)

, k

)
dµ ≤ −1

χ(uk)
dµ.

Since µ is a positive, finite, and compactly supported measure defined on Ω
and supsuppµ uk < c < 0 it follows that

�

Ω

−1
χ(uk)

dµ ≤ −1
χ(c)

µ(Ω) <∞,

hence
sup
k

�

Ω

(−χ(uk))(ddcuk)n ≤ µ(Ω) <∞.

We shall next prove that there exist α ∈ E0 and β ∈ F such that

(2.3) β ≤ uk ≤ α a.e. [dµ], k ≥ 2.

By Cegrell’s decomposition theorem ([13, Theorem 6.3]) there exist functions
φ ∈ E0 and f ∈ L1((ddcφ)n), f ≥ 0, such that

µ = f(ddcφ)n.

Fix a > 0 such that χ(−a) ≥ −1/2. Then by Kołodziej’s subsolution theorem
there exists α ∈ E0 such that (see [19, Theorem A])

(ddcα)n = min
(
f,

an

‖φ‖n

)
(ddcφ)n,

where ‖φ‖ = supz∈Ω |φ(z)|. The comparison principle (see [15, Theorem 3.7])
yields

α ≥ a

‖φ‖
φ ≥ −a

and �

{α<uk}

(ddcuk)n ≤
�

{α<uk}

(ddcα)n ≤
�

{α<uk}

dµ.

Observe that on the set {α < uk} we have uk > −a and

(ddcuk)n = min
(
−1
χ(uk)

, k

)
dµ ≥ min

(
−1

χ(−a)
, k

)
dµ ≥ 2dµ, k ≥ 2,

which implies that µ({α < uk}) = 0, k ≥ 2. There exists ψ ∈ F such that
(ddcψ)n = dµ (see [14, Lemma 5.14]). Fix w ∈ E0 and b > 0 such that

χ( sup
suppµ

(ψ + bw)) < −2.

Let β = ψ + bw. Note that (ddcβ)n ≥ dµ. By the comparison principle
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(see [15, Corollary 3.6]) we obtain�

{uk<β}

dµ ≤
�

{uk<β}

(ddcβ)n ≤
�

{uk<β}

(ddcuk)n,

but on the set {uk < β} ∩ suppµ we have uk < β ≤ supsuppµ β and

(ddcuk)n = min
(
−1
χ(uk)

, k

)
dµ ≤ 1

2
dµ,

which means that µ({uk < β}) = 0 for all k.
Now it follows from (2.3) that there exist a plurisubharmonic function

u 6= 0 and a subsequence (also denoted by uk) such that uk → u almost
everywhere [dµ]. Since u 6= 0 it follows that

− 1
χ(supsuppµ u)

<∞.

By Hartogs’ lemma, the functions

Fk(uk) = min(−χ(uk)−1, k)

are uniformly bounded on suppµ and therefore

sup
k

�

Ω

(ddcuk)n ≤ sup
k

�

Ω

Fk(uk) dµ <∞.

Lemma 2.1 yields u ∈ F .
The stability theorem proved in [17, Corollary after Theorem 2.2′′] im-

plies that the weak convergence, uk → u, is equivalent to convergence in
capacity. Since uk ≥ β and uk → u in capacity, by [16, Theorem 1.1] we
get (ddcuk)n → (ddcu)n in the weak∗-topology. Therefore the dominated
convergence theorem yields

(ddcu)n = lim
k→∞

(ddcuk)n = lim
k→∞

Fk(uk)dµ =
−1
χ(u)

dµ.

So we have proved that there exists a solution u ∈ F to (2.1). Then�

Ω

(−χ(u))(ddcu)n <∞

and it follows that u ∈ Eχ.
It is proved in the proof of the Main Theorem below that if u, v ∈ F

are solutions of (2.1) then (ddcu)n = (ddcv)n and therefore u = v (see [14,
Lemma 5.14]).

Proof of the Main Theorem. Assume that µ is a positive and finite mea-
sure inΩ such that µ(P ) = 0 for all pluripolar sets P ⊂ Ω. LetΩj be a funda-
mental sequence of strictly pseudoconvex domains, i.e. Ωj b Ωj+1 b Ω and⋃∞
j=1Ωj = Ω (see [15]). Let us define dµj = 1Ωjdµ, where 1Ωj is the charac-

teristic function for Ωj . By Lemma 2.2 there exists a sequence uj ∈ F ∩ Eχ
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such that
−χ(uj)(ddcuj)n = dµj .

We shall now prove that uj is a decreasing sequence. Let A = {z ∈ Ω :
uj(z) < uj+1(z)}. On the set A, we have

(ddcuj)n = −χ(uj)−1dµj ≤ −χ(uj+1)−1dµj

≤ −χ(uj+1)−1dµj+1 = (ddcuj+1)n

and by the comparison principle (see [15, Corollary 3.6]) we get
�

A

(ddcuj+1)n ≤
�

A

(ddcuj)n.

Hence,

(2.4) (ddcuj)n = (ddcuj+1)n

on A. Similarly on the set Ωj \A = {z ∈ Ωj : uj(z) ≥ uj+1(z)} we obtain

(ddcuj)n = −χ(uj)−1dµj ≥ −χ(uj+1)−1dµj(2.5)

= −χ(uj+1)−1dµj+1 = (ddcuj+1)n.

From the equalities (2.4) and (2.5) we get (ddcuj)n ≥ (ddcuj+1)n on Ωj . This
implies that −χ(uj)−1dµj ≥ −χ(uj+1)−1dµj and then χ(uj) ≥ χ(uj+1) a.e.
[dµj ], so uj ≥ uj+1 a.e. [dµj ]. Hence µj({uj < uj+1}) = 0 and (ddcuj)n = 0
on A∩Ωj . Since (ddcuj)n = dµj = 0 on Ω\Ωj we finally obtain (ddcuj)n = 0
on A = {uj < uj+1}. Now take

(2.6) ψ ∈ E0 such that (ddcψ)n = dλ,

where dλ is the Lebesgue measure, and consider Ak = {z ∈ Ω : uj <
uj+1+k−1ψ}. Observe that uj+1+k−1ψ ∈ F and Ak ⊂ A. By the comparison
principle (see [15, Corollary 3.6]) we obtain

�

Ak

(ddc(uj+1 + k−1ψ))n ≤
�

Ak

(ddcuj)n ≤
�

A

(ddcuj)n = 0,

and then

0 =
�

Ak

(ddc(uj+1 + k−1ψ))n ≥ 1
kn

�

Ak

(ddcψ)n =
1
kn
λ(Ak),

which means that λ(Ak) = 0. Hence λ(A) = 0, since A =
⋃∞
k=1Ak. We

have proved that uj ≥ uj+1 a.e. [dλ], but since the functions uj , uj+1 are
plurisubharmonic we obtain uj ≥ uj+1 on Ω, so uj is a decreasing sequence.
Note also that

(2.7) sup
j

�

Ω

−χ(uj)(ddcuj)n ≤
�

Ω

dµ <∞.
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Moreover from the standard measure theory it follows that
�

Ω

−χ(uj)(ddcuj)n =
∞�

0

χ′(−t)(ddcuj)n({uj < −t}) dt.

Since uj ∈ F , from [10, Corollary 2.5] we obtain

(ddcuj)n({uj < −t}) ≥ tnCn({uj < −2t}),
where Cn is the Bedford–Taylor capacity, defined in [8]. Therefore

sup
j

∞�

0

χ′(−t)tnCn({uj < −2t}) dt ≤ sup
j

�

Ω

−χ(uj)(ddcuj)n(2.8)

≤
�

Ω

dµ <∞.

Since uj is a decreasing sequence it follows that there exists u such that
uj ↘ u, and u ∈ PSH(Ω) or u ≡ −∞. Suppose that u ≡ −∞. Then for any
t < 0 we have Cn({uj < −2t})→∞ as j →∞ and therefore

sup
j

∞�

0

χ′(−t)tnCn({uj < −2t})dt =∞,

which leads to a contradiction with condition (2.8). This means that u ∈
PSH(Ω) and condition (2.7) implies that u ∈ Eχ. Since the complex Monge–
Ampère operator is continuous in the class E with respect to decreasing
sequences (see Lemma 3.2 in [15]) it follows that (ddcuj)n tends to (ddcu)n

in the weak∗-topology. Therefore using the monotone convergence theorem
we get

(ddcu)n = lim
j→∞

(ddcuj)n = lim
j→∞

−χ(uj)−11Ωjdµ = −χ(u)−1dµ.

This ends the proof of the existence part of the theorem.
Now we turn to uniqueness. Suppose that there exist u, v ∈ Eχ ∩ N

such that −χ(u)(ddcu)n = −χ(v)(ddcv)n = dµ. Observe that on the set
{z ∈ Ω : u(z) < v(z)} we have

(ddcu)n = −χ(u)−1dµ ≤ −χ(v)−1dµ = (ddcv)n.

Using the comparison principle (see [3, Theorem 3.1]) we obtain
�

{u<v}

(ddcv)n ≤
�

{u<v}

(ddcu)n,

so (ddcu)n = (ddcv)n on {z ∈ Ω : u(z) < v(z)}. Similarly, (ddcu)n = (ddcv)n

on {z ∈ Ω : u(z) > v(z)}. Since µ does not put mass on pluripolar sets and
{u = −∞} = {χ(u) = −∞} and {v = −∞} = {χ(v) = −∞}, it follows that
(ddcu)n = (ddcv)n = 0 on C = {u = −∞} ∪ {v = −∞}. On {u = v} \ C we
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also have
(ddcu)n = −χ(u)−1dµ = −χ(v)−1dµ = (ddcv)n.

Thus, (ddcu)n = (ddcv)n on Ω, which implies that u = v by [15, Theorem
3.1].
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