Erratum to "Proper holomorphic mappings in the special class of Reinhardt domains"

(Ann. Polon. Math. 92 (2007), 285-297)

by Łukasz Kosiński (Kraków)

Let $D_{\gamma} := \{z \in \mathbb{C}^2 : |z_1| |z_2|^{\gamma} < 1\}, \gamma \in \mathbb{R}$. In Theorem 3 the description of the proper holomorphic mappings between D_{α} and D_{β} for $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$, $\alpha < 0, \beta < 0$ is missing. Moreover, the formulation in the case when $\alpha, \beta > 0$ is incorrect.

Here is the correct formulation of the theorem.

THEOREM 3. Let $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$.

- (a) If $\alpha, \beta > 0$, then the set $\operatorname{Prop}(D_{\alpha}, D_{\beta})$ is non-empty if and only if $\alpha\beta \in \mathbb{Q}$ or $\alpha/\beta \in \mathbb{Q}$. Moreover, all proper holomorphic maps between D_{α} and D_{β} are of the form
 - (i) $(z_1, z_2) \mapsto (az_1^k, bz_2^l)$, where $a, b \in \mathbb{C}_*$, $|a| |b|^{\beta} = 1$, and k, l are any positive integers satisfying $\alpha/\beta = l/k$ (clearly such mappings are understood to be defined if $\alpha/\beta \in \mathbb{Q}$), or
 - (ii) $(z_1, z_2) \mapsto (az_2^k, bz_1^l)$, where $a, b \in \mathbb{C}_*$, $|a| |b|^\beta = 1$, and k, l are any positive integers satisfying $\alpha\beta = k/l$ (such mappings are understood to be defined if $\alpha\beta \in \mathbb{Q}$).
- (b) If $\alpha, \beta < 0$, then the set $\operatorname{Prop}(D_{\alpha}, D_{\beta})$ is non-empty if and only if $\alpha = p_1 + p_2\beta$ for some rational p_1, p_2 . In this case all proper holomorphic maps between D_{α} and D_{β} are of the form

$$(z_1, z_2) \mapsto (a z_1^{k_1} z_2^{k_2}, b z_2^l),$$

where $a, b \in \mathbb{C}_*$, $|a| |b|^{\beta} = 1$, and k_1, k_2, l are any integers with $k_1 > 0$ satisfying $p_1 = k_2/k_1$, $p_2 = l/k_1$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 32H35; Secondary 32A07.

Key words and phrases: proper holomorphic mappings, Reinhardt domains, elementary Reinhardt domains.

Ł. Kosiński

(c) If $\alpha\beta < 0$, then there is no proper holomorphic mapping between D_{α} and D_{β} .

The proof remains valid, with only minor modifications.

Instytut Matematyki Uniwersytet Jagielloński Łojasiewicza 6 30-348 Kraków, Poland E-mail: lukasz.kosinski@im.uj.edu.pl

> Received 10.1.2009 and in final form 30.1.2009

(1969)

302