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Solutions for a class of hemivariational inequalities
with p(x)-Laplacian

by Xia Zhang and Yongqiang Fu (Harbin)

Abstract. We study a class of hemivariational inequalities with p(x)-Laplacian.
Applying nonsmooth critical point theory for locally Lipschitz functions, we obtain the
existence of solutions on interior and exterior domains.

1. Introduction and main results. Since the paper by Kováčik and
Rákosńık [12] where the spaces Lp(x) and W 1,p(x) were thoroughly stud-
ied, variable exponent Sobolev spaces have been used extensively to model
various phenomena. In [17] Růžička applied them in the study of electro-
rheological fluids. In recent years, the differential equations and variational
problems with p(x)-growth conditions have been extensively investigated
(see for example [1, 9, 10, 14]).

Here we discuss a class of hemivariational inequalities with p(x)-Lapla-
cian. Hemivariational inequalities arise in problems of mechanics and engi-
neering, when one considers more realistic laws of nonmonotone and multi-
valued nature. For concrete applications, we refer to Naniewicz–Panagioto-
poulos [15] and Panagiotopoulos [16]. In this paper, we study the following
hemivariational inequality:

(1.1)


u ∈W 1,p(x)

0 (Ω),�

Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv) dx

+
�

Ω

F 0
x (x, u(x);−v(x)) dx ≥ 0, ∀v ∈W 1,p(x)

0 (Ω),

where Ω ⊂ RN is a domain, p is Lipschitz continuous on Ω and satisfies
1 < p− ≤ p(x) ≤ p+ < N.
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Now we recall some basic properties of variable exponent spaces Lp(x)(Ω)
and variable exponent Sobolev spaces W 1,p(x)(Ω), where Ω ⊂ RN is a do-
main. For a deeper treatment of these spaces, we refer to [5, 6, 12].

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞)
and for p ∈ P(Ω) set

(1.2) |u|p(x) = inf
{
λ > 0 :

�

Ω

|u/λ|p(x) dx ≤ 1
}
.

The variable exponent space Lp(x)(Ω) is the class of all functions u such that	
Ω |u(x)|p(x) dx <∞; it is a Banach space equipped with the norm (1.2).

The variable exponent Sobolev space W 1,p(x)(Ω) is the class of all func-
tions u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω); it can be equipped with the
norm

(1.3) ‖u‖1,p(x) = |u|p(x) + |∇u|p(x).

We denote by W
1,p(x)
0 (Ω) the subspace of W 1,p(x)(Ω) which is the closure

of C∞0 (Ω) with respect to the norm (1.3); if Ω ⊂ RN is a bounded domain,
then ‖u‖1,p(x) and |∇u|p(x) are equivalent norms on W

1,p(x)
0 (Ω).

For all p ∈ P(Ω), we write
p+ = sup

x∈Ω
p(x), p− = inf

x∈Ω
p(x),

and denote by p1 � p2 the fact that infx∈Ω(p2(x)− p1(x)) > 0.
Throughout this paper, we assume that F : Ω×R→ R is a Carathéodory

function which is locally Lipschitz in the second variable and F (x, 0) = 0
for all x ∈ Ω. F 0

x (x, s; z) is the generalized directional derivative of F (x, ·)
at s ∈ R in direction z ∈ R.

In addition, we need various conditions on F corresponding to the cases
when Ω is an interior or exterior domain. Firstly, consider the case when Ω
is an interior domain, i.e. Ω is bounded.

(H1) There exists α ∈ C(Ω) with p(x)� α(x)� p∗(x) such that

|ξ| ≤ a0 + a1|t|α(x)−1

for all (x, t) ∈ Ω × R and ξ ∈ ∂F (x, t), where ∂F (x, t) is the
generalized gradient of F (x, ·) at t ∈ R, and a0, a1 > 0.

(H2) There exists p(x) � µ such that µF (x, t) ≤ −F 0
x (x, t;−t) for all

(x, t) ∈ Ω × R. Moreover, there exist an open set Ω0 ⊂ Ω and
a2, a3 > 0 such that F (x, t) ≥ a2|t|µ − a3 for any (x, t) ∈ Ω0 × R.

(H3) limt→0 max{|ξ| : ξ ∈ ∂F (x, t)}/|t|p(x)−1 = 0 uniformly for almost
every x ∈ Ω.

(H4) There exists β ∈ P(Ω) with 1 < β− ≤ β(x)� p(x) such that
|ξ| ≤ b0 + b1|t|β(x)−1

for all (x, t) ∈ Ω × R and ξ ∈ ∂F (x, t), where b0, b1 > 0.
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(H5) Let β(x) be as in (H4). There exist b2 > 0, 0 < δ < 1 and an open
set Ω0 ⊂ Ω such that F (x, t) ≥ b2|t|β(x) for all (x, t) ∈ Ω0 × (0, δ).

Under these conditions, we get the following results.

Theorem 1.1. Let Ω ⊂ RN be a bounded domain. Under hypotheses
(H1)–(H3), problem (1.1) has at least one non-trivial solution.

Theorem 1.2. Let Ω ⊂ RN be a bounded domain. Under hypotheses
(H4), (H5), problem (1.1) has at least one non-trivial solution.

We now consider the case when Ω is an exterior domain, i.e. the com-
plement of a bounded domain.

(H6) |ξ| ≤ g(x)|t|α(x)−1 for all (x, t) ∈ Ω × R and ξ ∈ ∂F (x, t), where
α ∈ P(Ω) with p(x) � α(x) � p∗(x), g(x) ≥ 0 and g ∈ L∞(Ω) ∩
Lq1(x)(Ω) with q1(x) = p∗(x)/(p∗(x)− α(x)).

(H7) |ξ| ≤ h(x)|t|β(x)−1 for all (x, t) ∈ Ω × R and ξ ∈ ∂F (x, t), where
β ∈ P(Ω) with 1 < β− ≤ β(x)� p(x), h(x) ≥ 0 and h ∈ L∞(Ω)∩
Lq2(x)(Ω) with q2(x) = p∗(x)/(p∗(x)− β(x)).

With these assumptions we have the following results.

Theorem 1.3. Assume hypotheses (H2), (H6) hold and Ω ⊂ RN is an
exterior domain. Then problem (1.1) has at least one non-trivial solution.

Theorem 1.4. Assume hypotheses (H5), (H7) hold and Ω ⊂ RN is an
exterior domain. Then problem (1.1) has at least one non-trivial solution.

2. Critical point theory for locally Lipschitz functions. In this
paper, our approach is mainly based on variational methods for nondif-
ferentiable functionals, namely, locally Lipschitz functionals. For a deeper
treatment of this theory, we refer to [2, 3, 4, 13]. Now we present some basic
definitions and preliminary results.

Let (X, ‖ · ‖) be a Banach space, X∗ its topological dual, and ϕ : X → R
a locally Lipschitz function. The generalized directional derivative of ϕ at
u ∈ X in direction v ∈ X is defined by

ϕ0(u; v) = lim sup
w→u
t→0+

ϕ(w + tv)− ϕ(w)
t

.

The generalized gradient of ϕ at u ∈ X is the set

∂ϕ(u) = {w∗ ∈ X∗ : 〈w∗, v〉 ≤ ϕ0(u; v), ∀v ∈ X},
where 〈·, ·〉 is the duality pairing between X∗ and X. A point u ∈ X is
a critical point of ϕ if 0 ∈ ∂ϕ(u). If u ∈ X is a critical point, the value
c = ϕ(u) is a critical value of ϕ.
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In the classical (smooth) theory, a basic analytical tool is a compactness-
type condition, known as the Palais–Smale condition. In the present non-
smooth setting this condition takes the following form: A locally Lipschitz
function ϕ : X → R satisfies the nonsmooth Palais–Smale (P.S.) condition
if every sequence {un} ⊂ X such that ϕ(un) is bounded and

λ(un) = min{‖w∗‖X∗ : w∗ ∈ ∂ϕ(un)} → 0

as n→∞, has a convergent subsequence in X.

Proposition 2.1. If X is a reflexive Banach space, ϕ : X → R is
a locally Lipschitz function which satisfies the nonsmooth (P.S.) condition
and for some r > 0 and x1, x2 with ‖x1 − x2‖X > r, we have

max{ϕ(x1), ϕ(x2)} < inf{ϕ(x) : ‖x− x1‖X = r},

then there exists a critical point y0 ∈ X of ϕ such that

c = ϕ(y0) ≥ inf{ϕ(x) : ‖x− x1‖X = r}

and c is defined by the following minimax formula:

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = x1, γ(1) = x2}.

Proposition 2.2. If X is a reflexive Banach space, and ϕ : X → R is
a locally Lipschitz function which satisfies the nonsmooth (P.S.) condition
and is bounded from below , then c = infu∈X ϕ(u) is a critical value of ϕ.

3. The case of interior domain. Throughout this section, we as-
sume that Ω ⊂ RN is a bounded domain and denote by ci various positive
constants. In order to discuss the problem (1.1), we need to define two func-
tionals on W

1,p(x)
0 (Ω) :

ψ(u) =
�

Ω

F (x, u) dx,

ϕ(u) = J(u)− ψ(u) =
�

Ω

|∇u|p(x) + |u|p(x)

p(x)
dx− ψ(u).

Theorem 3.1. Under condition (H1) or (H4), ψ is well defined and is
a locally Lipschitz functional on W

1,p(x)
0 (Ω).

Proof. Here we only consider the case where F satisfies (H1).
(i) ψ is well defined. For all t1, t2 ∈ R, by Lebourg’s mean value theorem

(see [4]), there exist θ ∈ (0, 1) and ξθ ∈ ∂F (x, θt1 + (1− θ)t2) such that

F (x, t1)− F (x, t2) = ξθ(t1 − t2)
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for all x ∈ Ω. By condition (H1), we get

|F (x, t1)− F (x, t2)| ≤ (a0 + a1|θt1 + (1− θ)t2|α(x)−1)|t1 − t2|
≤ (a0 + c1|t1|α(x)−1 + c1|t2|α(x)−1)|t1 − t2|.

We also get

|ψ(u)| ≤
�

Ω

|F (x, u)| dx ≤
�

Ω

(a0 + c1|u|α(x)−1)|u| dx.

By Theorem 1.1 in [8], we have u ∈ L1(Ω) and u ∈ Lα(x)(Ω) for all u ∈
W

1,p(x)
0 (Ω). Hence |ψ(u)| <∞.

(ii) ψ is locally Lipschitz on W
1,p(x)
0 (Ω). Note that for all u1, u2 ∈

W
1,p(x)
0 (Ω),

|ψ(u1)− ψ(u2)| ≤
�

Ω

|F (x, u1)− F (x, u2)| dx

≤
�

Ω

(a0 + c1|u1|α(x)−1 + c1|u2|α(x)−1)|u1 − u2| dx

≤ c2|1 + |u1|α(x)−1 + |u2|α(x)−1|α′(x) · |u1 − u2|α(x)

≤ c3 |1 + |u1|α(x)−1 + |u2|α(x)−1|α′(x) · |∇u1 −∇u2|p(x).
Hence it is easy to get the result.

Theorem 3.2. Under condition (H1) or (H4), for all u, v ∈W 1,p(x)
0 (Ω)

we have
ψ0(u; v) ≤

�

Ω

F 0
x (x, u(x); v(x)) dx.

Proof. We only consider the case where F satisfies (H1).
(i)

	
Ω F

0
x (x, u(x); v(x)) dx < ∞. In fact, F (x, ·) is continuous for all

x ∈ Ω, thus

lim sup
y→u(x)
t→0+

F (x, y + tv(x))− F (x, y)
t

= lim sup
z→0
t→0+

F (x, z + u(x) + tv(x))− F (x, z + u(x))
t

= lim sup
zn→0
tn→0+

F (x, zn + u(x) + tnv(x))− F (x, zn + u(x))
tn

,

where zn, tn are rational values. As u(x), v(x) are measurable, we see that
F 0
x (x, u(x); v(x)), being the “countable limsup” of measurable functionals

of x, is also measurable.



278 X. Zhang and Y. Q. Fu

We know F 0
x (x, u(x); v(x)) = max{ξ · v(x) : ξ ∈ ∂F (x, u(x))} , ξx · v(x)

for all x ∈ Ω. By condition (H1), we get

|F 0
x (x, u(x); v(x))| = |ξx · v(x)| ≤ a0|v(x)|+ a1|v(x)| · |u(x)|α(x)−1,

and so F 0
x (x, u(x); v(x)) ∈ L1(Ω).

(ii) ψ0(u; v) ≤
	
Ω F

0
x (x, u(x); v(x)) dx. By the definition of ψ0(u; v),

there exist tn → 0+ and wn → u in W
1,p(x)
0 (Ω) such that

ϕ0(u; v) = lim
wn→u
tn→0+

ϕ(wn + tnv)− ϕ(wn)
tn

.

Passing to a subsequence, still denoted by {wn}, we may assume that
wn(x)→ u(x) a.e. in Ω as n→∞. Set

An(x) =
F (x,wn(x) + tnv(x))− F (x,wn(x))

tn
,

Bn(x) = (a0 + c1|wn(x) + tnv(x)|α(x)−1 + c1|wn(x)|α(x)−1)|v(x)|,
gn(x) = −An(x) +Bn(x).

It is easy to verify that gn(x) ≥ 0 for all x ∈ Ω,

lim sup
n→∞

�

Ω

−gn(x) dx ≤
�

Ω

lim sup
n→∞

(−gn(x)) dx.

Note that�

Ω

lim sup
n→∞

(−gn(x)) dx =
�

Ω

lim sup
n→∞

(An(x)−Bn(x)) dx,

�

Ω

lim sup
n→∞

An(x) dx ≤
�

Ω

lim sup
y→u(x)
t→0+

F (x, y + tv(x))− F (x, y)
t

dx

=
�

Ω

F 0
x (x, u(x); v(x)) dx,

�

Ω

lim inf
n→∞

Bn(x) dx =
�

Ω

(a0 + 2c1|u(x)|α(x)−1)|v(x)| dx.

Therefore�

Ω

lim sup
n→∞

(−gn(x)) dx ≤
�

Ω

F 0
x (x, u(x); v(x)) dx

−
�

Ω

(a0 + 2c1|u(x)|α(x)−1)|v(x)| dx.

For all (x, t) ∈ Ω×R, define f(x, t) = |v(x)| · |t|α(x)−1. Then there exists
c4 > 0 such that |f(x, t)| ≤ c4(1 + |v|p∗(x) + |t|p∗(x)). We know that the
Nemytskĭı operator

Nf : Lp
∗(x)(Ω)→ L1(Ω) : u 7→ f(x, u)

is continuous. By Theorem 1.1 in [8], wn → u in Lp
∗(x)(Ω), so
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f(x,wn + tnv)→ f(x, u)
in L1(Ω). Thus �

Ω

|wn + tnv|α(x)−1|v| dx→
�

Ω

|u|α(x)−1|v| dx

and
	
Ω Bn(x) dx→

	
Ω(a0 + 2c1|u(x)|α(x)−1)|v(x)| dx as n→∞. Hence

lim sup
n→∞

�

Ω

−gn(x) dx = ψ0(u; v)−
�

Ω

(a0 + 2c1|u(x)|α(x)−1)|v(x)| dx.

Now the proof is complete.

Theorem 3.3. Under condition (H1) or (H4), any critical point of ϕ is
a solution of (1.1).

Proof. It is easy to verify that J ∈ C1(W 1,p(x)
0 (Ω),R). Combining this

with Theorem 3.1, we find that ϕ is locally Lipschitz. If u is a critical point
of ϕ, then 0 ∈ ∂ϕ(u). Thus for any v ∈ W 1,p(x)

0 (Ω), ϕ0(u; v) ≥ 0. Noting
that

ϕ0(u; v) = 〈J ′(u), v〉+ (−ψ)0(u; v) = 〈J ′(u), v〉+ ψ0(u;−v)

≤
�

Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv) dx+
�

Ω

F 0
x (x, u(x);−v(x)) dx,

it is easy to get the result.

Lemma 3.1. Under conditions (H1), (H2), ϕ satisfies the (P.S.) condi-
tion.

Proof. Take {un} ⊂W 1,p(x)
0 (Ω) such that ϕ(un) is bounded and

λ(un) = min{‖w∗‖W−1,p′(x)(Ω) : w∗ ∈ ∂ϕ(un)} , ‖w∗n‖W−1,p′(x)(Ω) → 0

as n→∞. Then

ϕ0(un; vn) ≥ 〈w∗n, un〉, −ϕ0(un; vn) ≤ ‖w∗n‖ · |∇un|p(x).

(i) {un} is bounded in W
1,p(x)
0 (Ω). In fact, as µ� p(x), we get

c5 + |∇un|p(x) ≥ ϕ(un)− 1
µ
ϕ0(un;un)

= ϕ(un)−
〈
J ′(un),

un
µ

〉
− 1
µ
ψ0(un;−un)

≥
�

Ω

(
1

p(x)
− 1
µ

)
|∇un|p(x) dx

−
�

Ω

(
F (x, un) +

1
µ
F 0
x (x, un(x);−un(x))

)
dx

≥
�

Ω

(
1

p(x)
− 1
µ

)
|∇un|p(x) dx
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when n is sufficiently large. It is easy to deduce that {un} is bounded in
W

1,p(x)
0 (Ω).

(ii) {un} has a convergent subsequence. In fact, asW 1,p(x)
0 (Ω) is reflexive,

passing to a subsequence, still denoted by {un}, we may assume that there
exists u ∈W 1,p(x)

0 (Ω) such that un → u weakly in W 1,p(x)
0 (Ω). Then un → u

in Lα(x)(Ω) and in Lp(x)(Ω). Noting that

ϕ0(un;u− un) = 〈J ′(un), u− un〉+ ψ0(un;un − u),

ϕ0(u;un − u) = 〈J ′(u), un − u〉+ ψ0(u;u− un),
we get

〈J ′(un)− J ′(u), un − u〉
= ψ0(un;un − u) + ψ0(u;u− un)− ϕ0(un;u− un)− ϕ0(u;un − u).

For all w∗ ∈ ∂ϕ(u), ϕ0(u;un − u) ≥ 〈w∗, un − u〉, so

lim inf
n→∞

ϕ0(u;un − u) ≥ 0.

As ϕ0(un;u− un) ≥ 〈w∗n, u− un〉 ≥ −c5‖w∗n‖, we have

lim inf
n→∞

ϕ0(un;u− un) ≥ 0.

By Theorem 3.2, we get

ψ0(un;un − u) + ψ0(u;u− un)

≤
�

Ω

F 0
x (x, un(x);un(x)− u(x)) dx+

�

Ω

F 0
x (x, u(x);u(x)− un(x)) dx

≤
�

Ω

max{ξ · (un(x)− u(x)) : ξ ∈ ∂F (x, un(x))} dx

+
�

Ω

max{ξ · (u(x)− un(x)) : ξ ∈ ∂F (x, u(x))} dx

≤
�

Ω

c6(1 + |un|α(x)−1 + |u|α(x)−1)|un − u| dx

≤ c7|1 + |un|α(x)−1 + |u|α(x)−1|α′(x) · |un − u|α(x) ≤ c8|un − u|α(x) → 0.

Thus lim supn→∞〈J ′(un)−J ′(u), un−u〉 ≤ 0. Similar to Theorem 3.1 in [1],
we conclude that un → u in W

1,p(x)
0 (Ω).

Lemma 3.2. We have ϕ(0) = 0. Under conditions (H1), (H3), there
exist r1, s1 > 0 such that ϕ(u) > 0 for 0 < |∇u|p(x) ≤ r1 and ϕ(u) > s1 for
|∇u|p(x) = r1.

Proof. It is easy to show that ϕ(0) = 0. By condition (H3), for all ε > 0,
there exists δ > 0 such that

max{|ξ| : ξ ∈ ∂F (x, t)} ≤ ε|t|p(x)−1
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for all |t| < δ and x ∈ Ω. By Lebourg’s mean value theorem, there exist
θ ∈ (0, 1) and ξθ ∈ ∂F (x, θt) such that F (x, t) = ξθt. Combining this with
condition (H1), we see that for all ε > 0, there exists c9 > 0 such that

|F (x, t)| ≤ ε|t|p(x) + c9|t|α(x)

for all (x, t) ∈ Ω × R. For ε < 1/p+, we get

ϕ(u) ≥
�

Ω

(
|∇u|p(x) + |u|p(x)

p+
− ε|u|p(x) − c9|u|α(x)

)
dx

≥
�

Ω

(
|∇u|p(x)

p+
− c9|u|α(x)

)
dx.

As p(x)� α(x), similar to Theorem 3.1 in [1], we get the result.

Lemma 3.3. Under condition (H2), there exists e ∈ W
1,p(x)
0 (Ω) such

that ϕ(e) < 0.

Proof. Fix x0 ∈ Ω0 and 0 < R < 1/2 such that B2R(x0) ⊂ Ω0. Let
φ ∈ C∞0 (B2R(x0)), 0 ≤ φ(x) ≤ 1, |∇φ(x)| ≤ 1/R, and suppose φ(x) ≡ 1 for
x ∈ BR(x0). For t > 1, it is easy to get

ϕ(tφ) =
�

B2R(x0)

(
|t∇φ|p(x) + |tφ|p(x)

p(x)
− F (x, tφ)

)
dx

≤
�

B2R(x0)

(c10t
p+ − a2|tφ|µ + a3) dx.

As µ� p(x), we get ϕ(tφ) < 0, when t is sufficiently large.

Proof of Theorem 1.1. By Lemmata 3.1–3.3 and Proposition 2.1, we
easily get the result.

Lemma 3.4. Under condition (H4), the functional ϕ is bounded from
below.

Proof. By Lebourg’s mean value theorem, there exist θ ∈ (0, 1) and
ξθ ∈ ∂F (x, θt) such that F (x, t) = ξθt. Hence

|F (x, t)| ≤ b0|t|+ b1|t|β(x)

for all (x, t) ∈ Ω × R. Thus

ϕ(u) ≥
�

Ω

(
|∇u|p(x) + |u|p(x)

p(x)
− b0|u| − b1|u|β(x)

)
dx

for all u ∈W 1,p(x)
0 (Ω). As β(x)� p(x), similar to Theorem 3.2 in [1], there
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exists c11 > 0 such that

ϕ(u) ≥
�

Ω

|∇u|p(x)

p+
dx− c11

for all u ∈W 1,p(x)
0 (Ω). Thus we get the result.

Lemma 3.5. Under condition (H5), there exists e ∈ W
1,p(x)
0 (Ω) such

that ϕ(e) < 0.

Proof. Fix x0 ∈ Ω0 and R > 0 such that B2R(x0) ⊂ Ω0 and

β1 = sup
x∈B2R(x0)

β(x) < p1 = inf
x∈B2R(x0)

p(x).

Let φ ∈ C∞0 (B2R(x0)), 0 ≤ φ(x) ≤ 1, |∇φ(x)| ≤ 1/R, and suppose φ(x) ≡ 1
for x ∈ BR(x0). For 0 < t < min{1, δ}, by condition (H5),

ϕ(tφ) =
�

B2R(x0)

(
|t∇φ|p(x)

p(x)
+
|tφ|p(x)

p(x)
− F (x, tφ)

)
dx

≤
�

B2R(x0)

(c12t
p(x) − b2(tφ)β(x)) dx

≤ tβ1

�

B2R(x0)

(c12t
p1−β1 − b2φβ(x)) dx.

As φ(x) ≡ 1 for x ∈ BR(x0), we have
	
B2R(x0) φ

β(x) dx > 0. When t is
sufficiently small, we get ϕ(tφ) < 0.

Proof of Theorem 1.2. Similar to Lemma 3.1, it is easy to verify that
the functional ϕ satisfies the (P.S.) condition. Combining this with Lemmata
3.4, 3.5 and Proposition 2.2, we know that

c = inf
u∈W 1,p(x)

0 (Ω)

ϕ(u) < 0

is a critical value of ϕ. Now the proof is complete.

4. The case of exterior domain. Throughout this section, we as-
sume that Ω ⊂ RN is an exterior domain and denote by di various positive
constants.

Theorem 4.1. Under condition (H6) or (H7), ψ is well defined and is
a locally Lipschitz functional on W

1,p(x)
0 (Ω).

Proof. We only consider the case where the functional F satisfies (H6).
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(i) ψ is well defined. By Lebourg’s mean value theorem, for all t1, t2 ∈ R,
there exist θ ∈ (0, 1) and ξθ ∈ ∂F (x, θt1 + (1− θ)t2) such that

F (x, t1)− F (x, t2) = ξθ(t1 − t2)

for all x ∈ Ω. By condition (H6), we get

|F (x, t1)− F (x, t2)| ≤ g(x)|θt1 + (1− θ)t2|α(x)−1 · |t1 − t2|
≤ d1g(x)(|t1|α(x)−1 + |t2|α(x)−1)|t1 − t2|.

By the Young inequality, we also get

|ψ(u)| ≤
�

Ω

|F (x, u)| dx ≤
�

Ω

d1g(x)|u|α(x) dx ≤
�

Ω

d2(g(x)q1(x) + |u|p∗(x)) dx.

Thus by Theorem 1.1 in [8], we have |ψ(u)| <∞ for all u ∈W 1,p(x)
0 (Ω).

(ii) ψ is locally Lipschitz on W 1,p(x)
0 (Ω). In fact, for all u1, u2∈W 1,p(x)

0 (Ω),

|ψ(u1)− ψ(u2)| ≤
�

Ω

|F (x, u1)− F (x, u2)| dx

≤
�

Ω

d1g(x)(|u1|α(x)−1 + |u2|α(x)−1)|u1 − u2| dx

≤ d3

∣∣g(x)|u1|α(x)−1 + g(x)|u2|α(x)−1
∣∣
(p∗(x))′

· |u1 − u2|p∗(x)
≤ d4

∣∣g(x)|u1|α(x)−1 + g(x)|u2|α(x)−1
∣∣
(p∗(x))′

· ‖u1 − u2‖1,p(x).

By the Young inequality, we get�

Ω

(g(x)|u1|α(x)−1)(p
∗(x))′ dx ≤

�

Ω

d5(g(x)q1(x) + |u1|p
∗(x)) dx.

As g ∈ Lq1(x)(Ω) and the imbedding W 1,p(x)
0 (Ω) ↪→ Lp

∗(x)(Ω) is continuous,
we can easily get the result.

Theorem 4.2. Under condition (H6) or (H7), for all u, v ∈W 1,p(x)
0 (Ω),

we have
ψ0(u; v) ≤

�

Ω

F 0
x (x, u(x); v(x)) dx.

Proof. (i) Similar to Theorem 3.1, we prove that F 0
x (x, u(x); v(x)) is

measurable. Here we only consider the case where the functional F satisfies
(H6).

Noting that F 0
x (x, u(x); v(x)) = max{ξ · v(x) : ξ ∈ ∂F (x, u(x))} ,

ξx · v(x), we get

|F 0
x (x, u(x); v(x))| = |ξx · v(x)| ≤ g(x)|u(x)|α(x)−1|v(x)|

≤ d6(g(x)q1(x) + |u|p∗(x) + |v|p∗(x)).

Hence F 0
x (x, u(x); v(x)) ∈ L1(Ω).
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(ii) ψ0(u; v) ≤
	
Ω F

0
x (x, u(x); v(x)) dx. By the definition of ψ0(u; v),

there exist tn → 0+ and wn → u in W
1,p(x)
0 (Ω) such that

ϕ0(u; v) = lim
wn→u
tn→0+

ϕ(wn + tnv)− ϕ(wn)
tn

.

Passing to a subsequence, still denoted by {wn}, we may assume that
wn(x)→ u(x) a.e. in Ω as n→∞. Set

An(x) =
F (x,wn(x) + tnv(x))− F (x,wn(x))

tn
,

Bn(x) = d1g(x)
(
|wn(x) + tnv(x)|α(x)−1 + |wn(x)|α(x)−1

)
|v(x)|,

gn(x) = −An(x) +Bn(x).

Then similar to the proof of Theorem 3.2, we get the result.

Lemma 4.1. Under condition (H6), ϕ satisfies the (P.S.) condition.

Proof. Take {un} ⊂W 1,p(x)
0 (Ω) such that ϕ(un) is bounded and

λ(un) = min{‖w∗‖W−1,p′(x)(Ω) : w∗ ∈ ∂ϕ(un)} , ‖w∗n‖W−1,p′(x)(Ω) → 0

as n → ∞. Then similar to Lemma 3.1, we see that {un} is bounded in
W

1,p(x)
0 (Ω).

As W 1,p(x)
0 (Ω) is reflexive, passing to a subsequence, still denoted by

{un}, we may assume that there exists u ∈ W 1,p(x)
0 (Ω) such that un → u

weakly in W
1,p(x)
0 (Ω). Then un → u in Lα(x)(Ω) and in Lp(x)(Ω). Noting

that

ϕ0(un;u− un) = 〈J ′(un), u− un〉+ ψ0(un;un − u),

ϕ0(u;un − u) = 〈J ′(u), un − u〉+ ψ0(u;u− un),

we get

〈J ′(un)− J ′(u), un − u〉
= ψ0(un;un − u) + ψ0(u;u− un)− ϕ0(un;u− un)− ϕ0(u;un − u).

For all w∗ ∈ ∂ϕ(u), ϕ0(u;un − u) ≥ 〈w∗, un − u〉, so

lim inf
n→∞

ϕ0(u;un − u) ≥ 0.

As ϕ0(un;u− un) ≥ 〈w∗n, u− un〉 ≥ −d7‖w∗n‖, we have

lim inf
n→∞

ϕ0(un;u− un) ≥ 0.
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Moreover,

ψ0(un;un − u) + ψ0(u;u− un)

≤
�

Ω

F 0
x (x, un(x);un(x)− u(x)) dx+

�

Ω

F 0
x (x, u(x);u(x)− un(x)) dx

≤
�

Ω

max{ξ · (un(x)− u(x)) : ξ ∈ ∂F (x, un(x))} dx

+
�

Ω

max{ξ · (u(x)− un(x)) : ξ ∈ ∂F (x, u(x))} dx

≤
�

Ω

g(x)(|un|α(x)−1 + |u|α(x)−1)|un − u| dx.

Similar to Theorem 4.3 in [11], we get�

Ω

g(x)(|un|α(x)−1 + |u|α(x)−1)|un − u| dx→ 0

as n → ∞. Then lim supn→∞〈J ′(un) − J ′(u), un − u〉 ≤ 0, and similar to
Theorem 3.1 in [10], it is easy to get un → u in W

1,p(x)
0 (Ω).

Proof of Theorem 1.3. Firstly, we assert that there exist r2, s2 > 0 such
that ϕ(u) > 0 for 0 < |∇u|p(x) ≤ r2 and ϕ(u) > s2 for |∇u|p(x) = r2.

In fact, by Lebourg’s mean value theorem, there exist θ ∈ (0, 1) and
ξθ ∈ ∂F (x, θt) such that F (x, t) = ξθt for all (x, t) ∈ Ω×R. Combining this
with condition (H6), we obtain

|F (x, t)| ≤ g(x)|t|α(x) ≤ d8|t|α(x)

for all (x, t) ∈ Ω × R. Thus

ϕ(u) ≥
�

Ω

(
|∇u|p(x) + |u|p(x)

p+
− d8|u|α(x)

)
dx

=
�

Ω

|∇u|p(x) + |u|p(x)

2p+
dx+

�

Ω

(
|∇u|p(x) + |u|p(x)

2p+
− d8|u|α(x)

)
dx,

and similar to Theorem 3.1 in [10], we easily get the above assertion. Then
by Lemmata 3.3, 4.1 and Proposition 2.1, we complete the proof.

Proof of Theorem 1.4. Firstly, we need to verify that the functional ϕ
is coercive. By Lebourg’s mean value theorem, there exist θ ∈ (0, 1) and
ξθ ∈ ∂F (x, θt) such that F (x, t) = ξθt. Hence for all (x, t) ∈ Ω × R, we get

|F (x, t)| ≤ h(x)|t|β(x).

Thus

ϕ(u) ≥
�

Ω

(
|∇u|p(x) + |u|p(x)

p(x)
− h(x)|u|β(x)

)
dx
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for all u ∈W 1,p(x)
0 (Ω). As β(x)� p(x), similar to Lemma 4.3 in [11], there

exists d9 > 0 such that

ϕ(u) ≥
�

Ω

|∇u|p(x) + |u|p(x)

2p+
dx− d9

for all u ∈ W 1,p(x)
0 (Ω). Then similar to the argument for Theorem 1.2, the

proof is complete.

5. Some examples. In this section, we give some concrete examples of
functionals F satisfying the assumptions of Theorems 1.1–1.4.

Example 5.1. Let Ω ⊂ RN be a bounded domain. Define F : Ω×R→ R
by

F (x, t) =
|t|α(x)

α(x)
,

where α ∈ C(Ω) with p+ < α−. We can check that −F 0
x (x, t;−t) = |t|α(x)

and ∂F (x, t) = {|t|α(x)−2t}. If we let µ = α−, it is easy to verify that F
satisfies the assumptions in Theorem 1.1.

Example 5.2. Let Ω ⊂ RN be a bounded domain. Let F : Ω × R→ R
be defined by

F (x, t) =
|t|β−
β−

+
|t|β(x)

β(x)
,

where β ∈ P(Ω) with 1 < β− ≤ β(x)� p(x). Then we can verify that

∂F (x, t) = {|t|β−−2t+ |t|β(x)−2t}

and F satisfies the assumptions in Theorem 1.2.

Example 5.3. Let Ω = RN \ B(0, 1), where B(0, 1) is the closed unit
ball in RN . Define F : Ω × R→ R by

F (x, t) = g(x)
|t|α(x)

α(x)
,

where α ∈ P(Ω) with p(x)� α(x)� p∗(x), g(x) = |x|−N . Then it is easy to
see that g ∈ L∞(Ω)∩Lq1(x)(Ω) with q1(x) = p∗(x)/(p∗(x)− α(x)). Thus we
can apply Theorem 1.3. If we choose α ∈ P(Ω) with 1 < α− ≤ α(x)� p(x),
then F satisfies the assumptions of Theorem 1.4.

Based on Theorems 1.1–1.4, we can solve a larger class of hemivaria-
tional inequalities which have p(x)-growth conditions. In particular, Theo-
rems 1.1–1.4 are also applicable when the function p(x) is a constant.
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Remark. In particular, if F : Ω × R→ R is defined by

F (x, t) =
t�

0

f(x, s) ds,

where Ω ⊂ RN is a domain and f ∈ C(Ω × R,R), then the inequality (1.1)
takes the form�

Ω

(|∇u|p(x)−2∇u∇v + |u|p(x)−2uv) dx+
�

Ω

f(x, u)v dx = 0

for all v ∈W 1,p(x)
0 (Ω), i.e. u ∈W 1,p(x)

0 (Ω) is a weak solution of{
− div(|∇w|p(x)−2∇w) + |w|p(x)−2w = f(x,w),
w ∈W 1,p(x)

0 (Ω).

The existence of solutions for the above equation has been studied recently:
we refer to [1, 7, 10, 11, 18].
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[17] M. Růžička, Electro-Rheological Fluids: Modeling and Mathematical Theory,
Springer, 2000.

[18] Q. H. Zhang, Existence of radial solutions for p(x)-Laplacian equations in RN ,
J. Math. Anal. Appl. 315 (2006), 506–516.

Department of Mathematics
Harbin Institute of Technology
Harbin 150001, China
E-mail: piecesummer1984@163.com

Received 18.9.2008
and in final form 6.11.2008 (1923)


