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Warped product submanifolds of Kaehler manifolds
with a slant factor

by Bayram Sahin (Malatya)

Abstract. Recently, we showed that there exist no warped product semi-slant sub-
manifolds in Kaehler manifolds. On the other hand, Carriazo introduced anti-slant sub-
manifolds as a particular class of bi-slant submanifolds. In this paper, we study such
submanifolds in detail and show that they are useful to define a new kind of warped prod-
uct submanifolds of Kaehler manifolds. In this direction, we obtain the existence of warped
product hemi-slant (anti-slant) submanifolds with examples. We give a characterization
theorem and establish an inequality for the squared norm of the second fundamental
form in terms of the warping function for such submanifolds. The equality case is also
considered.

1. Introduction. CR-submanifolds of Kaehler manifolds were intro-
duced by Bejancu [1] as a generalization of totally real submanifolds and
holomorphic submanifolds. Since then, many papers have appeared on these
submanifolds. Recently, Chen [7] (see also [8], [9]) studied warped prod-
uct CR-submanifolds and showed that there exist no warped product CR-
submanifolds of the form M⊥ ×f MT such that M⊥ is a totally real sub-
manifold and MT is a holomorphic submanifold of a Kaehler manifold M .
Then he introduced CR-warped product submanifolds as follows: A subman-
ifold M of a Kaehler manifold M is called a CR-warped product if it is the
warped product MT ×fM⊥ of a holomorphic submanifold MT and a totally
real submanifold M⊥ of M . He also established general sharp inequalities
for CR-warped products in Kaehler manifolds. Motivated by Chen’s papers,
CR-warped product submanifolds have been studied in [3], [11], [13], [14]
and [15].

On the other hand, slant submanifolds of Kaehler manifolds were de-
fined by Chen in [6] as another generalization of totally real submanifolds
and holomorphic submanifolds. A slant submanifold is called proper if it is
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neither totally real nor holomorphic. We note that there exists no inclusion
relation between proper CR-submanifolds and proper slant submanifolds.
In [16], N. Papaghiuc introduced a class of submanifolds, called semi-slant
submanifolds; this class includes the CR-submanifolds and slant submani-
folds. In [17], we proved that there do not exist warped product semi-slant
submanifolds of the forms MT ×f Mθ and Mθ ×f MT , where MT is a holo-
morphic submanifold and Mθ is a proper slant submanifold of a Kaehler
manifold M . Therefore we ask the following question:

Are there any warped product submanifolds of Kaehler manifolds with
a slant factor?

To answer this question in the affirmative, we consider the class of anti-
slant submanifolds defined by Carriazo [5] and show the existence of warped
product anti-slant submanifolds in Kaehler manifolds. For reasons to be
explained later, we prefer to use the name hemi-slant submanifold instead
of anti-slant submanifold. We observe that this new class also includes proper
slant and CR-submanifolds and there exists no inclusion relation between
proper semi-slant submanifolds and proper hemi-slant submanifolds.

The paper is organized as follows: In Section 2, we present the basic
background needed for this paper. In Section 3, we define hemi-slant sub-
manifolds and observe that there exists no inclusion relation between the
classes of semi-slant submanifolds (in the sense of Papaghiuc) and hemi-slant
submanifolds. After giving two characterization theorems for hemi-slant sub-
manifolds, we investigate the geometry of leaves of distributions which are
involved in their definition. In Section 4, we prove that there do not exist
warped product submanifolds of the form M⊥ ×f Mθ such that M⊥ is a
totally real submanifold and Mθ is a proper slant submanifold of a Kaehler
manifold M . In Section 5, we consider warped product submanifolds of the
form Mθ×fM⊥ in Kaehler manifolds, give examples and a characterization
theorem. We also obtain an inequality for the squared norm of the sec-
ond fundamental form in terms of the warping function for warped product
hemi-slant submanifolds. The equality case is also considered. The paper
contains several examples.

In this paper, we assume that every object at hand is smooth and the di-
mension of a Kaehler manifold always means the complex dimension, unless
otherwise stated.

2. Preliminaries. Let (M, g) be a Kaehler manifold. This means [18]
that M admits a tensor field J of type (1, 1) on M such that, for all X,Y ∈
Γ (TM), we have

(2.1) J2 = −I, g(X,Y ) = g(JX, JY ), (∇XJ)Y = 0,
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where g is the Riemannian metric and ∇ is the Levi-Civita connection
on M .

Let M be a Kaehler manifold with complex structure J , and M a Rie-
mannian manifold isometrically immersed in M . Then M is called holomor-
phic (or complex) if J(TpM) ⊂ TpM for every p ∈ M , where TpM denotes
the tangent space of M at the point p, and totally real if J(TpM) ⊂ TpM

⊥

for every p ∈M, where TpM⊥ denotes the normal space of M at p. Besides
holomorphic and totally real submanifolds, there are three other important
classes of submanifolds of a Kaehler manifold determined by the behavior
of the tangent bundle of the submanifold under the action of the complex
structure of the ambient manifold.

(1) The submanifold M is called a CR-submanifold [1] if there exists
a differentiable distribution D : p 7→ Dp ⊂ TpM such that D is
invariant with respect to J and the complementary distribution D⊥

is anti-invariant with respect to J .
(2) The submanifold M is called slant [6] if for each non-zero vector X

tangent to M the angle θ(X) between JX and TpM is a constant,
i.e., it does not depend on the choice of p ∈M and X ∈ TpM .

(3) The submanifold M is called semi-slant [16] if it is endowed with
two orthogonal distributions D and D′, where D is invariant with
respect to J and D′ is slant, i.e., the angle θ(X) between JX and
D′p is constant for X ∈ D′p.

It is clear that holomorphic (respectively, totally real) submanifolds are CR-
submanifolds (respectively, slant submanifolds) with D⊥ = {0} (resp. θ = 0)
and D = {0} (resp. θ = π/2). It is also clear that CR-submanifolds and
slant submanifolds are semi-slant submanifolds with θ = π/2 and D = {0},
respectively.

Let M be a Riemannian manifold isometrically immersed in M and
denote by the same symbol g the Riemannian metric induced on M . Let
Γ (TM) be the Lie algebra of vector fields in M , and Γ (TM⊥) the set of all
vector fields normal to M ; the same notation is used for smooth sections of
any other vector bundle E. Denote by ∇ the Levi-Civita connection of M .
Then the Gauss and Weingarten formulas are

∇XY = ∇XY + h(X,Y ),(2.2)

∇XN = −ANX +∇⊥XN,(2.3)

for any X,Y ∈ Γ (TM) and any N ∈ Γ (TM⊥), where ∇⊥ is the connec-
tion in the normal bundle TM⊥, h is the second fundamental form of M ,
and AN is the Weingarten endomorphism associated with N . The second
fundamental form h and the shape operator A are related by

(2.4) g(ANX,Y ) = g(h(X,Y ), N).
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For any X ∈ Γ (TM) we write

(2.5) JX = TX + FX,

where TX is the tangential component of JX, and FX is the normal com-
ponent of JX. Similarly, for any vector field N normal to M , we put

(2.6) JN = BN + CN,

where BN and CN are the tangential and the normal components of JN ,
respectively.

3. Hemi-slant submanifolds. In this section, we define and study
hemi-slant submanifolds in a Kaehler manifold M . We obtain characteriza-
tions, examples and investigate the geometry of leaves of distributions.

Definition 3.1 ([5]). Let M be a Kaehler manifold and M a real sub-
manifold of M . Then we say that M is a hemi-slant submanifold if there
exist two orthogonal distributions D⊥ and Dθ on M such that

(a) TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ.
(b) The distribution D⊥ is anti-invariant, i.e., JD⊥ ⊂ TM⊥.
(c) The distribution Dθ is slant with slant angle θ.

In this case, we call θ the slant angle of M . The anti-invariant distribution
D⊥ of a hemi-slant submanifold is a slant distribution with angle θ = π/2.
It is clear that hemi-slant submanifolds are particular cases of bi-slant sub-
manifolds (for definition, see [5]). Moreover, it is also clear that if θ = 0, then
a hemi-slant submanifold is a CR-submanifold. Furthermore, if we denote
the dimensions of D⊥ and Dθ by m1 and m2, respectively, then we have the
following:

(a) If m2 = 0, then M is an anti-invariant submanifold.
(b) If m1 = 0 and θ = 0, then M is an invariant submanifold.
(c) If m1 = 0 and θ 6= 0, π/2, then M is a proper slant submanifold with

slant angle θ.
(d) If θ = π/2, then M is an anti-invariant submanifold.

Remark 3.1. We note that hemi-slant submanifolds were defined by
Carriazo in [5] under the name of anti-slant submanifolds as a particular
class of bi-slant submanifolds. However, the term “anti-slant” may suggest
that the submanifolds have no slant part, which is not the case, as one can
see from Definition 5.1 and [5].

We say that a hemi-slant submanifold is proper if m1 6= 0 and θ 6=
0, π/2. Comparing the definitions of semi-slant submanifolds and hemi-slant
submanifolds, we have the following.
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Proposition 3.1. There exists no inclusion relation between the classes
of proper semi-slant submanifolds and of proper hemi-slant submanifolds of
Kaehler manifolds.

Example 3.1. Let M be a submanifold of R6 given by

x1 =
ϕ√
2

cos ζ, x2 =
ϕ√
2

sin ζ, x3 =
ϕ√
2
,

x4 = 0, x5 = t, x6 = t, ϕ 6= 0.

It is easy to see that a local frame of TM is given by

Z1 = − ϕ√
2

sin ζ
∂

∂x1
+

ϕ√
2

cos ζ
∂

∂x2
,

Z2 =
1√
2

cos ζ
∂

∂x1
+

1√
2

sin ζ
∂

∂x2
+

1√
2

∂

∂x3
,

Z3 =
∂

∂x5
+

∂

∂x6
.

Then using the canonical complex structure of R6, we see that JZ3 is
orthogonal to TM , thus D⊥ = span{Z3}. Moreover, it easy to see that
Dθ = span{Z1, Z2} is a slant distribution with slant angle θ = π/4. Thus
M is a proper hemi-slant submanifold of R6.

Example 3.2. Let M be a submanifold of R8 given by

x1 = ϕ, x2 = θ, x3 = k cos θ, x4 = k sin θ,
x5 = sin θ1, x6 = cos θ1, x7 = cos θ2, x8 = sin θ2.

It is easy to see that a local frame of TM is given by

Z1 =
∂

∂x2
− k sin θ

∂

∂x3
+ k cos θ

∂

∂x4
, Z2 =

∂

∂x1
,

Z3 = cos θ1
∂

∂x5
− sin θ1

∂

∂x6
, Z4 = − sin θ2

∂

∂x7
+ cos θ2

∂

∂x8
.

Then M is a proper hemi-slant submanifold of R8 such that we have D⊥ =
span{Z3, Z4} and Dθ = span{Z1, Z2} with slant angle cos−1(1/

√
1 + k2).

Let M be a hemi-slant submanifold of a Kaehler manifold M . We denote
the projections on the distributions D⊥ and Dθ by P1 and P2, respectively.
Then we can write

(3.1) X = P1X + P2X

for any X ∈ Γ (TM). Applying J to (3.1) and using (2.5) we obtain

(3.2) JX = JP1X + TP2X + FP2X.
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Thus we have

JP1X ∈ Γ (TM⊥), TP1X = 0,(3.3)

TP2X ∈ Γ (Dθ), FP2X ∈ Γ (TM⊥).(3.4)

Hence

(3.5) TX = TP2X

for X ∈ Γ (TM).

Lemma 3.1. Let M be a hemi-slant submanifold of a Kaehler mani-
fold M . Then

(3.6) J(D⊥) ⊥ F (Dθ).

Proof. From (2.5) we obtain g(JX,FP2Y ) = g(JX, JP2Y − TP2Y ) for
X ∈ Γ (D⊥) and Y ∈ Γ (Dθ), hence g(JX,FP2Y ) = g(JX, JY ). Thus, from
(2.1) we have g(JX,FP2Y ) = 0 as D⊥ and Dθ are orthogonal.

It is known that M is a slant submanifold of M if and only if

(3.7) T 2 = λI

for some λ ∈ [−1, 0] (see [6]), where I denotes the identity transformation
of TM . Moreover, if M is a slant submanifold and θ is the slant angle of M ,
then λ = − cos2 θ. Thus we obtain the following characterization theorem.

Theorem 3.1. Let D be a distribution on M . Then D is slant if and
only if there exists a constant λ ∈ [−1, 0] such that (TP )2X = λX for
X ∈ Γ (D), where P denotes the orthogonal projection on D. Moreover , in
this case λ = − cos2 θ.

Actually this theorem was proved for the Sasakian case in [4]. We can
use Theorem 3.1 to characterize hemi-slant submanifolds.

Theorem 3.2. Let M be a submanifold of a Kaehler manifold M . Then
M is a hemi-slant submanifold if and only if there exists a constant λ ∈
[−1, 0] and a distribution D on M such that

(i) D = {X ∈ Γ (TM) | T 2X = λX},
(ii) for any X ∈ Γ (TM) orthogonal to D, TX = 0.

Moreover , in this case λ = − cos2 θ, where θ denotes the slant angle of M .

Proof. Let M be a hemi-slant submanifold of M . Then λ = − cos2 θ
and D = Dθ. By the definition of hemi-slant submanifold, (ii) is clear.
Conversely (i) and (ii) imply TM = D ⊕ D⊥. Since T (D) ⊆ D, from (ii)
D⊥ is an anti-invariant distribution. Thus the proof is complete.

Now we give another characterization of hemi-slant submanifolds.
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Theorem 3.3. Let M be a submanifold of a Kaehler manifold M . Then
M is a hemi-slant submanifold if and only if there exists a constant κ ∈
[−1, 0] and a distribution D on M such that

(a) D = {X ∈ Γ (TM) | BFX = κX},
(b) for any X ∈ Γ (TM) orthogonal to D, TX = 0.

Moreover , in this case κ = − sin2 θ, where θ denotes the slant angle of M .

Proof. Applying J to (2.5), we obtain

−X = T 2X + FTX +BFX + CFX

for X ∈ Γ (TM). Comparing the tangential and normal components, we
derive

(3.8) −X = T 2X +BFX, FTX + CFX = 0.

Now, if M is a hemi-slant submanifold, then (b) is clear. For (a), from
Theorem 3.2, we have T 2X = − cos2 θX for X ∈ Γ (Dθ). Then the first
equation of (3.8) implies BFX = − sin2 θX for X ∈ Γ (Dθ). Hence, D = Dθ.
Conversely, (a) and (b) imply TM = D⊕D⊥. Moreover, from (b) we deduce
that D⊥ is an anti-invariant distribution. From (a) and (3.8) we have

−X = T 2X + κX

for X ∈ Γ (D) and κ ∈ [−1, 0]. Hence T 2X = −(1 + κ)X for X ∈ Γ (D).
Put −(1 + κ) = λ so that λ ∈ [−1, 0]. Thus our assertion comes from
Theorem 3.2.

From Theorem 3.3, we have the following result.

Corollary 3.1. Let M be a hemi-slant submanifold of a Kaehler man-
ifold M . Then

BFY = − sin2 θ Y, CFY = −FTY, ∀Y ∈ Γ (Dθ).

In particular, we have a new characterization for slant submanifolds of
Kaehler manifolds.

Theorem 3.4. Let M be a submanifold of a Kaehler manifold M . Then
M is a slant submanifold of M if and only if there exists a constant κ ∈
[−1, 0] such that BFX = κX for X ∈ Γ (TM).

From Theorem 3.2 we have the following lemma:

Lemma 3.2. Let M be a hemi-slant submanifold of a Kaehler mani-
fold M . Then

g(TX, TY ) = cos2 θ g(X,Y ),(3.9)
g(FX,FY ) = sin2 θ g(X,Y ),(3.10)

for X,Y ∈ Γ (Dθ).
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Proof. For X,Y ∈ Γ (Dθ), from (2.1) we have g(TX, TY ) = g(JX −
FX, TY ). Hence g(TX, TY ) = −g(X, JTY ). Using Theorem 3.2(i), we ob-
tain (3.9). Applying Lemma 3.1 in (3.9) we get (3.10).

In the rest of this section, we study integrability of distributions and
conditions under which leaves of distributions on a hemi-slant submanifold
M in a Kaehler manifold M are totally geodesically immersed in M . First,
we prove the integrability of D⊥ on a hemi-slant submanifold M .

Theorem 3.5. Let M be a proper hemi-slant submanifold of a Kaehler
manifold M . Then the anti-invariant distribution D⊥ is integrable.

Proof. It is known that if M is a Kaehler manifold, then dΩ = 0, where d
is exterior derivative and Ω is the fundamental 2-form defined by Ω(X,Y ) =
g(X, JY ) for X,Y ∈ Γ (TM) (see [18]). Since Ω is closed (dΩ = 0), for
X ∈ Γ (Dθ) and Y,Z ∈ Γ (D⊥) we get

dΩ(TX, Y, Z) = 1
3{TXΩ(Y, Z)− Y Ω(TX,Z) + ZΩ(TX, Y )
−Ω([TX, Y ], Z) +Ω([TX,Z], Y )−Ω([Y, Z], TX)} = 0.

SinceD⊥ andDθ are orthogonal andD⊥ is anti-invariant, using Theorem 3.2
and (2.5) we obtain

Y g(Z,FTX) + cos2 θ g([Y,Z], X)− g([Y,Z], FTX) = 0.

Since [Y,Z] ∈ Γ (TM) and FTX ∈ Γ (TM⊥) we derive

cos2 θ g([Y, Z], X) = 0.

M proper implies θ 6= π/2, hence [Y,Z] ∈ Γ (D⊥).

For the slant distribution Dθ, we have the following.

Theorem 3.6. Let M be a proper hemi-slant submanifold of a Kaehler
manifold M . Then the slant distribution Dθ is integrable if and only if

FP2[X,Y ] = h(X,TY )− h(TY,X) +∇⊥XFY −∇⊥Y FX
for X,Y ∈ Γ (Dθ).

Proof. Using (2.1), (2.2), (2.3), (2.5), (2.6) and taking the normal part
we get

JP1∇XY = h(X,TY ) +∇⊥XFY − FP2∇XY − Ch(X,Y )

for X,Y ∈ Γ (Dθ). Hence

JP1[X,Y ] = h(X,TY )− h(TY,X) +∇⊥XFY −∇⊥Y FX − FP2[X,Y ].

This proves our assertion.

According to Theorem 3.5, every hemi-slant submanifold M of a Kaehler
manifold M is foliated by totally real submanifolds. So in the rest of this
section, we are going to study the problem when a hemi-slant submanifold is
a Riemannian product of a totally real submanifold and a slant submanifold.
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Theorem 3.7. Let M be a proper hemi-slant submanifold of a Kaehler
manifold M . Then the distribution Dθ defines a totally geodesic foliation if
and only if

g(AJZTY,X) = g(AFTY Z,X)

for all X,Y ∈ Γ (Dθ) and Z ∈ Γ (D⊥).

Proof. From (2.2) we have g(∇XY, Z) = g(∇XY,Z) for X,Y ∈ Γ (Dθ)
and Z ∈ Γ (D⊥). Then from (2.1) we get g(∇XY,Z) = g(∇XJY, JZ). Using
(2.5), we obtain g(∇XY,Z) = g(∇XTY, JZ) + g(∇XFY, JZ). Hence,

g(∇XY,Z) = −g(TY,∇XJZ)− g(FY,∇XJZ).

Now, using (2.3) and (2.1) we obtain

g(∇XY, Z) = g(TY,AJZX) + g(JFY,∇XZ).

Then from (2.5) we get

g(∇XY,Z) = (TY,AJZX) + g(BFY,∇XZ) + g(CFY, h(X,Z)).

Thus from Corollary 3.1 we arrive at

g(∇XY,Z) = (TY,AJZX)− sin2 θ g(Y,∇XZ)− g(FTY, h(X,Z)).

Then from (2.4) we get

cos2 θ g(∇XY,Z) = g(AJZTY,X)− g(AFTY Z,X).

This proves the assertion of theorem.

Theorem 3.8. Let M be a proper hemi-slant submanifold of a Kaehler
manifold M . Then the distribution D⊥ defines a totally geodesic foliation
on M if and only if

g(AJWTX,Z) = g(AFTXW,Z)

for W,Z ∈ Γ (D⊥) and X ∈ Γ (Dθ).

Proof. From (2.1), (2.2), (2.3) and (2.5) we obtain

g(∇ZW,X) = −g(AJWZ, TX) + g(J∇ZW,FX)

for W,Z ∈ Γ (D⊥) and X ∈ Γ (Dθ). Using (2.2) and (2.4) we get

g(∇ZW,X) = −g(AJWZ, TX) + g(FP2∇ZW,FX)− g(h(Z,W ), JFX).

Thus using (2.6), (3.10) and Corollary 3.1 we derive

g(∇ZW,X) = −g(AJWZ, TX) + sin2 θ g(P2∇ZW,X)
+ g(h(Z,W ), FTX).

Hence, we arrive at

cos2 θ g(P2∇ZW,X) = −g(AJWTX,Z) + g(AFTXW,Z),

which proves the assertion.

Thus from Theorems 3.7 and 3.8 we have the following result:
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Corollary 3.2. Let M be a hemi-slant submanifold of a Kaehler man-
ifold M . Then M is a locally Riemannian product manifold M = M⊥ ×Mθ

if and only if
AJWTX = AFTXW

for X ∈ Γ (Dθ) and W ∈ Γ (D⊥), where M⊥ is a totally real submanifold
and Mθ is a slant submanifold of M .

Example 3.3. Consider the hemi-slant submanifold of R8 described in
Example 3.2. Then TM⊥ is spanned by N1, N2, N3, N4 where

N1 = sin θ1
∂

∂x5
+ cos θ1

∂

∂x6
, N2 = − cos θ2

∂

∂x7
− sin θ2

∂

∂x8
,

N3 = cos θ
∂

∂x3
+ sin θ

∂

∂x4
, N4 = sin θ

∂

∂x2
+

1
k

∂

∂x3
.

Then it is easy to see that Dθ = span{Z1, Z2} and D⊥ = span{Z3, Z4}
are integrable. Denote the leaves of D⊥ and Dθ by M⊥ and Mθ. Then the
induced metric tensor is

ds2 = dϕ2 + (1 + k2)dθ2 + dθ2
1 + dθ2

2.

Thus we have
g = gMθ

+ gM⊥ .

Consequently, M is a Riemannian product manifold. On the other hand, by
direct computations, we have

TZ1 = −Z2, TZ2 =
1

1 + k2
Z1.

Therefore

FTZ1 = − k2 sin θ
(k2 sin2 θ + 1)

N4,

FTZ2 = − k

1 + k2
N3 −

k2 cos θ
(1 + k2 sin2 θ)(1 + k2)

N4.

Hence we can deduce that the condition of Corollary 3.2 is satisfied.

4. Warped products M⊥×f Mθ in Kaehler manifolds. Let (B, g1)
and (F, g2) be two Riemannian manifolds, let f : B → (0,∞), and let
π : B×F → B and η : B×F → F the projection maps given by π(p, q) = p
and η(p, q) = q for every (p, q) ∈ B×F . The warped product ([2]) M = B×F
is the manifold B × F equipped with the Riemannian structure such that

g(X,Y ) = g1(π∗X,π∗Y ) + (f ◦ π)2g2(η∗X, η∗Y )

for all X, Y ∈ Γ (TM), where ∗ denotes the tangent map. The function f is
called the warping function of the warped product manifold. In particular, if
the warping function is constant, then the manifold M is said to be trivial.
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In the following, warped product manifold will mean non-trivial warped
product manifold.

Let X,Y be vector fields on B and V,W vector fields on F . Then from
Lemma 7.3 of [2], we have

(4.1) ∇XV = ∇VX =
Xf

f
V

where ∇ is the Levi-Civita connection on M .
In this section we investigate the existence of warped product subman-

ifolds M⊥ ×f Mθ of Kaehler manifolds such that M⊥ is a totally real sub-
manifold and Mθ is a proper slant submanifold of M . First, we have the
following:

Theorem 4.1 ([17, Theorems 3.1 and 3.2]). Let M be a Kaehler man-
ifold. Then there exist no warped product submanifolds M = MT ×f Mθ or
M = Mθ ×f MT of M such that MT is a holomorphic submanifold and Mθ

is a proper slant submanifold of M .

In fact, Theorem 4.1 tells us that there exist no warped product semi-
slant submanifolds (in the sense of Papaghiuc) in Kaehler manifolds. Now,
we are going to investigate warped products M = M⊥ ×f Mθ of a Kaehler
manifold M such that M⊥ is a totally real submanifold and Mθ is a proper
slant submanifold of M .

Theorem 4.2. Let M be a Kaehler manifold. Then there exist no warped
product submanifolds M = M⊥ ×f Mθ of M such that M⊥ is a totally real
submanifold and Mθ is a proper slant submanifold of M .

Proof. From (2.3) and (2.1) we have g(AJWTX,X) = g(∇TXW,JX)
for X ∈ Γ (TMθ) and W ∈ Γ (TM⊥). Then from (2.2) and (2.5) we get

g(AJWTX,X) = g(∇TXW,TX) + g(h(TX,W ), FX).

Using (4.1) we obtain

g(AJWTX,X) = W (ln f)g(TX, TX) + g(h(TX,W ), FX).

Thus from (2.4) and (3.10) we have

(4.2) g(h(TX,X), JW ) = cos2 θW (ln f)g(X,X) + g(h(TX,W ), FX)

for X ∈ Γ (TMθ) and W ∈ Γ (TM⊥). Replacing X by TX in (4.2), using
(3.10) and Theorem 3.2 we arrive at

(4.3) g(h(X,TX), JW ) = − cos2 θW (ln f)g(X,X) + g(h(X,W ), FTX)

for X ∈ Γ (TMθ) and W ∈ Γ (TM⊥). On the other hand, from (2.3) we have
g(AFXW,TX) = −g(∇WFX, TX) for X ∈ Γ (TMθ) and W ∈ Γ (TM⊥).
Then using (2.1) and (2.5) we get

g(AFXW,TX) = g(∇WX,JTX) + g(∇WTX, TX).
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Using (2.5), (2.2) and (4.1) we obtain

g(AFXW,TX) = g(∇WX,T 2X) + g(h(W,X), FTX) +W (ln f)g(TX, TX).

Here, considering (3.10) and Theorem 3.2, we arrive at

g(AFXW,TX) = − cos2 θ g(∇WX,X) + g(h(W,X), FTX)

+ cos2 θW (ln f)g(X,X).

Then using again (4.1) and (2.4), we derive

(4.4) g(h(TX,W ), FX) = g(h(W,X), FTX).

Thus from (4.2), (4.3) and (4.4) we conclude

2 cos2 θW (ln f) = 0.

Since Mθ is proper slant and Riemannian we obtain W (ln f) = 0, hence f
is constant, which proves our assertion.

From Theorems 4.1 and 4.2 we have the following corollary.

Corollary 4.1. Let M be a Kaehler manifold. Then there exist no
warped product submanifolds M = M1 ×f Mθ in M such that M1 is a holo-
morphic or totally real submanifold and Mθ is a proper slant submanifold
of M .

Remark 4.1. We note that Theorem 4.2 is a generalization of Theo-
rem 3.1 in [7]. In that case θ = 0.

5. Warped products Mθ ×f M⊥ in Kaehler manifolds. Theo-
rem 4.2 shows that there do not exist warped product hemi-slant submani-
folds of the form M⊥×fMθ in Kaehler manifolds. In this section, we consider
warped product hemi-slant submanifolds of the form Mθ×fM⊥, where Mθ is
a proper slant submanifold and M⊥ is a totally real submanifold of M . First,
we are going to give an example of a warped product hemi-slant submanifold
of the form Mθ ×f M⊥.

Example 5.1. Consider a submanifold M in R6 given by the equations

x1 = u1 cosu2, x2 = u3k cosu2, x3 = u1 sinu2,

x4 = u3k sinu2, x5 = u3, x6 = u1, k 6= 0, 1.

Then the tangent bundle TM is spanned by Z1, Z2 and Z3 where

Z1 = cosu2
∂

∂x1
+ sinu2

∂

∂x3
+

∂

∂x6
,

Z2 = k cosu2
∂

∂x2
+ k sinu2

∂

∂x4
+

∂

∂x5
,

Z3 = −u1 sinu2
∂

∂x1
− ku3 sinu2

∂

∂x2
+ u1 cosu2

∂

∂x3
+ ku3 cosu2

∂

∂x4
.
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ThenD⊥=span{Z3} is an anti-invariant distribution andDθ=span{Z1, Z2}
is a slant distribution with slant angle cos−1(1− k/

√
2(1 + k2)). Thus M is

a hemi-slant submanifold of R6. It is easy to see that Dθ is integrable. We
denote the integral manifolds of D⊥ and Dθ by M⊥ and Mθ, respectively.
Then the metric tensor g of M is

g = 2du2
1 + (1 + k2)du2

3 + (u2
1 + k2 u2

3)du2
2

= gMθ
+ (u2

1 + k2 u2
3)gM⊥ .

Thus M is a warped product submanifold of R6 of the form Mθ×fM⊥ with
warping function

√
u2

1 + k2 u2
3.

Remark 5.1. It is easy to see that every CR-warped product subman-
ifold is a warped product hemi-slant submanifold of the form Mθ ×f M⊥
with slant angle θ = 0. Thus warped product hemi-slant submanifolds of
the form Mθ ×f M⊥ are a generalization of CR-warped product submani-
folds of Kaehler manifolds.

From now on, we will consider warped product hemi-slant submanifolds
M = Mθ ×f M⊥ such that Mθ is a proper slant submanifold and M⊥ is a
totally real submanifold of a Kaehler manifold M .

Lemma 5.1. Let M = Mθ ×f M⊥ be a warped product submanifold of a
Kaehler manifold M . Then

(5.1) g(h(X,Z), JW ) = g(h(Z,W ), FX)− TX(ln f)g(Z,W )

for X ∈ Γ (TMθ) and Z,W ∈ Γ (TM⊥).

Proof. From (2.3) we have g(h(TX,Z), JW ) = g(∇ZTX, JW ) for X ∈
Γ (TMθ) and Z ∈ Γ (TM⊥). Thus using (2.1) and (2.5) we get

g(h(TX,Z), JW ) = g(∇ZJX, JW )− g(∇ZFX, JW ).

Using again (2.1) and (2.2) we obtain

g(h(TX,Z), JW ) = g(∇ZX,W ) + g(∇ZJFX,W ).

Thus, from (4.1) and (2.6) we arrive at

g(h(TX,Z), JW ) = X(ln f)g(Z,W ) + g(∇ZBFX,W ) + g(∇ZCFX,W ).

Then Corollary 3.1, (2.2) and (2.3) imply

g(h(TX,Z), JW ) = X(ln f)g(Z,W )− sin2 θ g(∇ZX,W ) + g(AFTXZ,W ).

Hence, using (4.1) and (2.4) we have

g(h(TX,Z), JW ) = cos2 θ X(ln f)g(Z,W ) + g(h(Z,W ), FTX).

Replacing X by TX and using Theorem 3.2 we conclude that

g(h(X,Z), JW ) = g(h(Z,W ), FX)− TX(ln f)g(Z,W ).
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We say that a hemi-slant submanifold is mixed geodesic if

(5.2) h(X,Z) = 0

for every X ∈ Γ (Dθ) and Z ∈ Γ (D⊥).
Next, we give a characterization of warped product hemi-slant subman-

ifolds of the form Mθ ×f M⊥. First recall that we have the following result
of Hiepko [12] (cf. [10, Remark 2.1]): Let D1 be a vector subbundle in the
tangent bundle of a Riemannian manifold M and D2 be its normal bundle.
Suppose that the two distributions are involutive. Denote the integral mani-
folds of D1 and D2 by M1 and M2, respectively. Then M is locally isometric
to a warped product M1×fM2 if the integral manifold M1 is totally geodesic
and the integral manifold M2 is an extrinsic sphere, i.e., M2 is a totally
umbilical submanifold with parallel mean curvature vector.

Theorem 5.1. Let M be a mixed geodesic proper hemi-slant submanifold
of a Kaehler manifold M . Then M is a locally warped product submanifold
of the form Mθ ×f M⊥ if and only if

AJZY = 0 and AFTY Z = − cos2 θ Y (µ)Z, ∀Y ∈ Γ (Dθ), Z ∈ Γ (D⊥),

where µ is a function on M such that W (µ) = 0 for every W ∈ Γ (D⊥).

Proof. LetM = Mθ×fM⊥ be a warped product submanifold ofM . Then
Mθ is totally geodesic in M . Thus ∇XY ∈ Γ (TMθ). Then from Theorem
3.7 we have

g(AJZTY,X) = g(AFTY Z,X).

Since M is mixed geodesic, using (2.4) we get g(AJZTY,X) = 0, which
shows that AJZTY has no components in TMθ. On the other hand, we get

g(AJZTY,W ) = g(h(TY,W ), JZ) = 0

since M is mixed geodesic. Thus AJZTY = 0. Replacing Y by TY , and
using Theorem 3.2, we have AJZY = 0. Then using (5.1) we obtain

g(h(W,Z), FTY ) = − cos2 θ Y (ln f)g(Z,W ).

Since M mixed geodesic implies AFTYW ∈ Γ (D⊥), we conclude that µ =
ln f . Let us prove the converse. Suppose that M is a mixed geodesic hemi-
slant submanifold such that

AJZY = 0 and AFTY Z = − cos2 θ Y (µ)Z, ∀Y ∈ Γ (Dθ), Z ∈ Γ (D⊥).

Then from Theorem 3.7, Dθ is integrable and its integral manifold is totally
geodesic in M . Also, from Theorem 3.5, D⊥ is always integrable in M . Let
M⊥ and Mθ be the integral manifolds of D⊥ and Dθ, respectively. We denote
the second fundamental form of M⊥ in M by h2. Then from (2.2) we get
g(h2(Z,W ), X) = g(∇ZW,X) for Z,W ∈ Γ (D⊥) and X ∈ Γ (Dθ). Using
(2.1) and (2.5) we obtain g(h2(Z,W ), X) = g(∇ZJW, TX)+g(∇ZJW,FX).
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Then taking into account that A is self-adjoint, (2.1) and (2.3) imply

g(h2(Z,W ), X) = −g(AJWTX,Z)− g(∇ZW,JFX).

By assumption, we have AJWTX = 0. Thus using (2.6) and (2.2) we obtain

g(h2(Z,W ), X) = −g(∇ZW,BFX)− g(h(Z,W ), CFX).

Here, considering Corollary 3.1 we have

g(h2(Z,W ), X) = sin2 θ g(∇ZW,X) + g(h(Z,W ), FTX).

Hence, we arrive at

g(h2(Z,W ), X) = sin2 θ g(h2(Z,W ), X) + g(h(Z,W ), FTX).

As a result,
g(h2(Z,W ), X) = sec2 θ g(AFTXZ,W ).

Thus, by hypothesis,

g(h2(Z,W ), X) = −X(µ)g(Z,W ),

which shows that M⊥ is totally umbilical in M . Moreover, by direct com-
putations, we get

g(∇Z gradµ,X) = g(∇Z gradµ,X)
= [Zg(gradµ,X)− g(gradµ,∇ZX)]
= [Z(X(µ))− [Z,X]µ− g(gradµ,∇XZ)]
= [[Z,X]µ+X(Z(µ))− [Z,X]µ− g(gradµ,∇XZ)]
= [X(Z(µ))− g(gradµ,∇XZ)].

Since Z(µ) = 0, we obtain

g(∇Z gradµ,X) = g(gradµ,∇XZ).

On the other hand, since gradµ ∈ Γ (TMθ) and Mθ is totally geodesic in
M, it follows that ∇XZ ∈ Γ (TM⊥) for X ∈ Γ (Dθ) and Z ∈ Γ (D⊥). Hence
g(∇Z gradµ,X) = 0. Then the spherical condition is also satisfied, that is,
M⊥ is an extrinsic sphere in M . Thus we conclude that M is a warped
product and the proof is complete.

Remark 5.2. We note that the condition (5.2) in Theorem 5.1 is mean-
ingless for CR-warped product submanifolds of Kaehler manifolds, because,
from Lemma 4.1(5) of [7], it follows that any mixed geodesic CR-warped
product submanifold is a CR-product. But that result is not true for mixed
geodesic hemi-slant submanifolds. In the following we present an example
of a mixed geodesic warped product hemi-slant submanifold which is not
trivial.

Example 5.2. Let M be a submanifold of R8 given by

χ(u, v, θ) = (u, v, cos v, sin v, 0, u sin θ, 0, u cos θ)
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for θ ∈ (0, π/2), u 6= 0, and v 6= 0. Then the tangent bundle TM is spanned
by

Z1 =
∂

∂x1
+ sin θ

∂

∂x6
+ cos θ

∂

∂x8
,

Z2 =
∂

∂x2
− sin v

∂

∂x3
+ cos v

∂

∂x4
,

Z3 = u cos θ
∂

∂x6
− u sin θ

∂

∂x8
.

Then it is easy to see that Dϕ = span{Z1, Z2} is a slant distribution with
slant angle ϕ = π/3. It is also easy to show that D⊥ = span{Z3} is an
anti-invariant distribution. Thus M is a hemi-slant submanifold. Moreover,
we can see that Dϕ and D⊥ are integrable. Denote the integral manifolds of
Dϕ and D⊥ by Mϕ and M⊥, respectively. Then the metric tensor of M is

g = 2du2 + 2dv2 + u2dθ2.

Hence we have
g = gMϕ + u2 gM⊥ .

Thus M is a warped product hemi-slant submanifold of R8 with warping
function f = u. On the other hand, the normal bundle TM⊥ is spanned by

W1 = sin θ
∂

∂x5
+ cos θ

∂

∂x7
, W2 = − ∂

∂x1
+ sin θ

∂

∂x6
+ cos θ

∂

∂x8
,

W3 = cos v
∂

∂x2
− ∂

∂x4
, W4 = sin v

∂

∂x2
+

∂

∂x3
,

W5 = −u cos θ
∂

∂x5
+ u sin θ

∂

∂x7
.

Then using the Gauss formula, we have

h(Z1, Z2) = 0, h(Z1, Z3) = 0, h(Z2, Z3) = 0, h(Z1, Z1) = 0

and

h(Z2, Z2) =
sin v

1 + cos2 v
W3 −

cos v
1 + sin2 v

W4, h(Z3, Z3) = −u
2
W2.

Thus, M is mixed geodesic, but it is neither totally geodesic nor totally
umbilical.

Lemma 5.2. Let M be a warped product hemi-slant submanifold of a
Kaehler manifold M of the form Mθ ×f M⊥. Then

(5.3) g(h(X,Y ), JZ) = g(h(X,Z), FY )

for X,Y ∈ Γ (TMθ) and Z ∈ Γ (TM⊥).

Proof. From (2.2) we have g(h(X,Y ), JZ) = g(∇XY, JZ). Then us-
ing (2.1) we get g(h(X,Y ), JZ) = −g(∇XJY, Z). Hence, g(h(X,Y ), JZ) =
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g(JY,∇XZ). Thus, from (2.5) we derive g(h(X,Y ), JZ) = g(TY,∇XZ) +
g(h(X,Z), FY ). Then (4.1) implies (5.3).

Let M be an (m + n)-dimensional proper hemi-slant submanifold of a
Kaehler manifold Mm+n. Then we choose a canonical orthonormal frame
{e1, . . . , em, e1, . . . , en, Je1, . . . , Jem, e∗1, . . . , e∗n} of M such that, restricted
to M , e1, . . . , em, e1, . . . , en are tangent to M . Then {e1, . . . , em, e1, . . . , en}
form an orthonormal frame ofM . We can take {e1, . . . , em, e1, . . . , en} in such
a way that {e1, . . . , em} form an orthonormal frame of D⊥ and {e1, . . . , en}
form an orhonormal frame of Dθ, where dim(D⊥) = m and dim(Dθ) = n.
We can take {Je1, . . . , Jem, e∗1, . . . , e∗n} in such a way that {Je1, . . . , Jen}
form an orthonormal frame of J(D⊥) and {e∗1, . . . , e∗n} form an orthonormal
frame of F (Dθ). It is known that a proper slant submanifold is always
even-dimensional. Hence, n = 2p. Then we can choose orthonormal frames
{e1, . . . , e2p} of Dθ and {e∗1, . . . , e∗n} of F (Dθ) in such a way that

e1 = sec θ Te1, . . . , e2p = sec θ Te2p−1,

e∗1 = csc θFe1, . . . , e∗2p = csc θ Fe2p,

where θ is the slant angle. We note that such an orthonormal frame is called
an adapted frame [6].

Theorem 5.2. Let M be an (m+n)-dimensional mixed geodesic warped
product submanifold of the form Mθ ×f M⊥ in a Kaehler manifold Mm+n,
where Mθ is a proper slant submanifold and M⊥ is a totally real submanifold
of Mm+n. Then

(i) The squared norm of the second fundamental form of M satisfies

(5.4) ‖h‖2 ≥ m cot2 θ ‖∇(ln f)‖2, dim(M⊥) = m.

(ii) If equality holds identically in (5.4), then Mθ is a totally geodesic
submanifold and M2 is a totally umbilical submanifold of M . More-
over , M is never a minimal submanifold of M .

Proof. Since

‖h‖2 = ‖h(Dθ, Dθ)‖2 + ‖h(D⊥, D⊥)‖2 + 2‖h(Dθ, D⊥)‖2,

if M is mixed geodesic we have

‖h‖2 =
m+2p∑
k=1

m∑
i,j=1

g(h(ei, ej), ẽk)2 +
m+2p∑
k=1

2p∑
r,s=1

g(h(er, es), ẽk)2,

where {ẽk} is an orthonormal basis of TM⊥. Now, considering the adapted
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frame, we can rewrite the above equation as

‖h‖2 =
m∑
l=1

m∑
i,j=1

g(h(ei, ej), Jel)2 +
2p∑
a=1

m∑
i,j=1

g(h(ei, ej), csc θ Fea)2

+
m∑
l=1

2p∑
r,s=1

g(h(er, es), Jel)2 +
2p∑
a=1

2p∑
r,s=1

g(h(er, es), csc θ Fea)2.

Then, from (5.1) and (5.3), we obtain

‖h‖2 =
m∑
l=1

m∑
i,j=1

g(h(ei, ej), Jel)2 +
2p∑
a=1

m∑
i,j=1

csc2 θ (Tea(ln f))2g(ei, ej)2

+
2p∑
a=1

2p∑
r,s=1

g(h(er, es), csc θ Fea)2.

Hence,

‖h‖2 =
m∑
l=1

m∑
i,j=1

g(h(ei, ej), Jel)2 +m

2p∑
a=1

csc2 θ (Tea(ln f))2(5.5)

+
2p∑
a=1

2p∑
r,s=1

g(h(er, es), csc θ Fea)2.

On the other hand, by direct computations, using adapted frame, we get

2p∑
a=1

csc2 θ (Tea(ln f))2

= [Te1(ln f)]2 csc2 θ + [sec θ T 2e1(ln f)]2 csc2 θ

+ [Te2(ln f)]2 csc2 θ + [sec θ T 2e2(ln f)]2 csc2 θ + · · ·

+ [Te2p−1(ln f)]2 csc2 θ + [sec θ T 2e2p−1(ln f)]2 csc2 θ.

Then, rearranging this equation and using Theorem 3.2, we arrive at

2p∑
a=1

csc2 θ (Tea(ln f))2

= [sec θ Te1(ln f)]2 cos2 θ csc2 θ + [cos θ e1(ln f)]2 csc2 θ

+ [sec θ Te2(ln f)]2 cos2 θ csc2 θ + [cos θ e2(ln f)]2 csc2 θ + · · ·

+ [sec θ Te2p−1(ln f)]2 cos2 θ csc2 θ + [cos θ e2p−1(ln f)]2 csc2 θ.
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Hence we get

(5.6)
2p∑
a=1

csc2 θ (Tea(ln f))2 = cot2 θ ‖∇(ln f)‖2.

Thus using (5.6) in (5.5) we obtain the inequality (5.4). If equality holds in
(5.4), we have

(5.7)
m∑
l=1

m∑
i,j=1

g(h(ei, ej), Jel)2 = 0,
2p∑
a=1

2p∑
r,s=1

g(h(er, es), csc θ Fea)2 = 0.

Since M is mixed geodesic, from (5.3) we also have

(5.8) g(h(X,Y ), JZ) = 0, ∀X,Y ∈ Γ (TMθ), Z ∈ Γ (TM⊥).

Since Mθ is totally geodesic in M , the second condition of (5.7) and (5.8)
imply thatMθ is totally geodesic inM . On the other hand, the first condition
of (5.7) implies

h(Z,W ) ∈ Γ (F (Dθ)).

From (5.1) we get

(5.9) g(h(Z,W ), FX) = TX(ln f)g(Z,W )

for Z,W ∈ Γ (T⊥) and X ∈ Γ (TMθ). These equations imply that M⊥ is
totally umbilical in M . Moreover, from (5.9) and (5.6) we conclude that if
M is minimal, then ‖∇(ln f)‖2 = 0, which is a contradiction.

Remark 5.3. It is well known that the semi-slant submanifolds were
introduced as a generalization of proper slant and proper CR-submanifolds.
From Theorem 4.1, it follows that the semi-slant submanifolds in the sense
of N. Papaghiuc are not useful to generalize the CR-warped products. But,
from Remark 5.1 and Examples 5.1–5.2, one can conclude that warped prod-
uct hemi-slant submanifolds of the form Mθ ×f M⊥ are a generalization of
CR-warped products in Kaehler manifolds.
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