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New versions of curvature and torsion formulas
for the complete lifting of a
linear connection to Weil bundles

by A. NTYAM and J. WoOUuAFO KAMGA (Yaoundé)

Abstract. New versions of Slovdk’s formulas expressing the covariant derivative and
curvature of the linear connection 74" are presented.

1. Introduction. Let Ty be a Weil functor and consider a linear con-
nection I" on a vector bundle (E, M, 7); one defines (see [3] or [7]) the linear
connection Ty I" on (TAE, TaAM,Tym) by

Tal = kpoTal o (ky; Xrum idryp) : TTaM %, ,, TAE — TTyE,

ToAM
where k : TyT — TTy is the canonical flow natural equivalence.

The main results of this paper are Propositions 6 and 7 giving new
versions of formulas expressing the covariant derivative and curvature of
TaI'. In the case E = T'M, we obtain some results of [2] and [1] (Corollaries 3
and 4).

2. Weil functor
2.1. Weil algebra

DEFINITION 1. A Weil algebra is a finite-dimensional quotient of the
algebra of germs &, = C§°(RP,R) (p € N¥).

We denote by M), the maximal ideal of &,.

ExaMPLE 1. (1) R is a Weil algebra since it is canonically isomorphic
to the quotient &,/ M,,.

(2) J§(RP,R) = &,/ M+t is a Weil algebra.

2.2. Covariant description of a Weil functor Ty : M f — FM. We write
M f for the category of differentiable manifolds and mappings of class C*°;
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furthermore, 7 M is the category of fibered manifolds and fibered manifold
morphisms.

Let A=E&,/I be a Weil algebra and consider a manifold M. In C*°(RP, M)
one defines an equivalence relation R by: R if and only if ¢(0) = ¢(0) = =
and for any [A], € C*(M, R), [A], o [i2lo — W]z o [¢o € 1.

The equivalence class of ¢ is denoted by j4p and is called the A-velocity
at 0 of p; the class j4¢ depends only on the germ of ¢ at 0. The quotient
C*(RP, M)/R is denoted by TaM.

The mapping ma ar : TaM — M, jap — ¢(0), defines a bundle structure
on T4 M and for any differentiable mapping f : M — N, one defines a bundle
morphism Taf : TAM — TAN (over f) by Taf(ja(e)) = jalf o).

The correspondence Ty : Mf — FM is a product preserving bundle
functor (see [3]).

EXAMPLE 2. If A = J§(RP,R), then Ty is equivalent to the functor 7,
of (p,r)-velocities, and if A = p/./\/l?,, then T4 = T, the tangent bundle
functor.

2.3. The canonical flow-natural equivalence. Let T4, Tp be two Weil
functors. Our purpose here is to make explicit a natural equivalence
H:TAOTB —>TBOTA.
LEMMA 1 ([3]). Let M be a manifold. For any ¢ = jap € TaTpM, there

is a differentiable mapping @ : RP x R? — M such that p(z) = jpP, in a
neighbourhood of 0 € RP.

By this lemma, one defines k : T4 o Tp — T o T4 as follows:

'V”'M(C) = jBT])
where 7 : R? — T M, t — jo®'. It is a well-defined natural equivalence. In
particular, for Tg = T, we obtain the canonical flow-natural equivalence.

3. Prolongations of tensor fields of type (1,s). In this section, A
is a Weil algebra, i.e. £,/ with M, DI D M;H and r minimal; VB is the
category of vector bundles and vector bundle homomorphisms. The module
of differentiable sections of a vector bundle (E, M,r) is denoted here by
Sec(M, E).

3.1. The functor T4 : VB — VB. It is defined as follows:

(1) Ta(B,M,7) = (TaB,TAM. Tar),  Ta(F.J) = (Tal.Taf)
see ([2] and [4]).

3.2. Natural transformations X : Ta — Ta. Consider a vector bundle

(E, M, ). For any multi-index o € N? such that |a| < r, we put

(2) (Xa)E(jaf) = ja(z7f),
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where f : RP—E is C%° and 2°f : RP=E, z — 2°f(2) € Er(f))- One
defines in this way some natural transformations y, : T4 — T4, since each
(Xa)E is a vector bundle morphism over idr, .

PROPOSITION 1. For any multi-inder o € NP such that |a| < r, the
diagram
nEl lnE
T, -0 g

is commutative, where k : TAT — TT4 is the canonical flow-natural equiv-
alence.

3.3. Prolongation of tensor fields of type (1,0). Consider a VB-object
(E, M, ) and a differentiable section S : M — E. One defines the following
prolongations of S on (TAE,TaM,Tam):

(3) SO =1,8 (since (xo)p=idr,g), S =(xa)poTaS, 1<]|al<r,
where X, is the natural transformation (2). If || > 7, then S® := 0, 5.

Let ¢ : 7 1(U) — U x R™ be a local trivialisation of E and e;j(z) =
(pfl(x,ej), 1 < j < n, a basis of sections of E over U associated to ¢
(here (ej), 1 < j < n, is the usual basis of R"). Using the identification
TA(U x R") 2 TyU x TyR™, one defines a family of sections

(€ja); ol <r 1<j<mn,

of TAE over TAU by
(4) £j0(T) = Tap™ (T, ¢ja);

where ejo, = ja(2%¢;). Then

Ega) =¢€ja, 1<j<nand|a|<r,

and we deduce

PROPOSITION 2. The S, |a| < r, and S € Sec(M,E) generate the
C®(TaM)-module Sec(TaM,TsE).

3.4. Prolongation of vector fields. Let T4 be a Weil functor and & :
TpoT — T oTy the canonical flow-natural equivalence. If X is a vector
field on M, one defines (p:fr) vector fields on T4 M by
(5)  X°=kyoTuX, X =kyo(xa)rmoTuX forl<|a|<r

PROPOSITION 3. Let T be a Weil functor and M a manifold.

(i) The vector fields X(®) for |a| <r and X € X(M) generate X(TAM)
over C*(T4M).
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(ii) For any X,Y € X(M), we have

x@ yoy = { XY if o< ot gl <,
’ 0 if la+ 3>

Proof. This is a modification of some result of [2]. m

3.5. Natural transformations X, : Ta o ®! — ®! 0 Tx. They are defined
as follows:

(6) (Xa)E(ag)(Gam, - -, jans) = (Xa) E(Fale * (m1, -, 75)))

for any vector bundle E, where ¢ : R? — ®LE, ny,...,n5 : RP—FE are C®
and

e* (M., ms) :RE—= B, 20 0(2)(m(2), -, ms(2))-

3.6. Prolongation of tensor fields of type (1,s). Let ¢ be a tensor field
of type (1,s) on E. We put

(7) 0@ = (x,)oTap, 0<lal<r

then (@) is a tensor field of type (1,s) on ToE. In particular if E = TM,
we put

(8) P = (®35m) 0 (Xa)Tmr 0 Tap, 0 < |a <73
then 3(®) is a tensor field of type (1,s) on Ty M.

PROPOSITION 4. Let ¢ be a tensor field on E of type (1,5); then ¢(®),
0 < |a| < r, is the unique tensor field on (TAE, TaM,Tam) of type (1,s)
such that

(9) P I(SI™, . 80) = (p(Sh, ... S))Fertobed)
forany Si,...,Ss€Sec(M,E) and a1, ...,as NP with 0<|aq], ..., |as| <r.
Proof. go(o‘) is unique by Proposition 2; moreover
PSI™, . SL) ()
= OGS G . S Gan)

= (Ra)B(iale o) (1™ Gan), ... 8 (jam) by (7)

= (Xa)B(ial o) (Ga(z21S1 0m),. .., ja(z%Ss0m) Dby (2), (3)
= (xa)E(ja((p o n) * (2%181 01, 2% 5, o)) by (6)

= (Xa)E(ja(zM T (pon) « (Ston,...,S50n)))
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= ja(z0Tr T (pon) « (S1om,...,Ss0m)) by (2)
= jA(za+a1+m+aSSO(Sla ) SS) o 77)
Xatai+..tas)E(Ga(p(S1,...,Ss) on)) by (2)

= (
= (Xa+a1+---+as)E(TA90(Slﬂ e 7SS)(jA77))
= (PSSt ).

COROLLARY 1. Let ¢ be a tensor field on M of type (1, s); then 3@, 0 <
la| <7, is the unique tensor field on TaM of type (1,s) such that

(10) @(a) (X:Eal)’ e 7X8(a8)) — (SO(X17 .. ,XS))(Q+Q1+,,,QS)
forany X1,..., Xs€X(M) and a1, ..., as NP satisfying 0<|ay ], ..., |as| <r.

3.7. Prolongations of sections of the vector bundle A\*T*M ®
(®IE) over M
3.7.1. Canonical morphisms Xa.g : TA(N T*M @ (21E)) — N\’ T*TaM
® (®1T4FE). Let (E, M, ) be a vector bundle. One defines some vector
bundle morphisms over Ty M,

Xo,E : TANT*M @ (@1 E)) — N'T*TaM @ (®1TaE), 0<la| <,
with natural transformations
Xo:Tao® —®10Ta, 0<|o|<r,
by
(1) Xa,e(Ja®)(Krn(japr)s - -, km(Jags)) = (Xa)E(GA(P* (@1, -, 9s))),
where @ : R? — \°T*M ® (®1E), ¢; : RP — TM, 1 <i<s, are C* and
Dx(p1,...,05) RP - @LIE, 2 &(u)(p1(2),...,0s(2)).

3.7.2. Prolongation of sections. Let (E, M, w) be a vector bundle and
R an E* ® E-valued differential form on M of degree s. One defines a
(TAE)* ® Ty E-valued differential form R on TaM of degree s by

(12) R@ =y,poTaR, 0<|a|<r
REMARK 1. Assume that £ = T M. We put
(13) R = A*idpep, s @(@1kar) © Xarar © TaR
= N\ idper,mr ®(®1 k) 0 R,

This is a T*_TAM ® TT4M-valued differential form on T4 M of degree s.
We denote R by R and call it the canonical lift (or complete lift) of R
to TAM.
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PROPOSITION 5. R is the unique (T4E)* @ TaE-valued differential
form on T4 M of degree s such that

R ()qﬁl)7 . 7Xs(ﬁs))5(7) = (R(Xy,... ,XS)S)(Q+61+"'+ﬁS+7)
for any X1,..., Xs€X(M), S€Sec(M,E) and any multi-indices (1, ..., Bs,
Y € NP satisfying 0 < |, 8|, |1 < 7.
Proof. We just deal with the case s = 2. Put

K = xa,(Ga(Ron)(ka(Gau™ X1 0n)), kar(Ga™Xs o)) S (jan);
then

(RO X, %3N SD) (jam)

= R Gan) (X1 Gan), X5 (am) SO (j.an)

=K by (2), (5)
= (Xa)B(ja(Ron* (2" X1 0,27 X501)))(ja(z"Son)) by (11)

= (Xa)E(ja((Ronx* (2" X1 0n,2%2 Xz 0m)) % 27S0m)) by (6)

= (Xa)B(ja(Z" TRV R(X 1, X2)S 0 1))

= (Xa) BE((X814+824+) E(Ja(R(X1, X2)S 0 1))

= (Xatpi+8247) B © TA(R(X1, X2)5)(jan)
= (R(Xy, Xp)8)HFitf47)

for any jan € Ta4M. The uniqueness of R(® follows from Proposition 3. =

COROLLARY 2. Let R be an s-differential form on TaM with values in
T*M QTM. Then R is the unique T*TaM @ TTaM-differential form on
TAM of degree s such that

R (x| xB)Y ) = (R(Xy,. .., X,)Y)lethitBst)

for any X1,...,Xs,Y € X(M) and any multi-indices B, ... Bs,y € NP sat-
isfying 0 < [B1],...,Bs, [y < 7.

4. Main results. We denote by @ the vertical projection and by K the
connector of a linear connection I" on a vector bundle (E, M, ).

PROPOSITION 6. Let I' be a linear connection on a_wvector bundle
(E,M,m), V the covariant derivative associated to I' and ¥V the covariant
derivative associated to TpoI'. Then T4I" is the unique linear connection on
(TAE, ToAM,Tam) such that

6){(0)5([3) — { (VXS)(OH—ﬁ)v aaﬁ € va 0< |a+/8| <,
0, a,B NP Ja+ 6] >,
where S € Sec(M,E) and X € X(M).
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Proof. TAI' is unique by Propositions 2 and 3(i); moreover
V@8® =TuK orglo T(S(ﬁ)) o X(®
= TaK okl o T(SP) 0 ks o (Xa)Tar 0 TaX by (5)
_TAKomE oT((xg)E o TaS)okr o (Xa)Tm o TaX by (3)
=TyK o ki;" o T((xp)E) © T(TaS) © karo (Xa) a0 TaX
=TaK 0w o T((xs)p) © kg 0 Ta(T'S) 0 (Xa)Ta 0 TaX
by the definition of
=TaK o (xg)TE © TA(TS) © (Xa)TMm © TAX by Proposition 1
=TuK o (xg)rE © (Xa)TE 0 TA(TS) 0 Ta X
= (xg)E °© TaK o (Xa)TE © TA(T'S) 0 TAX
= (XB)E© (Xa)E 0 TAK o Ty(TS) 0Ty X
= (Xat+8)E 0 TA(VxS).

PROPOSITION 7. Let Ry be the curvature tensor of a linear connection
I' on (E,M,w) and V the covariant derivative associated to TyI'. Then the
curvature tensor Rg of V satisfies

Rg = (Ry)©).

PTOOf. Since R@ (y, }_/)g = 6)767?—6?6)75—6[7(’7]? for any )?, ? S
X(TaM)and S € Sec(T4M, T4E), we apply Propositions 3(ii) and 6 to show
that Rg satisfies the conclusion of Proposition 5. m

REMARK. In particular, let I" be a linear connection on M (i.e. E =
TM); one can define a linear connection I'° on T4 M by

Ic= TKVM @) TAF o (idTTAM XTAMH]T}),

which is called the canonical lift (or complete lift) of I’ to Ta4M. The re-
striction of I'"® to P*M C T}, M (the frame bundle of M), m = dim M, was
studied in [1].

COROLLARY 3. Let I' be a linear connection on M, V the covariant
deriative associated to I'y I'° the canonical lift of I' to TaoM, and V° the co-
variant derivative associated to I'°. Then I'° is the unique linear connection
on TaM satisfying the identities

ve  y® _ { (VxY) @8 a,BeNP, 0<|a+g] <,
X (o) 07 Oé,ﬁENp, |a+l3| > 7,
where X, Y € X(M).
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COROLLARY 4. Let Ty and Ry be the torsion and curvature tensors,
respectively, of a linear connection I' on M, and let V¢ be the covariant
derivative of I'°. Then the torsion Tye and curvature Rye tensors of V¢ are
the canonical lifts of Ty and Ry respectively, that is,

Tye = (Ty)°, Rve = (Rvy)".
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