Cauchy–Poisson transform and polynomial inequalities

by Mirosław Baran (Kraków)

Abstract. We apply the Cauchy–Poisson transform to prove some multivariate polynomial inequalities. In particular, we show that if the pluricomplex Green function of a fat compact set E in \mathbb{R}^N is Hölder continuous then E admits a Szegö type inequality with weight function $\operatorname{dist}(x, \partial E)^{-(1-\kappa)}$ with a positive κ . This can be viewed as a (nontrivial) generalization of the classical result for the interval $E = [-1, 1] \subset \mathbb{R}$.

1. Introduction. Let $\mathcal{P}(\mathbb{C}^N)$ denote the set of polynomials of N complex variables. An important role in pluripotential theory and approximation theory of many variables is played by the *Siciak extremal function* (or *polynomial extremal function*, see [Si1, Si2])

$$\Phi_E(z) = \sup\{|p(z)|^{1/\deg p} : p \in \mathcal{P}(\mathbb{C}^N), \, \deg p \ge 1, \, \|p\|_E \le 1\}, \quad z \in \mathbb{C}^N,$$

where E is a fixed compact subset of \mathbb{C}^N . By the Zakharyuta–Siciak theorem (see [Si2, Si3])

$$\log \Phi_E(z) = V_E(z), \quad z \in \mathbb{C}^N,$$

where

$$V_E(z) = \sup\{u(z) : u \in PSH(\mathbb{C}^N), u \le \text{const} + \log(1 + ||z||), u|_E \le 0\}.$$

If $V_E^*(z) = \limsup_{w \to z} V_E(w)$ is locally bounded then it is called the *pluricomplex Green function*.

If E is a compact subset of \mathbb{C}^N then, by the definition of Φ_E , we have the Bernstein–Walsh–Siciak type inequality

$$|p(z)| \le ||p||_E \cdot \Phi_E(z)^{\deg p}, \quad p \in \mathcal{P}(\mathbb{C}^N).$$

An important tool in the investigations of multivariate inequalities for derivatives of polynomials is provided by the following

DOI: 10.4064/ap95-3-1

²⁰⁰⁰ Mathematics Subject Classification: 31C10, 32U35, 41A17.

Key words and phrases: pluricomplex Green function, Cauchy–Poisson transform, polynomial inequalities, Bernstein–Szegö type inequality.

M. Baran

1.1. PROPOSITION ([B2]). If $E \subset \mathbb{R}^N$ and $x \in E$ then for all $p \in \mathcal{P}(\mathbb{C}^N)$ and all $v \in \mathbb{S}^{N-1}$,

(1.1)
$$|D_v p(x)| \le (\deg p) \liminf_{\varepsilon \to 0+} \frac{1}{\varepsilon} V_E(x+i\varepsilon v) ||p||_E.$$

Moreover, if p has only real coefficients then we have a more precise inequality:

(1.2)
$$|D_v p(x)| \le (\deg p) \liminf_{\varepsilon \to 0+} \frac{1}{\varepsilon} V_E(x+i\varepsilon v) (||p||_E^2 - p^2(x))^{1/2}$$

1.2. Remark.

- (1) If E = [-1, 1] then $\liminf_{\varepsilon \to 0+} \varepsilon^{-1} V_E(x \pm i\varepsilon) = (1 x^2)^{-1/2}$ and in this case (1.1) and (1.2) are generalizations of the well-known Bernstein and Szegö inequalities, respectively. (The Szegö inequality is also known as the van der Corput–Schaake inequality.)
- (2) We shall see that the limit $\lim_{\varepsilon \to 0+} \varepsilon^{-1} V_E(x + i\varepsilon)$ always exists if $N = 1, x \in int(E) \neq \emptyset$, and is equal to half the density $\varphi(x)$ of the equilibrium measure λ_E .

A general version of inequalities of type (1.1) and (1.2) for a compact $E \subset \mathbb{R}^N$ was proved in [B2, B3]. Similar inequalities were rediscovered later by Totik [T1, T2] but only for N = 1.

2. Cauchy–Poisson transform and extremal function. Let us recall the definition of the Cauchy–Poisson transform (see e.g. [St, StW]).

2.1. DEFINITION. Let \mathbb{H}_+ and \mathbb{H}_- be the upper half-plane and the lower half-plane in \mathbb{C} , respectively. We shall denote by $\mathcal{P}u$ the *Cauchy–Poisson* transform of a Borel function $u : \mathbb{R} \to \mathbb{R}$, $u(t) = O(|t|^{\kappa})$, $\kappa \in (0, 1)$, in \mathbb{H}_+ :

(2.1)
$$\mathcal{P}u(\zeta) = (\Im\zeta) \frac{1}{\pi} \int_{-\infty}^{\infty} |\zeta - t|^{-2} u(t) dt$$

(2.2)
$$= \frac{1}{\pi} \int_{-\infty}^{\infty} u(ty+x) \frac{dt}{1+t^2},$$

where $\zeta = x + iy \in \mathbb{H}_+$.

In particular, $\mathcal{P}u$ is well defined if u(t) has logarithmic growth:

$$u(t) = O(\log(1+|t|)),$$

or if u is globally Hölder continuous, i.e.

$$|u(t) - u(\tau)| \le \operatorname{const} \cdot |t - \tau|^{\kappa}$$

with $\kappa \in [0, 1)$ (briefly, $u \in \mathrm{HC}_{\kappa}(\mathbb{R})$).

200

We also define $\mathcal{P}u$ in the whole plane \mathbb{C} by

$$\mathcal{P}u(\zeta) = \begin{cases} \mathcal{P}u(-\zeta), & \zeta \in \mathbb{H}_-, \\ u(\zeta), & \zeta \in \mathbb{R}. \end{cases}$$

We have

2.2. PROPOSITION. If $u \in \mathrm{HC}_{\kappa}(\mathbb{R})$ then $\mathcal{P}u \in \mathcal{H}(\mathbb{H}_+ \cup \mathbb{H}_-) \cap \mathcal{C}(\mathbb{C})$. (Here $\mathcal{H}(\Omega)$ is the space of harmonic functions on an open set $\Omega \subset \mathbb{C}$.)

Proof. Harmonicity of $\mathcal{P}u$ is a consequence of the equality $\Im \zeta |\zeta - t|^{-2} = \Im(1/(\zeta - t))$ and the mean value criterion.

To prove its continuity fix an $x_0 \in \mathbb{R}$. We can write, for $\zeta = x + iy$,

$$\begin{aligned} |\mathcal{P}u(\zeta) - u(x_0)| &= \left| \frac{1}{\pi} \int_{-\infty}^{\infty} \left(u(ty+x) - u(x_0) \right) \frac{dt}{1+t^2} \right| \\ &\leq \frac{1}{\pi} \int_{-\infty}^{\infty} \left| u(ty+x) - u(x_0) \right| \frac{dt}{1+t^2} \\ &\leq C |x-x_0|^{\kappa} + C \frac{1}{\pi} \int_{-\infty}^{\infty} |t|^{\kappa} \frac{dt}{1+t^2} |y|^{\kappa} \\ &\leq C_1 (|x-x_0|^{\kappa} + |y|^{\kappa}). \end{aligned}$$

2.3. REMARK. $\mathcal{P}u$ is also continuous on \mathbb{C} if $u \in \mathcal{C}(\mathbb{R})$, since we can then apply the Lebesgue bounded convergence theorem. We can also use the Lebesgue theorem if |u| is bounded by $C(1+|t|)^{\kappa}$, $\kappa < 1$, in particular, if uhas the logarithmic growth $|u(t)| \leq C \log(1+|t|)$.)

To get our main result we need a theorem that establishes relations between the Zakharyuta–Siciak extremal function V_E in \mathbb{C}^N and its restriction to \mathbb{R}^N . Here a central role is played by the Cauchy–Poisson transform.

2.4. THEOREM. If E is a compact set in \mathbb{R}^N then for all $x, v \in \mathbb{R}^N$ and $\zeta \in \mathbb{C}$,

(2.3)
$$V_E(x+\zeta v) \le \mathcal{P}u(\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} V_E(x+(\Re\zeta+t\Im\zeta)v) \frac{dt}{1+t^2},$$

where $u(t) = V_E(x + tv)$, with equality if N = 1. In particular, if $v \in \mathbb{S}^{N-1}$, $\varepsilon > 0$ then

(2.4)
$$V_E(x+i\varepsilon v) \le \frac{1}{\pi} \int_{-\infty}^{\infty} V_E(t\varepsilon v+x) \frac{dt}{1+t^2}$$

and

(2.5)
$$\liminf_{\varepsilon \to 0+} \frac{1}{\varepsilon} V_E(x + i\varepsilon v) \le \frac{1}{\pi} \int_{-\infty}^{\infty} t^{-2} V_E(x + tv) dt.$$

As an immediate consequence we get

2.5. COROLLARY. If E is a compact set in \mathbb{R}^N and $x \in int(E)$ then for any $v \in \mathbb{S}^{N-1}$,

(2.6)
$$\liminf_{\varepsilon \to 0+} \frac{1}{\varepsilon} V_E(x + i\varepsilon v) \le \frac{1}{\pi} \int_{|t| \ge \operatorname{dist}_v(x, \partial E)} t^{-2} V_E(x + tv) \, dt.$$

Here $\operatorname{dist}_{v}(x, \partial E)$ is the distance from x to ∂E in direction v defined in the next section.

Proof of Theorem 2.4. Let us recall that if E is a compact subset of \mathbb{R}^N then

$$V_E(z) = \sup \left\{ \frac{1}{\deg p} \log |h(p(z))| : p \in \mathbb{R}[x], \, \deg p \ge 1, \, \|p\|_E \le 1 \right\},\$$

where $h(\zeta) = \zeta + \sqrt{\zeta^2 - 1}$ and $|h(\zeta)| = h(\frac{1}{2}|\zeta + 1| + \frac{1}{2}|\zeta - 1|), h(t) = t + (t^2 - 1)^{1/2}, t \ge 1$ (see [B2]).

Put

$$u(\zeta) = \frac{1}{\deg p} \log |h(p(x+\zeta v))|, \quad \zeta \in \mathbb{C}.$$

Then

$$u \in \mathcal{S}H(\mathbb{C}) \cap \mathcal{H}(\mathbb{H}_+ \cup \mathbb{H}_-) \cap \mathcal{C}(\mathbb{C}).$$

Moreover, $u \ge 0$ and $u(z) - \frac{1}{2}\log(1+|\zeta|^2) = O(1)$. This implies that $\mathcal{P}u \in \mathcal{C}(\mathbb{C})$ and the function v defined by

$$v(\zeta) = u(\zeta) - \mathcal{P}u(\zeta), \quad \zeta \in \mathbb{C},$$

is a bounded continuous function on \mathbb{C} that equals 0 on \mathbb{R} . Therefore, applying the maximum principle separately to \mathbb{H}_+ and \mathbb{H}_- we get the inequality $v \leq 0$ in \mathbb{C} , whence

$$\frac{1}{\deg p}\log|h(p(x+\zeta v))| \le \frac{1}{\pi}\int_{-\infty}^{\infty}\frac{1}{\deg p}\log|h(p(x+tv))| \frac{dt}{1+t^2}$$

and taking the supremum over p gives (2.3).

The proof of equality in case N = 1 is similar to that in [B4]: it suffices to consider the case x = 0 and y = 1.

Let $E \subset \mathbb{R} \subset \mathbb{C}$ be a compact set that satisfies the HCP *condition*, i.e. there exist constants M > 0 and $\kappa \in (0, 1]$ such that

$$V_E(z) \le M[\operatorname{dist}(z, E)]^{\kappa} \quad \operatorname{dist}(z, E) \le 1.$$

Then in particular $V_E \in \mathcal{C}(\mathbb{C}) \cap \mathcal{H}(\mathbb{C} \setminus E)$ and $V_E(\zeta) - \log(1 + |\zeta|) = O(1)$ as $\zeta \to \infty$. Hence, by the argument of the proof of Theorem 2.4, the function

$$v(\zeta) = \mathcal{P}V_E|_{\mathbb{R}}(\zeta) - V_E(\zeta), \quad \zeta \in \mathbb{C},$$

is nonnegative, whence for $\zeta = x + iy$ we get

$$V_E(\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} V_E(ty+x) \frac{dt}{1+t^2}.$$

Now, if E is an arbitrary compact subset of \mathbb{R} , there exists a sequence of compact sets E_k such that $E_{k+1} \subset E_k$, $E_k \in \text{HCP}$ and $E = \bigcap_{k=1}^{\infty} E_k$. Hence $V_{E_k} \nearrow V_E$, and so, by the Lebesgue monotone convergence theorem,

$$V_E(\zeta) \searrow V_{E_k}(\zeta) = \mathcal{P}V_{E_k}|_{\mathbb{R}}(\zeta)$$
$$= \frac{1}{\pi} \int_{-\infty}^{\infty} V_{E_k}(ty+x) \frac{dt}{1+t^2} \nearrow \frac{1}{\pi} \int_{-\infty}^{\infty} V_E(ty+x) \frac{dt}{1+t^2}$$

Let us recall that E is said to be L-regular at $x_0 \in E$ if

 $\limsup_{z \to x_0} V_E(z) = 0,$

that is, V_E is continuous at x_0 . From Theorem 2.4 we easily derive

2.6. COROLLARY. If E is not a pluripolar subset of \mathbb{R}^N (that is, V_E^* is bounded by const + log(1 + |z|) in \mathbb{C}^N) then E is L-regular at $x_0 \in E$ if $V_E|_{\mathbb{R}^N}$ is continuous at x_0 .

To show another application of Theorem 2.4 we need the following simple lemma.

2.7. LEMMA. Put

$$\Lambda_x(v) = \frac{|v|}{\pi} \int_{\mathbb{R}\setminus E} (x-t)^{-2} V_E(t) dt, \quad x \in \text{int}(E), v \in \mathbb{R},$$

and let $0 < \varepsilon < 1$. Then, for $|v| \le (1/\sqrt{\varepsilon(1-\varepsilon)}) \operatorname{dist}(x, \mathbb{R} \setminus E)$, one has $(1-\varepsilon)\Lambda_x(v) \le \frac{1}{\varepsilon} V_E(x+i\varepsilon v) \le \Lambda_x(v).$

Proof. If $|v| \leq (1/\sqrt{\varepsilon(1-\varepsilon)}) \operatorname{dist}(x, \mathbb{R} \setminus E)$ then, for an arbitrary $t \in \mathbb{R} \setminus E$, we have $|v| \leq |x-t|/\sqrt{\varepsilon(1-\varepsilon)}$. This inequality is equivalent to $|x+i\varepsilon v|^{-2} \geq (1-\varepsilon)|x-t|^{-2}$ and, by the obvious inequality $|x+i\varepsilon v-t|^{-2} \leq |x-t|^2$ and by (2.1), we have

$$(1-\varepsilon)\Lambda_x(v) \le \frac{1}{\varepsilon} V_E(x+i\varepsilon v) = \frac{|v|}{\pi} \int_{\mathbb{R}\setminus E} |x+i\varepsilon v-t|^{-2} u(t) \, dt \le \Lambda_x(v).$$

Now, by pluripotential methods developed in [B3] (see Comparison Lemma 1.12 and Corollary 3.2) one easily obtains the following

2.8. PROPOSITION. Let E be a compact subset of \mathbb{R} with nonempty interior and let $E_0 = \overline{\operatorname{int}(E)}$ be the "fat" part of E. Then for the equilibrium M. Baran

measure λ_E (see e.g. [K1] for the definition of this notion in \mathbb{C}^N) the following formula holds:

$$\lambda_E|_{E_0} = \varphi(x) \, dx_i$$

where

$$\varphi(x) = \frac{2}{\pi} \int_{\mathbb{R}\setminus E} |x-t|^{-2} V_E(t) \, dt.$$

3. Szegö type inequality for compact sets in \mathbb{R}^N . Let $v \in \mathbb{S}^{N-1}$ and let E be a subset of \mathbb{R}^N . If $x_0 \in E$ then the distance from x_0 to ∂E in direction v is defined by

$$\operatorname{dist}_{v}(x_{0},\partial E) = \sup\{r > 0 : x_{0} + [-r,r]v \subset E\}.$$

If dist $(x_0, \partial E)$ denotes the usual distance from $x_0 \in E$ to the boundary of E, that is,

$$\operatorname{dist}(x_0, \partial E) = \inf\{|x - x_0| : x \in \partial E\} = \sup\{r > 0 : \overline{B}(x_0, r) \subset E\}$$

then we have

$$\operatorname{dist}(x_0, \partial E) = \inf_{v \in \mathbb{S}^{N-1}} \operatorname{dist}_v(x_0, \partial E).$$

If $E = [-1,1] \times \{0\} \cup \{0\} \times [-1,1] \subset \mathbb{R}^2$ and $x_0 = (0,0)$, then for v = (1,0)and v = (0,1) we have $\operatorname{dist}_v(x_0, \partial E) = 1$ and $\operatorname{dist}(x_0, \partial E) = 0$, so the usual distance is in general not comparable with directional distances for *n* linearly independent vectors.

3.1. THEOREM. Let E be a compact subset of \mathbb{R}^N . Let $v \in \mathbb{S}^{N-1}$ and let $E_v := \{x \in E : \operatorname{dist}_v(x, \partial E) > 0\}.$

Assume that there exist positive constants C_1, C_2 and $\kappa \in (0, 1)$ such that

(3.1)
$$V_E(x+tv) \le C_1 \log(1+|t|), \quad t \in \mathbb{R}, x \in E_v,$$

and

(3.2)
$$V_E(x+tv) \le C_2 |t|^{\kappa}$$
 as $t \in [-1,1], x \in E_v$.

Then there exists a positive constant M such that for any $p \in \mathbb{R}[x]$ and any $x \in E_v$,

(3.3)
$$|D_v p(x)| \le M(\deg p)(\operatorname{dist}_v(x,\partial E))^{-(1-\kappa)}(||p||_E^2 - p^2(x))^{1/2}.$$

Proof. Without loss of generality we can assume that

$$\sup_{x \in E_v} \operatorname{dist}_v(x, \partial E) \le 1.$$

To prove (3.3) we need to find an upper bound of $\liminf_{\varepsilon \to 0+} \varepsilon^{-1} V_E(x + i\varepsilon v)$.

By (2.6) we have

$$\begin{split} \liminf_{\varepsilon \to 0+} \frac{1}{\varepsilon} V_E(x+i\varepsilon v) &\leq \frac{1}{\pi} \int_{|t| \geq \operatorname{dist}_v(x,\partial E)} t^{-2} V_E(x+tv) \, dt \\ &= \frac{1}{\pi} \bigg[\int_{1 \geq |t| \geq \operatorname{dist}_v(x,\partial E)} + \int_{|t| \geq 1} \bigg] t^{-2} V_E(x+tv) \, dt \\ &\leq \frac{2C_2}{\pi} \int_{\operatorname{dist}_v(x,\partial E)}^1 t^{\kappa-2} \, dt + \frac{2C_1}{\pi} \int_1^\infty \log(1+t) t^{-2} \, dt \\ &= \frac{2C_2}{\pi} \frac{1}{1-\kappa} \left((\operatorname{dist}_v(x,\partial E))^{-(1-\kappa)} - 1 \right) + C_3 \\ &\leq M(\operatorname{dist}_v(x,\partial E))^{-(1-\kappa)}, \end{split}$$

where $M = C_3 + 2C_2/(1-\kappa)\pi$. Hence, by Proposition 1.1 we get inequality (3.3).

Applying Theorem 3.1 for all directions $v \in \mathbb{S}^{n-1}$ gives the main result of the paper:

3.2. THEOREM. If a fat compact E in \mathbb{R}^N satisfies the HCP condition with constants M > 0 and $0 < \kappa < 1$, then, for all directions $v \in \mathbb{S}^{n-1}$ and all polynomials $p \in \mathbb{R}[x]$, we have the following Szegö type inequality:

$$|D_v p(x)| \le A(\deg p)(\operatorname{dist}(x, \partial E))^{-(1-\kappa)} (||p||_E^2 - p^2(x))^{1/2}, \quad x \in \operatorname{int}(E),$$

where A = A(E) is a constant.

3.3. REMARK. Recall that a compact set E in \mathbb{R}^N is said to be *Markov* if there exist constants $M > 0, m \ge 2$ such that for all polynomials p,

$$\|\operatorname{grad} p\|_E \le M(\operatorname{deg} p)^m \|p\|_E.$$

By Cauchy's Integral Formula, any HCP compact set in \mathbb{R}^N is Markov and till now, no Markov set which is not an HCP set is known.

It is also known (see [Pl]) that Markov's property is equivalent to the following condition:

$$(\mathcal{P}) \quad \exists C_1, C_2 \ \forall p \in \mathcal{P}_k(\mathbb{C}^N) \quad |p(z)| \le C_2 \|p\|_E \quad \text{as } \operatorname{dist}(z, E) \le C_1 k^{-m}.$$

It was conjectured in [B2] that an inequality of type (3.3) implies Markov's inequality with exponent $1/\kappa$. We note that this is true in the class of HCP sets.

Acknowledgements. This research was partially supported by grant no. 2 PO3A 047 22 from KBN (Committee for Scientific Research).

M. Baran

References

- [B1] M. Baran, Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in \mathbb{R}^n , Michigan Math. J. 39 (1992), 395–404.
- [B2] —, Bernstein type theorems for compact sets in \mathbb{R}^n , J. Approx. Theory 69 (1992), 156–166.
- [B3] —, Complex equilibrium measure and Bernstein type theorems for compact sets in \mathbb{R}^n , Proc. Amer. Math. Soc. 123 (1995), 485–494.
- [B4] —, Homogeneous extremal function for a ball in \mathbb{R}^2 , Ann. Polon. Math. 71 (1999), 141–150.
- [KI] M. Klimek, *Pluripotential Theory*, Oxford Univ. Press, Oxford, 1991.
- [Pl] W. Pleśniak, Markov's inequality and the existence of an extension operator for C^{∞} functions, J. Approx. Theory 61 (1990), 106–117.
- [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322–357.
- [Si2] —, Extremal plurisubharmonic functions in \mathbb{C}^N , Ann. Polon. Math. 39 (1981), 175–211.
- [Si3] —, Extremal Plurisubharmonic Functions and Capacities in \mathbb{C}^n , Sophia Kôkyuroku Math. 14, Dept. Math., Sophia Univ., Tokyo, 1982.
- [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
- [StW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.
- [T1] V. Totik, Polynomial inverse images and polynomial inequalities, Acta Math. 187 (2001), 139–160.
- [T2] —, How to prove results for polynomials on several intervals?, in: B. D. Bojanov (ed.), Approximation Theory. A Volume Dedicated to Blagovest Sendov, DARBA, Sofia, 2002, 397–410.

Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland E-mail: baran@im.uj.edu.pl

> Received 30.4.2008 and in final form 3.11.2008 (1872)

206