A class of functions containing polyharmonic functions in \mathbb{R}^n

by V. Anandam and M. Damlakhi (Riyadh)

Abstract. Some properties of the functions of the form $v(x) = \sum_{i=0}^m |x|^i h_i(x)$ in \mathbb{R}^n, $n \geq 2$, where each h_i is a harmonic function defined outside a compact set, are obtained using the harmonic measures.

1. Introduction. Let Ω be a clamped plate with an external load density $f(x)$, $x \in \Omega$. If $\partial \Omega$ is regular for the Dirichlet problem, the solution $u(x)$ corresponding to the conditions of elasticity given by $\Delta^2 u(x) = f(x)$ on Ω, $u = 0 = \partial u/\partial n$ on $\partial \Omega$, has a representation (Niculesco [16, p. 40]) $u(x) = \int_{\Omega} G_2(x, y) f(y) \, dy$. However, the calculation of $G_2(x, y)$ corresponding to a given u is not simple.

This note, among other results, shows that in the particular case of Ω being in the form of a star domain with centre 0 and the equation $\Delta^2 u = f$ being reduced to the condition $\Delta u(x) = G(x) + |x|^{-1} H(x)$ where G and H are harmonic functions on Ω, continuous on Ω, we can express u as $u(x) = |x|^2 h_2(x) + |x|h_1(x) + h_0(x)$ where $h_i(x)$ are harmonic functions on Ω. This suggests the study of the properties of functions of the form $u(x) = \sum_{i=0}^m |x|^i h_i(x)$ in a star domain Ω with centre 0 in \mathbb{R}^n, $n \geq 2$, which include the polyharmonic functions of finite order on Ω.

In another context, when $u(x) = \sum_{i=0}^m |x|^i h_i(x)$ is defined on the whole of \mathbb{R}^n, $n \geq 2$, where each h_i is harmonic on \mathbb{R}^n, Nakai and Tada ([15, Theorem 3]) give a necessary and sufficient condition on u so that each h_i is a harmonic polynomial, by using the Fourier expansion method. In this note we obtain some complementary results for such functions u, by using harmonic measures.

2. Functions in the class $H^*(\mathbb{R}^n)$. We begin with the following definition.

2000 Mathematics Subject Classification: Primary 31B30.

Key words and phrases: harmonic measure, polyharmonic functions, Liouville theorem.
DEFINITION 2.1. Let Ω be a star domain with centre 0 in \mathbb{R}^n, $n \geq 2$. A continuous function $u(x)$ defined on Ω is said to be in the class $H^m(\Omega)$ if it is of the form $u(x) = \sum_{i=0}^{m} |x|^i h_i(x)$ where h_i, $0 \leq i \leq m$, are harmonic on Ω. Write $H^*(\Omega) = \bigcup_{m \geq 0} H^m(\Omega)$.

We remark that if $u(x)$ is a polyharmonic function of order m on Ω (that is, $u \in C^{2m}(\Omega)$ and $\Delta^m u = 0$), then the Almansi representation of u (see Aronszajn et al. [8, Proposition 1.3]) is of the form $u(x) = \sum_{i=0}^{m-1} |x|^{2i} h_i(x)$ where $h_i(x)$ are uniquely determined harmonic functions on Ω. Hence $u \in H^{2m-2}(\Omega)$, $H^0(\Omega)$ being the class of all harmonic functions on Ω.

In this section, we obtain some Liouville-type theorems for functions in $H^*(\mathbb{R}^n)$. For a given continuous function f on \mathbb{R}^n, let $D_r f$ stand for the Dirichlet solution in $|x| < r$ with boundary value $f(x)$ on $|x| = r$.

THEOREM 2.2. Let $u \in H^*(\mathbb{R}^n)$. Let a_j be a sequence of real numbers increasing to ∞. Let ω be a nonempty open set and e be a polar set in \mathbb{R}^n. If

$$\liminf_{j \to \infty} \frac{D_{a_j} u(z)}{a_j} = 0$$

for every $z \in \omega \setminus e$, then u is harmonic on \mathbb{R}^n.

Proof. Let $u(x) = \sum_{i=0}^{m} |x|^i h_i(x)$. Then, for fixed $z \in \omega \setminus e$ and large j, $D_{a_j} u(z) = \sum_{i=0}^{m} a_j^i h_i(z)$. Hence the assumption on $D_{a_j} u$ as $j \to \infty$ implies that $h_i(z) = 0$ for $1 \leq i \leq m$. Since z is arbitrary in $\omega \setminus e$, h_i vanishes on $\omega \setminus e$, which implies that $h_i \equiv 0$ for $1 \leq i \leq m$. Consequently, $u(x) = h_0(x)$ is harmonic on \mathbb{R}^n.

COROLLARY 1 (see [15, Proposition 1]). Let $u = \sum_{i=0}^{m} |x|^i h_i(x) \in H^*(\mathbb{R}^n)$. If $u(x) \to 0$ when $|x| \to \infty$, in particular if $u \equiv 0$, then each $h_i \equiv 0$.

Proof. As in the proof of Theorem 2.2 we can show that $h_i \equiv 0$ for $1 \leq i \leq m$ and $u = h_0$ on \mathbb{R}^n. Since $u \to 0$ at infinity, $h_0 \equiv 0$.

COROLLARY 2. Let $u \in H^*(\mathbb{R}^n)$. Let $M(r, |u|)$ denote the mean value of $|u(x)|$ on $|x| = r$. Suppose $M(r, |u|) = o(r)$ as $r \to \infty$. Then u is a constant.

Proof. Write $D_r u(z) = \int u(x) d\sigma^r_z(x)$ where σ^r_z is the harmonic measure on $|x| = r$. Recall

$$d\sigma^r_z(x) = \frac{r^{n-2} r^2 - |z|^2}{|x-z|^n} d\sigma_r(x)$$

where $d\sigma_r(x)$ is the measure on $|x| = r$, invariant with respect to the rotations of $|x| = r$ and such that $\sigma_r(|x| = r) = 1$. Suppose now $|z| \leq 1 < r = |x|$. Then

$$\frac{r^2 - |z|^2}{|x-z|^n} \leq \frac{r^2}{(r-1)^n}$$
so that
\[|D_r u(z)| \leq \int |u(x)| \frac{r^n}{(r-1)^n} d\sigma_r(x). \]
Consequently, for large \(r \), \(|D_r u(z)| \leq 2M(r, |u|) \) so that \(\lim_{r \to \infty} D_r u(z)/r = 0 \) for \(|z| \leq 1 \). Then by the above theorem, we conclude that \(u \) is harmonic on \(\mathbb{R}^n \); this, together with the condition that \(M(r, |u|) = o(r) \), implies that \(u \) is a constant. (See [6, Corollary 3.3] for an indication of different proofs of this result.)

Corollary 3. Let \(u \in H^*(\mathbb{R}^n) \) be such that for a superharmonic function \(s \) on \(\mathbb{R}^n \), \(|u| \leq s \). Then \(u \) is a constant.

Proof. We write \(s = p + c \) where \(p \geq 0 \) is a potential on \(\mathbb{R}^n \) (\(p \equiv 0 \) is the only potential on \(\mathbb{R}^2 \)) and \(c \geq 0 \) is a constant. Since \(M(r, p) \to 0 \) as \(r \to \infty \), \(M(r, |u|) = o(r) \). Hence by Corollary 2, \(u \) is harmonic on \(\mathbb{R}^n \) and \(|u| \leq p + c \), which implies that \(|u| \leq c \) on \(\mathbb{R}^n \) so that \(u \) is a constant.

Remark. The above Corollary 3 expresses the classical Liouville–Picard theorem for the class \(H^*(\mathbb{R}^n) \). In fact, in its standard form this theorem states that if \(u \in H^0(\mathbb{R}^n) \) and \(u \geq 0 \), then it is a constant; this can be generalized as follows: If \(u \in H^*(\mathbb{R}^n) \) is a positive superharmonic function, then \(u \) is a constant. This generalization is a consequence of the above Corollary 3. However, if we leave out the condition that \(u \) is superharmonic, we have from Armitage [7] or Futamura–Kishi–Mizuta [13] or Nakai–Tada [15] the following: If \(u \in H^m(\mathbb{R}^n) \) is positive, then \(u \) is a polynomial of degree at most \(m \). More generally, let \(u(x) = \sum_{i=0}^m |x|^i h_i(x) \) and suppose \(\lim_{|x| \to \infty} u(x)/|x|^s \geq 0 \) for some \(s > m \). Then for each \(i \), \(h_i \) is a harmonic polynomial of degree less than \(s - i \). For as in [6, Lemma 2.1] we can find a locally integrable function \(\varphi(x) \) on \(\mathbb{R}^n \) such that \(u(x) \geq \varphi(x) \) outside a compact set \(K \) and \(M(r, |\varphi|) = o(r^s) \) as \(r \to \infty \). Since \(u \geq -|\varphi| \) on \(\mathbb{R}^n \setminus K \), \(M(r, u^-) = o(r^s) \) as \(r \to \infty \); also \(M(r, u) = O(r^m) \). Hence \(M(r, |u|) = o(r^s) \). Consequently, each \(h_i \) is a harmonic polynomial of degree less than \(s - i \). In particular, if \(\lim_{|x| \to \infty} u(x)/|x| \geq 0 \) then \(u \) is a constant.

3. **\(H^* \) functions on a star domain.** Let \(\Omega \) denote a star domain in \(\mathbb{R}^n \), \(n \geq 2 \), with centre 0. Then, as in Definition 2.1, \(H^m(\Omega) \) denotes the class of functions of the form \(u(x) = \sum_{i=0}^m |x|^i h_i(x) \) where \(h_i \) are harmonic on \(\Omega \). We shall use the operator \(\Delta^p \), with integer \(p \geq 1 \), in the sense of distributions.

Lemma 3.1. If \(u \in C^{2p}(\Omega) \), let \(f(x) = |x|^{\alpha} u(x) \) where \(\alpha > 2p - n \). Then \(\Delta^p(|x|^\alpha u(x)) \) is locally integrable on \(\Omega \).

Proof. Since \((\partial/\partial x)^l |x|^\alpha \) is locally integrable on \(\mathbb{R}^n \) when \(\alpha > |l| - n \), the lemma is evident. We need the following expression of \(\Delta^p f(x) \) for later use.
For $|x| = r > 0$, let $g = \Delta^p f$ in the classical sense.

Since
\[\Delta f = \alpha(\alpha + n - 2)r^{\alpha - 2}u + 2\alpha r^{\alpha - 2} \sum x_i \frac{\partial u}{\partial x_i} + r^\alpha \Delta u, \]
we have $\Delta f = r^{\alpha - 2}u_1$ where $u_1 \in C^{2p-2}$ (note that u_1 is harmonic if u is).
Proceeding thus, we find $\Delta^j f = r^{\alpha - 2j}u_j$ for $1 \leq j \leq p$, where $u_j \in C^{2p-2j}$.
Let $g(x) = |x|^\alpha - 2pu_p(x)$ for $|x| > 0$ and $g(0) = \lim \sup_{x \to 0} g(x)$. Then $g(x)$ is u.s.c. on Ω and since $\alpha - 2p + n > 0$, $g(x)$ is locally integrable on Ω and $\Delta^p f = g$ on Ω in the sense of distributions.

Remark. Let h be harmonic on Ω. Then from the above proof (replacing u by h) we see that if $\alpha > 2p - n$, then $\Delta^p(|x|^\alpha h(x)) = |x|^{\alpha - 2p}H(x)$ where $H(x)$ is harmonic on Ω.

Proposition 3.2. Let $u \in H^*(\Omega)$ and $2p \leq n$. Then $\Delta^p u$ is locally integrable on Ω.

Proof. Let $u = \sum_{i=0}^n |x|^ih_i(x)$. Then for any $i \geq 1$, $i > 2p - n$ so that $\Delta^p(|x|^ih_i(x))$ is locally integrable on Ω; for $i = 0$, $\Delta(h_0) = 0$. Hence $\Delta^p u$ is locally integrable on Ω.

Consequence. The above proposition, in particular, states that if $u \in H^*(\mathbb{R}^n)$, $n \geq 2$, then Δu is locally integrable on \mathbb{R}^n. This leads to an integral representation of u in \mathbb{R}^n. For that, recall that given any positive Radon measure μ on an open set ω in \mathbb{R}^n, $n \geq 2$, Brelot [12] shows that a subharmonic function s can be constructed on ω with associated measure μ in the local Riesz representation.

Now, for $u \in H^*(\mathbb{R}^n)$, $n \geq 2$, since Δu is locally integrable, $d\lambda(x) = \Delta u dx$ can be treated as defining the difference of two positive Radon measures on \mathbb{R}^n. Hence u is the difference of two subharmonic functions on \mathbb{R}^n. Then we can define the order of u and the order of λ as in Arsove [9] (see also [4]). If the order of λ is finite, a correspondingly modified form of the logarithmic kernel (if $n = 2$) or the Newtonian kernel (if $n \geq 3$) can be used to represent u as an integral up to an additive harmonic function which is a harmonic polynomial if the order of u is finite (see Arsove [9], and [4, Theorems 11 and 12]; see also Mizuta [14]).

Lemma 3.3. Let H be a harmonic function on Ω. If $n + \alpha - 2 > 0$ and if $\alpha + 2i \neq 0$ for i, $0 \leq i \leq p - 1$, then there exists a harmonic function h on Ω such that $\Delta^p(|x|^\alpha h(x)) = |x|^\alpha - 2H(x)$.

Proof. We prove the lemma for the case $p = 1$ by adapting the method given in Aronszajn et al. [8, p. 5]. The general case follows by induction. Suppose a harmonic function h exists on Ω such that $\Delta(|x|^\alpha h(x)) = |x|^\alpha - 2H(x)$.
Then, treating h as a function of r, we should have
\[\Delta(r^\alpha h) = \alpha(n + \alpha - 2)r^{\alpha-2}h + 2\alpha r^{\alpha-1} \frac{\partial h}{\partial r}. \]

Then
\[\alpha(n + \alpha - 2)h + 2\alpha r \frac{\partial h}{\partial r} = H \quad \text{on } \Omega. \]

This can be written as
\[\frac{d}{dr}[r^{(n+\alpha-2)/2}h] = \frac{H}{2\alpha} r^{(n+\alpha-4)/2} \]
outside 0. Since at the origin, $r^{(n+\alpha-2)/2}h = 0$, we should have
\[r^{(n+\alpha-2)/2}h(r, w) = \int_0^r \frac{1}{2\alpha} \varrho^{(n+\alpha-4)/2} H(\varrho, w) d\varrho, \]
where $x = (r, w)$ is represented by the spherical polar coordinates. Set $\varrho = tr$. Then
\[h(x) = \frac{1}{2\alpha} \int_0^1 t^{(n+\alpha-4)/2} H(tx) \, dt; \]
here $\Delta h = 0$ since H is harmonic. Consequently, given the harmonic function H on Ω, if we define $h(x)$ by the formula above, then $h(x)$ is harmonic on Ω, satisfying the condition $\Delta(|x|^{\alpha}h(x)) = |x|^{\alpha-2}H(x)$.

Theorem 3.4. A continuous function u on Ω is in $H^m(\Omega)$ if and only if for any integer p, $2 \leq 2p \leq n$, there exists a function $v \in H^{m-1}(\Omega)$ such that $\Delta^p u(x) = |x|^{1-2p}v(x)$ in the sense of distributions.

Proof. (1) Let $u = \sum_{i=0}^m |x|^i h_i \in H^m(\Omega)$. We shall now use the Remark following Lemma 3.1 to calculate $\Delta^p u(x)$.

If $p = 1$, then $\Delta u = \sum_{i=0}^{m-2} |x|^i H_i + |x|^{-1} v_1$ where H_i ($0 \leq i \leq m-2$) and v_1 are harmonic functions on Ω. Hence $\Delta u = |x|^{-1} \sum_{i=0}^{m-2} |x|^{i+1} H_i + v_1 = |x|^{-1} s_1(x)$ where $s_1 \in H^{m-1}(\Omega)$.

If $p = 2$, then $n \geq 4$ and in this case $\Delta(|x|^{-1} v_1) = |x|^{-3} v_2$ where v_2 is harmonic on Ω. This leads to the equation $\Delta^2 u = \Delta(\Delta u) = \sum_{i=0}^{m-4} |x|^i H'_i + |x|^{-1} v + |x|^{-3} v_2$ on Ω, where H'_i ($0 \leq i \leq m-4$), v and v_2 are harmonic on Ω. This simplifies to the form $\Delta^2 u = |x|^{-3} s_2(x)$ where $s_2 \in H^{m-1}(\Omega)$.

This process by induction leads to the result that if $2 \leq 2p \leq n$, then $\Delta^p u = |x|^{-(2p-1)} s_p(x)$ where $s_p \in H^{m-1}(\Omega)$.

(2) Conversely, suppose that u is a continuous function on Ω such that for any integer p, $2 \leq 2p \leq n$, we have $\Delta^p u = |x|^{-(2p-1)} v$ where $v \in H^{m-1}(\Omega)$. Then, in particular for $p = 1$, by Lemma 3.3 we have
\[\Delta u = |x|^{-1} v = |x|^{-1} \sum_{i=0}^{m-1} |x|^i H_i = \sum_{i=0}^{m-1} |x|^{i-1} H_i = \sum \Delta(|x|^{i+1} h_i). \]
Hence \(u = (\sum_{i=0}^{n-1} |x|^{i+1} h_i) + (\text{a harmonic function on } \Omega) \); in other words, \(u \in H^m(\Omega) \).

Corollary 1. Let \(u = \sum_{i=0}^{m} |x|^i h_i(x) \in H^m(\Omega) \). Suppose \(u \) is harmonic on a neighbourhood of a point in \(\Omega \). Then \(h_i \equiv 0 \) for \(1 \leq i \leq m \). In particular, if \(u \equiv 0 \) on a nonempty open set in \(\Omega \), then \(h_i \equiv 0 \) for all \(i, 0 \leq i \leq m \).

Proof. Let \(u \) be harmonic on a nonempty open set \(\omega \). Since \(u \in H^m(\Omega) \), there exists \(v_{m-1} \in H^{m-1}(\Omega) \) such that \(\Delta u = |x|^{-1} v_{m-1}(x) \) on \(\Omega \). This implies \(v_{m-1} = 0 \) on \(\omega \). Now again by Theorem 3.4, there exists \(v_{m-2} \in H^{m-2}(\Omega) \) such that \(\Delta v_{m-1} = |x|^{-1} v_{m-2}(x) \), which implies that \(v_{m-2} = 0 \) on \(\omega \). Proceeding thus, we obtain \(v_i \in H^i(\Omega), 0 \leq i \leq m-1 \), such that \(\Delta v_{i+1} = |x|^{-1} v_i \) on \(\Omega \) and \(v_i = 0 \) on \(\omega \) (taking \(v_m = u \)).

Since \(v_0 \) is harmonic on \(\Omega \) and \(v_0 = 0 \) on \(\omega \), \(v_0 \equiv 0 \) on \(\Omega \). This implies \(v_1 \) is harmonic on \(\Omega \) and since \(v_1 = 0 \) on \(\omega \), we have \(v_1 \equiv 0 \) on \(\Omega \). Thus proceeding, we remark that \(v_i \equiv 0 \) on \(\Omega \) for \(0 \leq i \leq m-1 \) so that \(\Delta u = 0 \) on \(\Omega \); that is, \(u \) is harmonic on \(\Omega \).

Then \(\sum_{i=1}^{m} |x|^i h_i(x) = u(x) - h_0(x) \) is harmonic on \(\Omega \). Choose \(a \) such that \(\{ x : |x| < a \} \subset \Omega \). Fix \(z \in \Omega \) so that \(|z| < r < a \). Let \(\varphi_z^r \) be the harmonic measure on \(|x| = r \). Then

\[
\sum_{i=1}^{m} |x|^i h_i(x) d\varphi_z^r(x) = \int (u - h_0) d\varphi_z^r,
\]

which implies that

\[
\sum_{i=1}^{m} r^i h_i(z) = u(z) - h_0(z).
\]

Since \(r \) is arbitrary in the interval \((|z|, a) \), we have \(h_i(z) = 0 \) for \(1 \leq i \leq m \) and \(u(z) - h_0(z) = 0 \). Since \(h_i \) and \(u \) are harmonic on \(\Omega \) and \(z \) is arbitrary except for the condition \(|z| < a \), we conclude \(h_i \equiv 0 \) on \(\Omega \) for \(1 \leq i \leq m \) and \(u \equiv h_0 \).

Corollary 2. Let \(u \in H^m(\Omega) \) and \(2 \leq 2p \leq n \). Suppose \(u \) is \(p \)-harmonic \((\Delta^p u = 0) \) on a neighbourhood of a point in \(\Omega \). Then \(u \) is \(p \)-harmonic on \(\Omega \).

Proof. Suppose \(\Delta^p u = 0 \) on a nonempty open set \(\omega \). By Theorem 3.4, there exists a function \(v \in H^{m-1}(\Omega) \) such that \(\Delta^p u = |x|^{1-2pv} \) on \(\Omega \). Hence \(v = 0 \) on \(\omega \) and consequently, by Corollary 1, \(v \equiv 0 \) on \(\Omega \), which means that \(u \) is \(p \)-harmonic on \(\Omega \).

Remark. We thank the referee for pointing out that in the proofs of the above two corollaries, one can use the real analyticity of \(u \) outside the origin, without having recourse to Theorem 3.4.
Corollary 3. Let \(u \in H^m(S) \), where \(S = \{ x : |x| < 1 \} \) in \(\mathbb{R}^n \), be such that \(\lim \inf_{r \to 1} M(r, |u|) = 0 \). Then \(u(x) = (1-|x|)v(x) \) where \(v \in H^{m-1}(S) \).

Proof. Let \(u(x) = \sum_{i=0}^{m} |x|^i h_i(x) \in H^m(S) \). Notice that by the above Corollary 1, there exist uniquely determined harmonic functions \(u_i \) on \(S \) such that
\[
u(x) = \sum_{i=0}^{m} (1-|x|)^i u_i(x) \quad \text{on } S.
\]
In particular,
\[
h_0(x) = \sum_{i=0}^{m} u_i(x).
\]
Fix \(z \) with \(|z| \leq 1/4 \). For \(|x| = r \), \(1/2 \leq r < 1 \), let \(d\mathcal{H}^r_x(z) \) denote the harmonic measure on \(|x| = r \). Integrate \(u(x) \) with respect to \(d\mathcal{H}^r_x(z) \) to get
\[
| (1-r)^m u_m(z) + \ldots + (1-r)u_1(z) + u_0(z) | = \left| \int u(z) d\mathcal{H}^r_x(x) \right| \leq CM(r, |u|)
\]
for some constant \(C \) since \(|z| \leq 1/4 \) and \(1/2 \leq r < 1 \) (see the proof of Corollary 2 to Theorem 2.2).

Let \(r \to 1 \). Since \(\lim \inf_{r \to 1} M(r, |u|) = 0 \) by hypothesis, we obtain \(u_0(z) = 0 \) for \(|z| \leq 1/4 \). Hence \(u_0 \equiv 0 \). Consequently, \(u(x) = (1-|x|)v(x) \) where
\[
v(x) = \sum_{i=0}^{m-1} (1-|x|)^i u_{i+1}(x) \in H^{m-1}(S).
\]

Note. The above corollary easily includes the result: If \(u \) is \(p \)-harmonic on \(S \) such that \(\lim \inf_{r \to 1} M(r, |u|) = 0 \), then \(u(x) = (1-|x|^2)v(x) \) where \(v \) is polyharmonic on \(S \) of order \(\leq m-1 \). This in itself is a generalization of a result of Abkar and Hedenmalm [1, pp. 321–322] proved in the complex plane using the Fourier series: If \(u(z) \) is biharmonic on the unit disc in the complex plane and if \(M(r, |u|) = O(1-r) \) as \(r \to 1 \), then \(u(z) = (1-|z|^2)h(z) \) for a harmonic function on the unit disc.

4. \(H^* \) functions defined near infinity. It is not surprising that in many respects, the functions in \(H^{2m-2}(\mathbb{R}^n) \) behave near infinity like the \(m \)-harmonic functions (that is, the solutions of \(\Delta^m u = 0 \)) on \(\mathbb{R}^n \). In this section, we study a class of continuous functions on \(\mathbb{R}^n \) which are associated near infinity with the functions in \(H^{2m-2}(\mathbb{R}^n) \) and the fundamental solution of \(\Delta^m \) on \(\mathbb{R}^n \). This class contains a significant collection of functions having some nice regularity properties at infinity.

For \(m \geq 1, n \geq 2 \), let \(c_m^n \) denote the fundamental solution of \(\Delta^m \) on \(\mathbb{R}^n \). We recall that
\[e_m^n = \begin{cases} |x|^{2m-n} & \text{if } 2m < n \text{ or } 2m - n \text{ is odd } > 0, \\ |x|^{2m-n} \log |x| & \text{if } 2m - n \text{ is even } \geq 0. \end{cases} \]

Definition 4.1. A continuous function \(v \) defined outside a compact set in \(\mathbb{R}^n \) is said to be in the class \(H^{2m-2}(\mathbb{R}^n) \) if there exists \(u \in H^{2m-2}(\mathbb{R}^n) \) such that \(u - v = O(e_m^n) \) near infinity.

Proposition 4.2. Let \(h_i \) \((0 \leq i \leq m - 2) \) be arbitrary harmonic functions defined outside a compact set in \(\mathbb{R}^n \). Then
\[v = \sum_{i=0}^{2m-2} |x|^i h_i(x) \in H^{2m-2}(\mathbb{R}^n). \]

Proof. Recall that (see [2] or Axler et al. [10]) given a harmonic function \(h \) outside a compact set in \(\mathbb{R}^n \), there exists a harmonic function \(H \) on \(\mathbb{R}^n \) and a constant \(\alpha \) such that outside a compact set,
\[h(x) = \begin{cases} H(x) + \alpha \log |x| + g(x) & \text{if } n = 2, \\ H(x) + g(x) & \text{if } n \geq 3, \end{cases} \]
where \(g(x) \) is a harmonic function satisfying \(g(x) = O(|x|^{2-n}) \) near infinity. Hence for each \(i, 0 \leq i \leq 2m - 2 \), there exists a harmonic function \(H_i \) on \(\mathbb{R}^n \) such that \(|h_i - H_i| \leq A|x|^{2-n} \) if \(n \geq 3 \) and \(|h_i - H_i - \alpha_i \log |x|| \leq A \) if \(n = 2 \), outside a compact set. Let \(u(x) = \sum_{i=0}^{2m-2} |x|^i H_i(x) \). Then \(u \in H^{2m-2}(\mathbb{R}^n) \) and near infinity \(u - v = O(e_m^n) \). Hence \(v \in H^{2m-2}(\mathbb{R}^n) \).

Corollary. Let \(k \) be a compact set in a star domain \(\Omega \) with centre 0. Suppose \(u = \sum_{i=0}^{2m-2} |x|^i h_i(x) \) where \(h_i \) are harmonic on \(\Omega \setminus k \). Then there exist \(t \in H^{2m-2}(\Omega) \) and \(s \in H^{2m-2}(\mathbb{R}^n) \cap C(\mathbb{R}^n \setminus k), s = O(e_m^n) \) near infinity, such that \(u = s - t \) on \(\Omega \setminus k \).

Proof. We know that for each \(i \), there exist \(s_i \in H^0(\mathbb{R}^n \setminus k) \) and \(t_i \in H^0(\Omega) \) such that \(h_i = s_i - t_i \) on \(\Omega \setminus k \) (Laurent decomposition for harmonic functions, see [2] or Axler et al. [10, pp. 171–175]).

Let now
\[s^1(x) = \sum_{i=0}^{2m-2} |x|^i s_i(x) \quad \text{and} \quad t^1(x) = \sum_{i=0}^{2m-2} |x|^i t_i(x). \]
Then \(u = s^1 - t^1 \) on \(\Omega \setminus k \) where by the above proposition \(s^1(x) \) is in the class \(H^{2m-2}(\mathbb{R}^n) \), and \(t^1(x) \in H^{2m-2}(\Omega) \). Since \(s^1 \in H^{2m-2}(\mathbb{R}^n) \), there exists \(v \in H^{2m-2}(\mathbb{R}^n) \) such that \(s^1 - v = O(e_m^n) \) near infinity. Write now \(s = s^1 - v \) and \(t = t^1 - v \) to obtain the decomposition \(u = s - t \) on \(\Omega \setminus k \) as stated in the Corollary.

Proposition 4.3. If \(v \) is an \(m \)-harmonic function defined outside a compact set in \(\mathbb{R}^n \), then \(v \in H^{2m-2}(\mathbb{R}^n) \).
Proof. For \(m = 1 \), the representation for a harmonic function \(h \) outside a compact set (given in the proof of Proposition 4.2) leads to the result that \(h \in H^1_\infty(\mathbb{R}^n) \).

Let us take the case \(m = 2 \). In this case, we start with the representation for a biharmonic function \(b \) defined near infinity in the following form (see [11, p. 19]):

\[
b(x) = \begin{cases}
(\alpha + \alpha_1 x_1 + \alpha_2 x_2) \log |x| + \beta |x|^2 \log |x| + B(x) + u(x) & \text{if } n = 2, \\
\beta |x| + B(x) + u(x) & \text{if } n = 3, \\
\beta \log |x| + B(x) + u(x) & \text{if } n = 4, \\
B(x) + u(x) & \text{if } n \geq 5,
\end{cases}
\]

where \(B(x) \) is biharmonic on \(\mathbb{R}^n \) and \(u(x) \) is biharmonic bounded near infinity. In the case of \(n \geq 5 \), we can show that \(|u(x)| \leq A|x|^{4-n} \) by specializing the proof (1) \(\Rightarrow \) (2) of [11, Theorem 10]. Consequently, since \(B \in H^2(\mathbb{R}^n) \) and since \(b - B = O(e_3^0) \) near infinity, we have \(b \in H^2_\infty(\mathbb{R}^n) \).

Finally, for \(m > 2 \), we have a similar representation for an \(m \)-harmonic function defined outside a compact set (details given in a forthcoming paper [5]) which can be used to prove the proposition. The result referred to here is as follows: Let \(u \) be \(m \)-harmonic outside a compact set in \(\mathbb{R}^n \). Then there exists an \(m \)-harmonic function \(v \) on \(\mathbb{R}^n \) such that \(u - v = O(e_3^m) \) as \(|x| \to \infty \).

Theorem 4.4. Let \(v \in H^2m-2(\mathbb{R}^n) \), \(n > 2m \geq 2 \). Suppose either one of the following conditions is satisfied:

1. There exists a superharmonic function \(s \) outside a compact set such that \(|v| \leq s \) near infinity.
2. \(\lim_{|x| \to \infty} v(x)/|x| = 0 \).

Then \(\lim_{|x| \to \infty} v(x) \) exists and is finite.

Proof. (1) Suppose \(|v| \leq s \) near infinity. Since \(n \geq 3 \), there exists a superharmonic function \(S \) on \(\mathbb{R}^n \) such that \(S - s \) is bounded near infinity (see [3]). Hence we can as well assume that \(s \) is a superharmonic function defined on the whole of \(\mathbb{R}^n \) and \(|v| \leq s \) near infinity.

Since \(v \in H^2m-2(\mathbb{R}^n) \), by definition there exists \(u \in H^2m-2(\mathbb{R}^n) \) such that \(|u - v| \leq A|x|^{2m-n} \) near infinity. Hence \(|u| \leq s + A|x|^{2m-n} \leq s + A \) near infinity. Then by Corollary 3 in Section 2, \(u \) is a constant \(\alpha \). Consequently, \(\lim_{x \to \infty} v(x) = \alpha \).

(2) Suppose now \(\lim_{|x| \to \infty} v(x)/|x| = 0 \). Since \(v \in H^2m-2(\mathbb{R}^n) \), there exists \(u \in H^*(\mathbb{R}^n) \) such that \(|u - v| \leq A|x|^{2m-n} \) near infinity. This implies that \(\lim_{|x| \to \infty} u(x)/|x| = 0 \). Hence, by Corollary 2 in Section 2, \(u \) is a constant \(\alpha \). Consequently \(\lim_{|x| \to \infty} v(x) = \alpha \).

Remark. Since every bounded continuous function \(v \) is in \(H^2m-2 \) if \(2 \leq n \leq 2m \), the above theorem is not valid if \(n \leq 2m \).
We thank the College of Science Research Center, King Saud University, for the grants MATH 1419\14 and MATH 1420\20.

References

Department of Mathematics
King Saud University
P.O. Box 2455
Riyadh 11451, Saudi Arabia
E-mail: vanandam@ksu.edu.sa
damlakhi@ksu.edu.sa

Reçu par la Rédaction le 6.11.2002
Révisé le 4.6.2003

(1373)