
ANNALES

POLONICI MATHEMATICI

109.3 (2013)

Estimation of the Carathéodory distance on pseudoconvex
domains of finite type whose boundary has Levi form of

corank at most one

by Gregor Herbort (Wuppertal)

Abstract. We study the class of smooth bounded weakly pseudoconvex domains
D ⊂ Cn whose boundary points are of finite type (in the sense of J. Kohn) and whose
Levi form has at most one degenerate eigenvalue at each boundary point, and prove
effective estimates on the invariant distance of Carathéodory. This completes the author’s
investigations on invariant differential metrics of Carathéodory, Bergman, and Kobayashi
in the corank one situation and on invariant distances on pseudoconvex finite type domains
in dimension two.

1. Introduction. Invariant metrics and distances render valuable ser-
vices in the study of mapping theory for a long time (see e.g. [Kr, Vor]).
Indeed, their boundary behavior is important for the question of whether or
not there exists a biholomorphic or proper holomorphic mapping between
two given bounded domains in Cn.

The most important of such distance functions were introduced by Cara-
théodory, Bergman, and Kobayashi. We recall their definitions.

The Carathéodory distance on a bounded domain D ⊂ Cn is defined by

dCara
D (A,B) := {dP (f(A), f(B)) | f : D → E, holomorphic},

where E denotes the unit disc in the plane and dP the Poincaré distance
on E, in detail

dP (a, b) :=
1

2
log

1 + µ(a, b)

1− µ(a, b)
, µ(a, b) :=

∣∣∣∣ a− b1− ab

∣∣∣∣.
It was introduced by C. Carathéodory in 1926 and was the first known
distance function in several complex variables that remains invariant under
biholomorphic mappings. The Carathéodory distance of the unit disc agrees
with the Poincaré distance.
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The Carathéodory pseudodifferential metric is given by

FCara
D (z;X) := sup{|〈∂f(z), X〉| | f : D → E, holomorphic, f(z) = 0},

where for a vector X ∈ Cn and a differentiable function f we denote by
〈∂f(z), X〉 the directional derivative

〈∂f(z), X〉 :=

n∑
k=1

∂f

∂zk
(z)Xk.

The Kobayashi differential metric is defined as follows:

FKob
D (z;X) := inf{α−1 > 0 | ∃f : E→ D, holomorphic,

f(0) = z, f ′(0) = αX}.
Our results that we will state in Section 2 will also involve the Bergman
metric FB

D which is defined as the Kähler metric with potential logKD(z, z),
where KD : D ×D → C denotes the Bergman kernel function on D.

In many special cases good estimates have been found for the Carathéo-
dory pseudodifferential metric; see [Cat1, Gra, Her-1, Her-2a]. In the case
of the pseudodifferential metrics of Kobayashi and Bergman it is possible
to get good and in some cases even precise estimates also for the associated
distances dKob

D and dB
D, respectively, because these are the “integrated forms”

of the corresponding differential metrics; see [Bal-Bon, Died-Ohs, Her-3].
By “integrated form” we mean the following: Assume that FD is one

of the pseudodifferential metrics of Bergman or Kobayashi. For two points
A,B ∈ D we define L (A,B) as the family of all piecewise smooth paths
γ : [0, 1]→ D from A to B. Then we call

dFD(A,B) = inf
{ 1�

0

FD(γ(t); γ̇(t)) dt
∣∣∣ γ ∈ L (A,B)

}
the integrated form of FD. We have dB

D = dFB
D

, which follows from the

definition from Riemannian geometry, and dKob
D = dFKob

D
, which was proved

by H. L. Royden [Roy].
The case of the Carathéodory distance is more difficult, because the

“integrated form” of CaraD(z;X) is the inner distance associated to dCara
D

(see [Rei]). In general, however, the inner Carathéodory distance is not equal
to the Carathéodory distance. A simple example is given by the annulus in
the plane.

In this article we continue the investigations of [Her-3] on the boundary
behavior of the above invariant distances on a finite type pseudoconvex
domain D ⊂ C2. We treat the more general case of bounded pseudoconvex
domains with a smooth boundary such that at each boundary point of D
the Levi form of the boundary has at most one degenerate eigenvalue.
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We establish precise estimates for dCara
D , dKob

D , and dB
D analogous to those

obtained for the distances of Bergman and Kobayashi in [Her-3].

The paper is organized as follows: In Section 2 we state as a main result
the estimation of the distances of Carathéodory, Bergman, and Kobayashi,
after we have introduced all the necessary notations (distinguished normal
coordinates, and pseudoballs). In Section 3 we establish the “engulfing prop-
erty” for these pseudoballs (that are constructed in analogy to those from
[N-S-W, Cat2]); compare [Cat2, §1]. Section 4 contains the construction of
some plurisubharmonic auxiliary functions that will be needed in order to
apply a ∂ solution theorem from Hörmander’s L2-theory for the Cauchy–
Riemann operator. In Section 5 we construct, given two points in D, a fam-
ily of holomorphic auxiliary functions that exhibit a good behavior at those
points. By means of these functions we construct in Section 6 an appropriate
candidate for the supremum that defines the Carathéodory distance. Finally,
in Section 7 we show the corresponding upper estimates for the Kobayashi
and Bergman distances.

Remark. It should be mentioned here that also K. Verma, in a joint
paper [BMV] with G. Balakumar and P. Mahajan, has independently ob-
tained precise estimates on the Carathéodory and Kobayashi distances on
pseudoconvex finite type Levi corank one domains.

2. Statement of the results. Throughout this section we assume that
D ⊂⊂ Cn is smoothly bounded and pseudoconvex. We choose a defining
function r ∈ C∞(U0), where U0 is an open neighborhood of ∂D.

Definition 2.1. A boundary point ζ of D is said to be of finite regular
type if there exists a bound N such that any non-singular holomorphic curve
passing through ζ has an order of contact of at most N with ∂D at ζ. The
maximal order of contact between such a non-singular curve and ∂D at ζ is
called the regular type and is denoted by t(∂D, ζ).

Remark 2.1.The pseudoconvexity assumption onD implies that t(∂D, ζ)
is an even integer.

Throughout this paper we will suppose that

(a) each boundary point ζ is of finite type, and
(b) the rank of the Levi form of ∂D at ζ is at least n− 2.

In this case the Catlin multitype of any ζ ∈ ∂D is given by

M (∂D, ζ) = (1, 2, . . . , 2, t(∂D, ζ)).

If we write Mw := {r = r(w)}, then the hypersurface Mw is also smooth
for all w that lie sufficiently close to ∂D, and further w 7→ t(Mw, w) is an
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upper semicontinuous function of w, hence we can find an integer m such
that

(2.1) t(Mw, w) ≤ 2m

for any w in a suitable neighborhood U0 of ∂D.

2.1. Normal coordinates and pseudoballs. Let ζ ∈ U0. We want
to put the defining function r of D near ζ in a “normalized” form so that
certain unwelcome pure terms in its Taylor expansion about ζ disappear.

In [Her-2a] the following was proved:

Lemma 2.1.1. There exists a radius R0 > 0 and for any ζ ∈ U0 a
holomorphic mapping Fζ : Cn → Cn such that:

(a) Over the ball B(ζ, 2R0), the function r is normalized to r = ρζ ◦Fζ ,
where

ρζ(w) = r(ζ) + Rew1 + |w′′|2 +

2m∑
j=2

Pj(ζ, wn)

+ (Imw1)
2m∑
j=2

Qj(ζ, wn) + 2 Re
n−1∑
a=2

waga(ζ, wn) +R(ζ, w),

and

(i) the Pj(ζ, ·) and Qj(ζ, ·) are real-valued homogeneous polynomi-
als of degree j and do not exhibit pure terms,

(ii) the ga are complex polynomials without holomorphic terms,
(iii) the remainder term R can be estimated by

|R(ζ, w)| ≤ C0

(
|Imw1|3 + |Imw1|2(|w′′|+ |wn|)

+ |Imw1|(|w′′|2 + |wn|2m+1) + |w′′|3 + |w′′|2|wn|+ |wn|2m+1
)
.

(b) The mapping Fζ can be described as follows: If n ≥ 3, then

Fζ = F̃ζ ◦ σ,

where σ is a permutation of the coordinates (z1, . . . , zn), and

(2.2) F̃ζ(z) =


(
(∂r(ζ), z − ζ) + f1(ζ, zn − ζn)

)
(1 + f2(ζ, zn − ζn))

A(ζ) · (z′′ − ζ ′′) + h(ζ, zn − ζn)

zn − ζn

 ,

where z′′ = (z2, . . . , zn−1), the (n − 2) × (n − 2) matrix A(ζ) is in-
vertible and its determinant is ≥ c > 0 uniformly in ζ (with some
unimportant c > 0). The mapping h(ζ, ·) = (h2(ζ, ·), . . . , hn−1(ζ, ·))



Estimation of the Carathéodory distance 213

consists of holomorphic polynomials of degree ≤ 2m. Also the func-
tions f1(ζ, ·), f2(ζ, ·) are holomorphic polynomials of degree ≤ 2m.
They all vanish at 0.

In the case that n = 2, we have

(2.3) F̃ζ(z) =

((
(∂r(ζ), z − ζ) + f1(ζ, z2 − ζ2)

)
(1 + f2(ζ, z2 − ζ2))

z2 − ζ2

)
,

where f1 and f2 have a meaning analogous to the case n ≥ 3.
(c) With a suitable constant L0 > 0 we have

(2.4)
1

L0
|z − ζ| ≤ |Fζ(z)| ≤ L0|z − ζ|.

2.2. A pseudodistance and the main result. Let U0 be as in (2.1).
According to the normal form ρζ of the local defining function at ζ we define
the radii:

Definition 2.2. Let ζ ∈ U0 and δ > 0. Then we put

τn(ζ, δ) := min
2≤l≤2m

(
δ

‖Pl(ζ, ·)‖

)1/l

,

where ‖Pl(ζ, ·)‖ denotes the sum of the absolute values of the coefficients of
Pl(ζ, ·).

Note that this is well-defined, because if P2(ζ, ·) = · · · = P2m(ζ, ·) = 0,
then t(∂D, ζ) > 2m contrary to our choice of the number 2m. With some
constant γ0 > 0 we have the estimate

(2.5) τn(ζ, δ) ≥ γ0

√
δ for all ζ ∈ U0 and δ > 0.

Next we define

τ1(ζ, δ) := δ, τ2(ζ, δ) = · · · = τn−1(ζ, δ) =
√
δ,

the polydiscs

Rδ(ζ) := {w = (w1, . . . , wn) ∈ Cn | |wk| < τk(ζ, δ) for k = 1, . . . , n},
and finally the “pseudoballs”

Qδ(ζ) = {z ∈ B(ζ, 2R0) | Fζ(z) ∈ Rδ(ζ)}.
For A,B ∈ D we define M(A,B) := {δ > 0 | A ∈ Qδ(B)} and let

(2.6) d′(A,B) :=

{
inf M(A,B) if B ∈ U0 and M(A,B) 6= ∅,
+∞ otherwise.

Finally we introduce the “pseudodistance” function

(2.7) d(A,B) := min{d′(A,B), |A−B|}.
Then we can state our main result:
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Main Theorem 2.1. Assume that D ⊂⊂ Cn is a smoothly bounded
pseudoconvex domain such that all its boundary points are of regular type
≤ 2m and the Levi form of ∂D at each point ζ ∈ ∂D has at least n − 2
positive eigenvalues. Denote by d∗ any of the invariant distance functions of
Carathéodory, Bergman, or Kobayashi. Then, with some unimportant con-
stant C∗ > 0,

(2.8) C∗%(A,B) ≤ d∗(A,B) ≤ 1

C∗
%(A,B)

for all A,B ∈ D, where

%(A,B) :=


%B(A) + %A(B) if A,B ∈ U0,

%A(B) if A ∈ U0, B /∈ U0,

%B(A) if B ∈ U0, A /∈ U0,

log(1 + |A−B|) if A,B /∈ U0,

and

%x(A) := log

(
1 +

d(A, x)

δD(x)
+
|[Fx(A)]′′|√

δD(x)
+
|[Fx(A)]n|
τn(x, δD(x))

)
for x ∈ U0.

It is well-known that dCara
D ≤ dB

D, dCara
D ≤ dKob

D , and from [Her-2a]
we know that FB

D and FKob
D have equivalent growth at ∂D. This implies

Ĉ−1dB
D ≤ dKob

D ≤ ĈdB
D with some constant Ĉ.

Therefore, we have to estimate dCara
D (A,B) from below and dKob

D (A,B)
from above in terms of %(A,B), for A,B ∈ D.

3. Crucial properties of the pseudoballs and pseudodistance.
The definitions of the pseudoballsQδ(ζ) resemble those from [Cho-1], but the
mapping Fζ is not the same, and some of the important properties of Qδ(ζ)
cannot be obtained by citing the corresponding lemmas there. In particular
a certain important property, which we call the “engulfing property” (see
Lemma 3.3.1 below), is not discussed in [Cho-1].

We first want to clarify the following question: Assume that δ > 0 is
small and ζ1, ζ2 ∈ U0 are such that ζ1 ∈ Qδ(ζ2). How does the radius τn(ζ1, δ)
compare with τn(ζ2, δ)? The answer is given in Lemma 3.2.3 below. It looks
similar to [Cho-1, Cor. 2.8], and its proof is based on ideas analogous to
those in [Cho-1, p. 808].

3.1. Special tangent vector fields. Let r be the defining function
we fixed at the beginning. For j = 1, . . . , n we denote by rzj the derivative

rzj = ∂r
∂zj

; the derivatives rz̄j are defined accordingly. For a vector field
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X =
∑n

j=1 aj
∂
∂zj

+
∑n

j=1 bj
∂
∂zj

we write

∂r(X) :=
n∑
j=1

rzjaj , ∂r(X) =
n∑
j=1

rzjbj .

The normal field N to the level sets of r is given by

(3.1) N :=

n∑
k=1

rz̄k
∂

∂zk
.

For vector fields X,Y on some open set U ⊂ Cn we denote by [X,Y ] the
Lie bracket of X and Y .

After shrinking the neighborhood U0 ⊃ ∂D we have |∇r| ≥ c0 > 0 with
some constant c0.

In particular, we can cover ∂D by open sets U1, . . . , Un ⊂ U0 such that

|rzk | ≥ c0/n on Ūk

for k = 1, . . . , n. The tangent fields

kL′j :=
∂

∂zj
−
rzj
rzk

∂

∂zk
, j 6= k,

are defined over Uk.

Lemma 3.1.1. For n = 2 define 1L∗ := 1L′2 and 2L∗ := 2L′1. For
n ≥ 3 there exists a constant c1 > 0 with the following property: For any
k ∈ {1, . . . , n} we can rearrange the kL′1, . . . ,

kL′k−1,
kL′k+1, . . . ,

kL′n (which
corresponds to renumbering the coordinates {zj}j 6=k) in such a way that for
the resulting list, which will be denoted by kL2, . . . ,

kLn, each eigenvalue of
the matrix ( kLab̄)

n−1
a,b=2 is not smaller than c1 at each point of Uk. Put

kLab̄ := ∂∂r([ kLa, kLb]).

If we denote by kLaν̄ the entries of the inverse of ( kLab̄)
n−1
a,b=2, and define

ksν := −
n−1∑
a=2

kLnā kLaν̄ , ν = 2, . . . , n− 1,

then the vector field

kL∗ := kLn +

n−1∑
ν=2

ksν
kLν

satisfies ∂r([kLj , kL∗]) = 0 for j = 2, . . . , n − 1. In particular, ( kL2, . . . ,
kLn−1,

kL∗) are the special vector fields of a boundary system in the sense
of [Cat1].
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Proof. The Levi form of ∂D is semipositive at each boundary point, and
our assumption on eigenvalues implies that, with some positive constant c1,

min
Uk

∑
ν 6=k

det
(
(∂∂r([ kL′a,

kL′b]))a,b 6=ν
)
≥ n2c1.

Therefore we can make an arrangement as claimed in the lemma. The prop-
erties of the vector field kL∗ follow by direct computation.

For each k ∈ {1, . . . , n} we introduce on Uk a system of continuous
functions kCl, l ≥ 2, as follows: With the notations of Lemma 3.1.1 we let

(3.2) kCl := max
a,b≥1, a+b=l

∣∣( kL∗)a−1( kL∗)
b−1)(∂∂r([ kL∗, kL∗])

∣∣.
Remark 3.1. (a) Let ζ ∈ Uk. By [BloGra] the smallest integer l such

that kCl(ζ) > 0 is equal to the regular type t(Mζ , ζ)
(b) Further, there exists (after possibly shrinking the U1, . . . , Un) a con-

stant c2 > 0 such that for any k = 1, . . . , n we have

max
2≤l≤2m

kCl ≥ c2

throughout Uk. In particular, for any δ > 0 and ζ ∈ Uk, the number

(3.3) kη(ζ, δ) := min
2≤l≤2m

(
δ

kCl(ζ)

)1/l

is well-defined. Moreover, with some unimportant constant c3 > 0,

(3.4) c3

√
δ ≤ kη(ζ, δ) ≤ 1

c3
δ1/2m.

Remark 3.2. The radii kη(ζ, δ) certainly depend on the choice we made
for the local boundary system. But if we choose another one, then for the
resulting radii kη(ζ, δ)′ the ratio kη(ζ, δ)/ kη(ζ, δ)′ is bounded from above
and from below by uniform positive constants.

We want to compare the radius kη(ζ, δ) with τn(ζ, δ) for ζ ∈ Uk. This is
done in several steps.

Let on Uk a boundary system (L2, . . . , Ln−1, L∗) be given as in Lemma
3.1.1 (we drop the superscript k). Then we define the Levi determinants

Λ := det (Lab̄)na,b=2 and Λ′ := det (Lab̄)
n−1
a,b=2.

By standard linear algebra we obtain

(3.5) Λ = Λ′ · ∂r([L∗, L∗]).

3.2. Comparison of the radii η(ζ, ·) and τn(ζ; ·). We want to com-

pare the quantities L∗
a−1L∗

b−1
∂r([L∗, L∗]) and

∂a+bρζ
∂wan∂w̄

b
n
◦Fζ . This is done in

the next two lemmas. Because of (3.5) it suffices to work with La−1
∗ L

b−1
∗ Λ

instead.
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Lemma 3.2.1. There exists a constant C1 > 0 such that for small enough
δ > 0, any ζ ∈ Uk, and any multi-index α 6= 0 the estimate

(3.6)

∣∣∣∣∂αρζ∂wα

∣∣∣∣ ≤ C1
δ

δα1τ2(ζ, δ)α2 · . . . · τn(ζ, δ)αn

holds in the polydisc Rδ(ζ).

Proof. This is obtained by a Taylor series argument in analogy to [Cho-1,
Prop. 2.3].

Lemma 3.2.2. There exists a constant C2 > 0 such that the following
holds: Let ζ ∈ Uk and let L2, . . . , Ln−1, L∗ denote a boundary system near ζ
as in Lemma 3.1.1. Then

(3.7)

∣∣∣∣La−1
∗ L

b−1
∗ Λ− Λ′ ·

∂a+bρζ
∂wan∂w̄

b
n

◦ Fζ
∣∣∣∣ ≤ C2θ ·

δ

τn(ζ, δ)a+b

on Qθδ(ζ), for 0 < θ < 1 and δ > 0, and any positive integers a, b.

Proof.

Step 1. We transform everything into the normal coordinates induced
by Fζ . To do this we let

L̂νµ̄ := (ρζ)wνw̄µ −
1

|(ρζ)w1 |2
(
(ρζ)wνw̄1(ρζ)w1(ρζ)w̄µ + (ρζ)w1w̄µ(ρζ)w̄1(ρζ)w̄ν

)
+

(ρζ)w1w̄1(ρζ)wµ(ρζ)w̄ν
|(ρζ)w1 |2

.

Then, by the chain rule, for a, b = 2, . . . , n we have

Lab̄ =
n∑

ν,µ=2

∂(Fζ)ν
∂za

L̂νµ̄ ◦ Fζ
∂(Fζ)µ
∂zb

,

which gives

Λ = Λ̂ ◦ Fζ |detA(ζ)|2,

where we put Λ̂ := det (L̂νµ̄)nν,µ=2.

The vector field L∗ transforms under Fζ into a vector field L̂∗, and

La−1
∗ L

b−1
∗ Λ = |detA(ζ)|2(L̂a−1

∗ L̂∗
b−1

Λ̂) ◦ Fζ .
Now note that for a, b = 2, . . . , n− 1 we even have

Lab̄ =

n−1∑
ν,µ=2

∂(Fζ)ν
∂za

L̂νµ̄ ◦ Fζ
∂(Fζ)µ
∂zb

,

due to the special form of Fζ . In particular this implies

Λ ′ = |detA(ζ)|2 Λ̂ ′ ◦ Fζ
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and finally∣∣∣∣La−1
∗ L

b−1
∗ Λ− Λ′ ·

∂a+bρζ
∂wan∂w̄

b
n

◦ Fζ
∣∣∣∣

= |detA(ζ)|2
∣∣∣∣L̂a−1
∗ L̂∗

b−1
Λ̂− Λ̂′ ·

∂a+bρζ
∂wan∂w̄

b
n

∣∣∣∣ ◦ Fζ
≤ C ′2

∣∣∣∣L̂a−1
∗ L̂∗

b−1
Λ̂− Λ̂′ ·

∂a+bρζ
∂wan∂w̄

b
n

∣∣∣∣ ◦ Fζ
with some universal constant C ′2 > 0.

Step 2. We have to estimate
∣∣L̂a−1
∗ L̂∗

b−1
Λ̂−Λ̂′ · ∂

a+bρζ
∂wan∂w̄

b
n

∣∣ on the polydisc

Rθ δ(ζ) and can do this by means of [Her-2b, Lemma 5.2].

For p ≥ 1 we let M ′p denote the set of all derivatives ∂ν+µρζ/∂w
ν
n∂w̄

µ
n,

where ν + µ ≤ p, and M ′′p the set of all products

∂ν
′+µ′+1ρζ

∂wαj ∂w̄
β
j ∂w

ν′
n ∂w̄

µ′
n

·
∂ν
′′+µ′′+1ρζ

∂wγs∂w̄δs ∂w
ν′′
n ∂w̄µ

′′
n

,

where α+β = γ+ δ = 1, 2 ≤ j, s ≤ n− 1, and ν ′+ ν ′′+µ′+µ′′ ≤ p. Finally
we let Mp := M ′p ∪M ′′p+1 and denote by Sp the set of all functions of the

form |(ρζ)w1 |−2N times a polynomial in the derivatives of ρζ of order ≤ p.
Then, by [Her-2b, Lemma 5.2],

L̂a−1
∗ L̂∗

b−1
Λ̂− Λ̂′ ·

∂a+bρζ
∂wan∂w̄

b
n

∈ Sa+bMa+b−1,

where the right-hand side is the set of all sums of products fg with f ∈ Sa+b

and g ∈ Ma+b−1. But there exists a constant C ′′a+b > 0 such that for all
θ ∈ (0, 1) and δ > 0,

sup
Rθδ(ζ)

|g| ≤ C ′′a+b

θδ

τn(ζ, δ)a+b

for g ∈Ma+b−1, and therefore

sup
Rθδ(ζ)

∣∣∣∣L̂a−1
∗ L̂∗

b−1
Λ̂− Λ̂′ ·

∂a+bρζ
∂wan∂w̄

b
n

∣∣∣∣ ≤ C ′′a+b

θδ

τn(ζ, δ)a+b
.

Lemma 3.2.3. There exist constants Ce>1, δ0>0 such that if ζ1, ζ2∈Uk
and ζ1 ∈ Qδ(ζ2), then

(3.8) η(ζ1, δ) ≤ Ceτn(ζ2, δ) ≤ C2
eη(ζ1, δ)

whenever 0 < δ < δ0.
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Proof. We know that Fζ2(ζ1) ∈ Rδ(ζ2). From (3.7) (with ζ = ζ2) and
from (3.6) we see that

|La−1
∗ L

b−1
∗ Λ(ζ1)| ≤ C ′

∣∣∣∣ ∂a+bρζ2
∂wan∂w̄

b
n

(Fζ2(ζ1))

∣∣∣∣+C ′ δ

τn(ζ2, δ)a+b
≤ C ′′ δ

τn(ζ2, δ)a+b

for any integers a, b ≥ 1. Together with the Leibniz rule and (3.5) this gives

|La−1
∗ L

b−1
∗ ∂r([L∗, L∗])(ζ1)| = 1

Λ′
|La−1
∗ L

b−1
∗ Λ(ζ1)|+ Eab

≤ C ′′ δ

τn(ζ2, δ)a+b
+ Eab,

where Eab is a sum of terms of the form

(positive continuous function) · |Lp−1
∗ L

q−1
∗ Λ(ζ1)|

where p, q ≥ 1 are integers such that p+ q < a+ b. Therefore

Eab ≤ C ′′
δ

τn(ζ2, δ)a+b
.

The functions Cl(ζ1) defined in (3.2) can now be estimated by

Cl(ζ1) ≤ C ′′′ δ

τn(ζ2, δ)l
,

hence τn(ζ2, δ) ≤ (C ′′′δ/Cl(ζ1))1/l. This implies

τn(ζ2, δ) ≤ C3η(ζ1, δ).

Next, in order to estimate η(ζ1, δ) from above by means of τn(ζ2, δ), we
use (3.7) again. First we fix l ≥ 2 such that τn(ζ2, δ) = (δ/‖Pl(ζ2, ·)‖)1/l.
Then we can find integers a, b ≥ 1 such that a+ b = l and∣∣∣∣∂l ρζ2(0)

∂wan∂w̄
b
n

∣∣∣∣ ≥ γm‖Pl(ζ2, ·)‖ = γm
δ

τn(ζ2, δ)l

with some unimportant constant γm > 0. We choose a small θ > 0. If now
ζ1 ∈ Qθδ(ζ2), then by (3.7) we obtain

|La−1
∗ L

b−1
∗ Λ(ζ1)| ≥ Λ′(ζ1)

∣∣∣∣ ∂a+bρζ2
∂wan∂w̄

b
n

(Fζ2(ζ1))

∣∣∣∣− C2θ
δ

τn(ζ2, δ)l

≥ Λ′(ζ1)

[∣∣∣∣ ∂a+bρζ2
∂wan∂w̄

b
n

(0)

∣∣∣∣−∣∣∣∣ ∂a+bρζ2
∂wan∂w̄

b
n

(Fζ2(ζ1))−
∂a+bρζ2
∂wan∂w̄

b
n

(0)

∣∣∣∣]−C2θ
δ

τn(ζ2, δ)l
.

The second term on the right is ≤ C3θδ/τn(ζ2, δ)
l and the first is ≥

γmΛ
′(ζ1)δ/τn(ζ2, δ)

l. This gives

|La−1
∗ L

b−1
∗ Λ(ζ1)| ≥ γmΛ′(ζ1)

(
1− C4

γmΛ′(ζ1)
θ

)
δ

τn(ζ2, δ)l
.
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On the left-hand side of this estimate we can replace La−1
∗ L

b−1
∗ Λ(ζ1) with

Λ′(ζ1) · La−1
∗ L

b−1
∗ ∂r([L∗, L∗])(ζ1), which causes an error that can be con-

trolled by Ĉδ/τn(ζ2, δ)
l−1.

For sufficiently small θ and after shrinking δ0 we obtain

|La−1
∗ L

b−1
∗ ∂r([L∗, L∗])(ζ1)| ≥ C5

δ

τn(ζ2, δ)l

with some unimportant C5 > 0. This proves

Cl(ζ1) ≥ C5
δ

τn(ζ2, δ)l

and finally

η(ζ1, δ) ≤
(

δ

Cl(ζ1)

)1/l

≤ 1

C5
τn(ζ2, δ)

provided that ζ1 ∈ Qθδ(ζ2).

Now we take δ′ = δ/θ and choose ζ1 ∈ Qδ(ζ2) = Qθδ′(ζ2). Then, by what
we proved so far, we get

η(ζ1, δ) ≤ η(ζ1, δ
′) ≤ 1

C5
τn(ζ2, δ

′) ≤ Ceτn(ζ2, δ) ≤ C2
eη(ζ1, δ)

with Ce := 1+C3
C5

θ−1/2.

Now we are able to describe how, given ζ ∈ Uk, the radii τn(ζ ′, δ) behave
if ζ ′ varies within Qδ(ζ).

Corollary 3.2.4.

(a) For any ζ ∈ Uk and 0 < δ < δ0 we have

(3.9)

τn(ζ, δ) ≤ Ceη(ζ, δ), η(ζ, δ) ≤ Ceτn(ζ, δ),

c3

Ce

√
δ ≤ τn(ζ, δ) ≤ Ce

c3
δ1/(2m),

where c3 is as in (3.4).
(b) If ζ1 ∈ Qδ(ζ2), then

(3.10) τn(ζ1, δ) ≤ C2
e τn(ζ2, δ), τn(ζ2, δ) ≤ C2

e τn(ζ1, δ).

Proof. (a) In the preceding lemma just take ζ = ζ1 = ζ2.

(b) We again use the above lemma and part (a) and find

τn(ζ1, δ) ≤ Ceη(ζ1, δ) ≤ C2
e τn(ζ2, δ), τn(ζ2, δ) ≤ Ceη(ζ1, δ) ≤ C2

e τn(ζ1, δ).

3.3. Comparison of pseudoballs. We next prove a property of pseu-
doballs that we call the “engulfing property”.
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Lemma 3.3.1. After enlarging the constant Ce from Lemma 3.2.3 we
can achieve the following: Suppose that ζ1, ζ2 ∈ Uk and ζ1 ∈ Qδ(ζ2) for
0 < δ < δ0. Then

(a) Qδ(ζ1) ⊂ QCeδ(ζ2),
(b) ζ2 ∈ QCeδ(ζ1),
(c) Qδ(ζ2) ⊂ QC2

e δ
(ζ1).

We will show this by applying the Schwarz lemma. For positive numbers
T, δ we let

Gδ := {s ∈ C | Re s < Tδ + T |Im s|}.

Lemma 3.3.2. Let ζ ∈ Uk and 0 < δ < δ0. Then for every mapping
h : Rδ(ζ)→ Gδ we have

|h(t)| ≤ 2T

1− 2−2m
(|h(0)|+ δ)

whenever t ∈ Rδ/2(ζ).

Proof. We let h2 := h − Tδ. This mapping has values in the slit plane
{reiα | 0 < α < 2π}, where a branch φ of the square root exists that takes
−1 into i. Next let h1 := φ ◦ h2. Then the function

h3 :=
h1 − h1(0)

h1 − h1(0)

maps Rδ(ζ) into the unit disc with h3(0) = 0. The Schwarz lemma yields

|h3(t)| ≤ ψ0(t, δ) := max

{
|t1|
δ
,
|t′′|√
δ
,
|tn|

τn(ζ, δ)

}
.

This implies after some computation∣∣∣∣h1(t)− h1(0)− h1(0)ψ0(t, δ)2

1− ψ0(t, δ)2

∣∣∣∣ ≤ 2ψ0(t, δ)
Imh1(0)

1− ψ0(t, δ)2

and finally

|h1(t)| ≤ |h1(0)|(1 + ψ0(t, δ)2) + 2ψ0(t, δ) Imh1(0)

1− ψ0(t, δ)2
≤ 1 + ψ0(t, δ)

1− ψ0(t, δ)
|h1(0)|.

But |h1(0)| =
√
|h2(0)| ≤

√
|h(0)|+ Tδ, hence

|h1(t)| ≤ 1 + 2−2m

1− 2−2m

√
|h(0)|+ Tδ

because of τn(ζ, δ/2) ≤ 2−2mτn(ζ, δ). This implies

|h(t)| ≤ |h2(t)|+ Tδ = |h1(t)|2 + Tδ ≤ 2T

1− 2−2m
(|h(0)|+ δ).
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Proof of Lemma 3.3.1. (a) We assume that ζ1 ∈ Qδ(ζ2) and ζ1, ζ2 ∈ Uk.
Let F := Fζ2 ◦ F

−1
ζ1

. We want to show that, after enlarging Ce if necessary,

we have F (Rδ(ζ1)) ⊂ RCeδ(ζ2). This is equivalent to Qδ(ζ1) ⊂ QCeδ(ζ2).

The key observation is ρζ2 ◦ F = ρζ1 . On Rδ(ζ1) we have ρζ1 ≤ T1δ with
some unimportant T1 > 0. This gives, for x ∈ Rδ(ζ1) by means of Lemma
2.1.1(c),

(3.11) T1δ ≥ ρζ1(x) = ρζ2 ◦ F (x)

≥ Re(F1(x)) + |F2(x)|2 + · · ·+ |Fn−1(x)|2

−
2m∑
j=2

‖Pj(ζ2, ·)‖ |Fn(x)|j − |ImF1(x)|
2m∑
j=2

‖Qj(ζ2, ·)‖ |Fn(x)|j

− 2
n−1∑
a=2

|Fa(x)| |ga(ζ2, Fn(x))| − |R(ζ2, F (x))|,

where the remainder is estimated by

|R(ζ2, F (x))| ≤ T2

(
|ImF1(x)|+ |Fn(x)|

n−1∑
j=2

|Fj(x)|2

+ |Fn(x)|2m+1 + |F2(x)|3 + · · ·+ |Fn−1(x)|3
)
.

From [Her-2a, Lemma 3.2] we know that

|ga(ζ2, Fn(x))| ≤ T3|Fn(x)|
( 2m∑
j=2

‖Pj(ζ2, ·)‖ |Fn(x)|j
)1/2

, a = 2, . . . , n− 1.

But as ζ1 ∈ Qδ(ζ2), or equivalently Fζ2(ζ1) ∈ Rδ(ζ2), we have (observe that

we are assuming x ∈ Rδ(ζ1), in particular |x| ≤ δ1/(2m))

|Fn(x)| = |xn + (ζ1 − ζ2)n| ≤ τn(ζ1, δ) + τn(ζ2, δ) ≤ (1 + C2
e )τn(ζ2, δ).

Further,

|F2(x)|3 + · · ·+ |Fn−1(x)|3 ≤ δ1/(2m)(|F2(x)|2 + · · ·+ |Fn−1(x)|2),

in particular

|R(ζ2, F (x))|
≤ T2

(
|ImF1(x)|+ δ1/(2m)(|F2(x)|2 + · · ·+ |Fn−1(x)|2) + δ1+1/(2m)

)
.

Substituting this into (3.11) we eventually find

T1δ ≥ Re(F1(x)) + (1− Ĉδ1/(2m))
(
|F2(x)|2 + · · ·+ |Fn−1(x)|2

)
(3.12)

−Ĉδ − T3|ImF1(x)|.
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So we can apply Lemma 3.3.2 to F1. Since F (0) = Fζ2(ζ1) ∈ Rδ(ζ2),
hence |F1(0)| ≤ T5δ, we obtain |F1(x)| ≤ T6δ on Rδ/2(ζ1). Then, using
(3.12) we get

|F2(x)|2 + · · ·+ |Fn−1(x)|2 ≤ T7δ for x ∈ Rδ/2(ζ1).

This gives claim (a) if we enlarge Ce.

(b) Now we define F̂ := Fζ1 ◦ F
−1
ζ2

. We want to show that F̂ (Rδ(ζ2)) ⊂
RCeδ(ζ1). Once we have proved this we see that

Qδ(ζ2) ⊂ F−1
ζ1

(
F̂ (Rδ(ζ2))

)
⊂ F−1

ζ1
(RCeδ(ζ1)) = QCeδ(ζ1).

We let y := Fζ2(ζ1). Then y ∈ Rδ(ζ2), and we choose a holomorphic automor-

phism φy of Rδ(ζ2) with φy(0) = y and φy(y) = 0. Now we use ρζ1 ◦ F̂ = ρζ2 ,
in particular

ρζ2 ◦ φy = ρζ1 ◦ F̂ ◦ φy.

We repeat the arguments from the proof of (a) for F̂ ◦ φy in place of F

and ρζ2 ◦ φy in place of ρζ1 . So we obtain, noting that F̂ ◦ φy(0) = 0 (hence

Lemma 3.3.2 applies to h := F̂1),

F̂ (Rδ(ζ2)) ⊂ RCeδ(ζ1),

provided we enlarge Ce (which is possible uniformly in δ and the ζ’s). So we

obtain (b) from Fζ1(ζ2) = F̂ (0) ∈ RCeδ(ζ1), which means that ζ2 ∈ QCeδ(ζ1).
(c) By (b) we have ζ2 ∈ QCeδ(ζ1), hence by (a), with the roles of ζ1 and

ζ2 interchanged,

Qδ(ζ2) ⊂ QCeδ(ζ2) ⊂ QC2
e δ

(ζ1).

3.4. Properties of the pseudodistance. We next study suitable sub-
stitutes for the symmetry and the triangular inequality of the pseudodis-
tance.

Let δ0 denote the number that appeared in the preceding subsection. For
any t > 0 we denote by St the strip

St := {|r| < t}.
We assume that δ0 is so small that for any z ∈ Sδ0 its orthogonal projection
z∗ ∈ ∂D onto ∂D is uniquely defined.

Lemma 3.4.1. There exists a constant C̃0 > 0 such that (after shrinking
δ0):

(a) S
C̃0δ
⊂
⋃
ζ∈∂DQδ(ζ) for 0 < δ < δ0.

(b) d′(z, z∗) ≤ C̃−1
0 δD(z) for each z ∈ Sδ0.

Proof. (a) For any z ∈ Sδ0 we have z = z∗ − δD(z) ∇r|∇r|(z
∗), and hence∣∣r(z) + δD(z)|∇r(z∗)|

∣∣ ≤ C̃1δD(z)2
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with some constant C̃1 > 0. After shrinking δ0 we get

C̃2δD(z) ≤ |r(z)| ≤ C̃−1
2 δD(z)

on Sδ0 . This implies in conjunction with (2.4) that

|Fz∗(z)| ≤ L0δD(z) ≤ L0

C̃2

|r(z)|

for z ∈ Sδ0 . Let C̃0 := C̃2

2L0(1+γ−1
0 )

. Then, using (2.5), we find

|[Fz∗(z)]ν | ≤
L0

C̃2

C̃0 δ ≤ τν(z∗, δ), 1 ≤ ν ≤ n,

for z ∈ S
C̃0δ

. This gives the claim.

(b) If C̃2 has the same meaning as in (a), then z ∈ Sδ0 belongs to S
C̃0δ

if we choose δ := (C̃0C̃2)−1δD(z). Hence, by the arguments for (a) we see
that z ∈ Qδ(z∗). This implies

d′(z, z∗) ≤ δ = (C̃0C̃2)−1δD(z).

Lemma 3.4.2. There exists a constant Ĉ1 > 0, depending only on δ, Ce,
and the diameter RD of D, such that:

(a) For A,B ∈ D,

d(B,A) ≤ Ĉ1 d(A,B).

(b) Whenever d′(A,B) <∞, then

d′(A,B) ≤ Ĉ1d(A,B).

(c) The triangular inequality holds in the form

d(A,B) ≤ Ĉ1(d(A,C) + d(B,C)) for A,B,C ∈ D.

(d) For A ∈ D and B ∈ Sδ0,

d(A,B) ≤ Ĉ1(d(A,B∗) + δD(B)).

(e) Let R0 be as in Lemma 2.1.1. If A,Q ∈ U0 and A ∈ B(Q,R0), then

1

3

(
|[FQ(A)]1|+ |[FQ(A)]′′|2 +

2m∑
l=2

‖Pl(ζ, ·)‖ |[FQ(A)]n|l
)

≤ d′(A,Q) ≤ 2
(
|[FQ(A)]1|+|[FQ(A)]′′|2+

2m∑
l=2

‖Pl(ζ, ·)‖ |[FQ(A)]n|l
)
.

Proof. (a) We adapt the proof of [Her-3, Lemma 3.1]. If d(A,B) =
|A − B|, we simply have d(B,A) ≤ |A − B| = d(A,B). Hence we assume
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that d(A,B) = d′(A,B) and consider two cases. If d′(A,B) > δ0/2, then

d(B,A) ≤ |A−B| ≤ RD ≤
2RD
δ0

d′(A,B) =
2RD
δ0

d(A,B)

If d′(A,B) ≤ δ0/2, we choose δ ∈
(
d′(A,B), 3

2d
′(A,B)

)
. Then A ∈ Qδ(B).

By Lemma 3.3.1 we obtain B ∈ QCeδ(A), hence

d(B,A) ≤ Ceδ ≤ 3
2Ced

′(A,B) = 3
2Ced(A,B)

(b) Assume that d′(A,B) < ∞. We must show that d′(A,B) ≤
Ĉ|A − B| with some constant Ĉ > 0. We start with the observation that
A /∈ Qd′(A,B)/2(B). If now |[FA(B)]1| > 1

2d
′(A,B), we get 2L0|A − B| ≥

2|[FA(B)]1| > d′(A,B).

If |[FA(B)]l| >
√

1
2d
′(A,B) for some l ∈ {2, . . . , n− 1}, then

2L2
0RD |A−B| ≥ 2L2

0|A−B|2 ≥ 2|FA(B)|2 > d′(A,B).

If finally |[FA(B)]n| > τn
(
B, 1

2d
′(A,B)

)
, we obtain (using (2.5))

L0|A−B| ≥ |[FA(B)]n| ≥ γ0

(
1
2d
′(A,B)

)1/2
,

hence

d′(A,B) ≤ 2L2
0

γ2
0

|A−B|2 ≤ 2L2
0RD
γ2

0

|A−B|.

This implies d′(A,B) ≤ 2(c1L0)2R2
D|A−B|, and hence the assertion.

(c) The triangular inequality is proved in analogy to [Her-3, Lemma 3.1].
(d) Follows from (c) and Lemma 3.4.1(b).
(e) We write for short

T :=
(
|[FQ(A)]1|+ |[FQ(A)]′′|2 +

2m∑
l=2

‖Pl(ζ, ·)‖ |[FQ(A)]n|l
)
.

Certainly FQ(A) ∈ R2T (Q). By definition of d′(A,Q) this yields d′(A,Q) ≤
2T . On the other hand we can estimate from below each δ for which FQ(A) ∈
Rδ(Q), namely |[FQ(A)]1| < δ, |[FQ(A)]′′| ≤

√
δ, and |[FQ(A)]n| < τn(Q, δ).

The latter is equivalent to

2m∑
l=2

‖Pl(ζ, ·)‖ |[FQ(A)]n|l < δ.

Summing these inequalities gives d′(A,Q) ≥ 1
3T .

3.5. Covering a δ-collar around the boundary by a special mesh
of pseudoballs Qδ. We will need an important application of Lemma 3.3.1,
namely, we have to be able to cover a thin collar around ∂D of width δ by a
finite number of Qδ(ζ)’s in such a way that any x in this layer is contained
in a finite number of Qδ(ζ)’s, and this number does not depend on δ (cf.
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[Cat2, Lemma 3.3]). This will be essential for the proof of Lemma 4.3 in the
next section.

More precisely:

Lemma 3.5.1. There exists a number N0 with the following property:
Given δ0 > δ > 0 we can find a set {ζ(ν) | ν ∈ Tδ} ⊂ ∂D, where Tδ is a
finite index set, such that:

(a) S
C̃0δ
⊂
⋃
ν∈Tδ Qδ(ζ

(ν)).

(b) For any x ∈ S
C̃0δ

the set

Ax := {ν ∈ Tδ | Qδ(x) ∩Qδ(ζ(ν)) 6= ∅}

has at most N0 elements. (Here C̃0 is the constant from Lemma
3.4.1.)

Proof. We start with a finite covering (Qδ(y
(k)))k∈T ′δ of ∂D and select a

subcovering with the desired property. Let ζ(1) = y(1). If ∂D ⊂ Qδ(ζ(1)) we
are done. Otherwise we have a point y(i2) ∈ ∂D \Qδ(ζ(1)). Let ζ(2) = y(i2).
Again, if ∂D ⊂ Qδ(ζ

(1)) ∪ Qδ(ζ(2)), we choose Tδ = {1, 2}. Inductively
assume that for ν ≥ 3 we have found ζ(1), . . . , ζ(ν−1) ∈ {y(i) | i ∈ T ′δ} such

that ζ(k) /∈
⋃k−1
s=1 Qδ(ζ

(s)) for any k = 2, . . . , ν−1. Then ∂D ⊂
⋃ν−1
s=1 Qδ(ζ

(s))

or there exists an iν ∈ T ′δ such that ζ(ν) := y(iν) /∈
⋃ν−1
s=1 Qδ(ζ

(s)). This

defines a sequence (ζ(ν))ν∈Tδ with Tδ finite such that

(3.13) ζ(ν) /∈
ν−1⋃
s=1

Qδ(ζ
(s)).

Our claim is that for any x ∈ ∂D the cardinality of Ax is bounded
uniformly in δ. Let Ce denote the constant from Lemma 3.3.1. We claim
that

QC−2
e δ(ζ

(ν)) ∩QC−2
e δ(ζ

(l)) = ∅

for ν 6= l. To see this assume that ν > l and that there exists y ∈ QC−2
e δ(ζ

(ν))

∩ QC−2
e δ(ζ

(l)). Then by 3.3.1 we obtain ζ(ν) ∈ QC−1
e δ(y) ⊂ Qδ(ζ

(l)), which
contradicts (3.13).

We next estimate the volume of QC−2
e δ(ζ

(ν)) from below whenever ν∈Ax,
namely

(3.14) Vol(QC−2
e δ(ζ

(ν))) ≥ c5C
−2n
e δnτn(ζ(ν), δ)2,

c5 > 0 being an unimportant constant. For any z ∈ Qδ(ζ(ν))∩Qδ(x) we get

τn(z, δ) ≤ C2
e τn(ζ(ν), δ),

and, since x ∈ QCeδ(z), it follows that

τn(x, δ) ≤ C2
e τn(z, Ceδ) ≤ C3

e τn(z, δ) ≤ C5
e τn(ζ(ν), δ).
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In particular by means of (3.14) we obtain

(3.15) Vol(QC−2
e δ(ζ

(ν))) ≥ c5C
−10−2n
e δnτn(x, δ)2.

At the same time, ζ(ν) ∈ QCeδ(z) ⊂ QC2
e δ

(x), hence Qδ(ζ
(ν)) ⊂ QC3

e δ
(x)

for any ν ∈ Ax. Thus⋃
ν∈Ax

QC−2
e δ(ζ

(ν)) ⊂
⋃
ν∈Ax

Qδ(ζ
(ν)) ⊂ QC3

e δ
(x).

Let ] denote cardinality. In conjunction with (3.15) the above yields

(]Ax)c5C
−10−2n
e δnτn(x, δ)2≤Vol

( ⋃
ν∈Ax

QC−2
e δ(ζ

(ν))
)
≤c6δ

nC3n+2
e τn(x, δ)2.

This implies ]Ax ≤ c6C
5n+12
e /c5 independently of δ.

4. Plurisubharmonic weight functions. In the next step we con-
struct for a pseudoball Qδ(ζ) (with small δ > 0 and ζ close to ∂D) a nega-
tive smooth plurisubharmonic function φζ,δ whose Levi form “fits well” the
geometric form of Qδ(ζ), and is bounded from below by a uniform constant.

For a precise statement of this we prepare some

Notation. Let U0 and U1, . . . , Un ⊂ U0 denote the open sets we have
fixed before the statement of Lemma 3.1.1. We choose open sets Ũk ⊂⊂ Uk,
for k = 1, . . . , n, such that ∂D ⊂ Ũ1 ∪ · · · ∪ Ũn. On each Uk we fix a set of
vector fields kL1, . . . ,

kLn−1,
kL∗ of a boundary system. Let the normal field

N be defined as in (3.1). Over Uk, each X ∈ Cn has a unique representation
in the form

X = b1N +

n−1∑
ν=2

bν
kLν + bn

kL∗

with smooth coefficients b1, . . . , bn on Uk.

We may assume that δ0 has been chosen so small that

(a) Sδ0 ⊂ Ũ1 ∪ · · · ∪ Ũn,

(b) Qδ(ζ) ⊂⊂ Uk for any ζ ∈ S
C̃0δ
∩ Ũk, δ < δ0, k = 1, . . . , n.

Lemma 4.1. There exists a constant K0 such that, after possibly shrink-
ing δ0, for any 0 < δ < δ0 and any ζ ∈ S

C̃0δ
we can find a smooth plurisub-

harmonic function ψζ,δ on D̃ζ,δ/K0
:= {ρζ < δ/K0} with the following prop-

erties:

(i) − 5
12K

−2/3
0 ≤ ψζ,δ < 0 on D̃ζ,δ/K0

.
(ii) On R

δ/K
5/6
0

(ζ) ∩Dζ,δ/K0
the Levi form Lψζ,δ of ψζ,δ satisfies
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(4.1) Lψζ,δ(w,X) ≥


1

K0

(
|X1|2

δ2
+
|X ′′|2

δ
+
|Xn|2

τn(ζ, δ)2

)
for n ≥ 3,

1

K0

(
|X1|2

δ2
+
|X2|2

τ2(ζ, δ)2

)
for n = 2,

for X ∈ Cn.

Proof. For n = 2 this is contained in [Cat2], so assume n ≥ 3. Let
δ < δ0. We apply [Her-2a, Theorem 4] for any ζ ∈ S

C̃0δ
. There exists a

universal radius R2 > 0 (independent of δ and ζ), and on the disc ∆(0, 3R2)

a subharmonic function wn 7→ P̃ (ζ, wn) such that the plurisubharmonic
function

ϕ̂ζ(w) := Re(w1 +Mw2
1) + 1

2 |w
′′|2 + P̃ (ζ, wn)

satisfies, with suitably chosen M,K > 0, the estimate

2ρζ(w)−M |w1|2 −KB(ζ, w′) ≤ ϕ̂ζ(w) ≤ 1

2
ρζ(w)− 1

M
|w1|2 −

1

K
B(ζ, w′)

on the ball B(0, 2R2), where we write

(4.2) B(ζ, w′) := |w′′|2 +
2m∑
j=2

‖Pj(ζ, ·)‖ |wn|j .

Let K0 > 1 be a constant, to be chosen later. From the pseudoconvexity
of D, and hence of {ρζ < 0}, it follows that also the function

ϕζ,δ,0 := log
(1 +K−1

0 )δ

(1 +K−1
0 )δ − ρζ

+A|w|2

is plurisubharmonic on {ρζ < K−1
0 δ}, once A is sufficiently large.

We define

ϕ̃ζ,δ(w) := − 1

K0
+
ϕ̂ζ(w)

δ
(4.3)

+
2m∑
j=2

1

δ2/j

(
−(−ϕ̂ζ(w) + δ)2/j +K−1

∗ ‖Pj(ζ, ·)‖2/j |wn|2
)

with a constant K∗ to be chosen later. On {ρζ < δ/K0}∩B(0, 2R2) we have

ϕ̃ζ,δ(w) < −K−1
∗ δ−2/jB(w′)2/j for any j = 2, . . . , 2m,

and further the function

ϕ̃ζ,δ(w)− 1√
K∗

(
|w′′|2

δ
+
|wn|2

τn(ζ, δ)2

)
is plurisubharmonic on R3δ/(2K∗)(ζ).
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The Levi form of ϕζ,δ,0 satisfies

Lϕζ,δ,0 ≥ −Llog(1+K−1
0 )δ−ρζ+AL|w|2 ≥

1

2

∂ρζ∂ρζ

((1 +K−1
0 )δ − ρζ)2

≥ 8

K∗

∂ρζ∂ρζ
δ2

on R3δ/(2K∗)(ζ) if K∗ � 1. But on this set

∂ρζ∂ρζ ≥
1

8
|dw1|2 −M1δL|w′′|2 −M1

(
δ

τn(ζ, δ)

)2

|dwn|2

with an unimportant constant M1. Hence the function

ψ̃ζ,δ(w) := ϕζ,δ,0(w) + ϕ̃ζ,δ(w)− 1

K∗

(
|w1|2

δ2
+
|w′′|2

δ
+
|wn|2

τn(ζ, δ)2

)
is plurisubharmonic on R5δ/(4K∗)(ζ).

We have ψ̂ζ,δ(0) = ψ̃ζ,δ(0) = 0 and

ψ̃ζ,δ(w) < log(1 + 2K−1
0 ) +A|w|2 − |w1|2

δ2
− 1

K∗

2m∑
j=2

(
B(w′)

δ

)2/j

on D̃ζ,δ/K0
. This implies that on ∂R5δ/(4K∗)(ζ)∩D̃ζ, δ/K0

, with another unim-

portant constant Ã,

(4.4) ψ̃ζ,δ <
2

K0
+ Ãδ1/m − 2

K2
∗
< − 1

2K2
∗

= − 1

2K
2/3
0

,

if we choose K0 := K3
∗ and δ0 ≤ (4ÃK∗)

−3m.
Furthermore, there exists a constant L2 > 0, independent of δ and K∗,

such that ψ̃ζ,δ > −L2/T on Rδ/T (ζ) for any T > 1. This shows that ψ̃ζ,δ >

−1/(3K2
∗ ) on Rδ/(3L2K2

∗)
(ζ). We enlarge K∗ (and hence K0) so that K∗ >

9L2
2. Then R

δ/K
5/2
∗

(ζ) ⊂ Rδ/(3L2K2
∗)

(ζ).

After a standard regularization procedure we can assume that ψ̃ζ,δ is

smooth. (Note that P̃ (ζ, ·) is only continuous!)
Next we choose a convex function κ : R→R such that κ(x)=−5/(12K2

∗ )
for x ≤ −1/(2K2

∗ ) and κ(x) = x for x > −1/(3K2
∗ ). Then the function

ψζ,δ := κ ◦ ψ̃ζ,δ is plurisubharmonic on {ρζ < δ/K0} and has the desired
properties.

We push the weight functions ψζ,δ forward to the original domain {r <
δ/K0}:

Lemma 4.2. There exists a constant C∗ > 0 such that for each ζ ∈
S
C̃0δ

and 0 < δ < δ0 we can find a plurisubharmonic function φζ,δ < 0 on

{r < δ/K0} such that:

(i) − 5
12K

−2/3
0 ≤ φζ,δ < 0.
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(ii) The Levi form of φζ,δ satisfies

Lφζ,δ(z; b1N +
n−1∑
k=2

bkLk + bnL∗)

≥


C∗

(
|b1|2

δ2
+

∑n−1
j=2 |bj |2

δ
+
|bn|2

η(ζ, δ)2

)
if n ≥ 3,

C∗

(
|b1|2

δ2
+
|b2|2

η(ζ, δ)2

)
if n = 2

on Q
δ/K

5/6
0

(ζ), where (L2, . . . , Ln−1, L∗) is a boundary system as at

the beginning of this section.

Proof. Again we argue only for n ≥ 3. We put φζ,δ := ψζ,δ ◦ Fζ . This
function is plurisubharmonic on {r < δ/K0} ∩ B(ζ,R0). But because of

(2.4) in conjunction with (4.4) we have ψ̃ζ,δ ◦ Fζ ≤ −L4δ
−1/2m, so that for

sufficiently small δ we can extend ψ̃ζ,δ ◦ Fζ by setting

≈
ψ ζ,δ :=

{
max{ψ̃ζ,δ ◦ Fζ ,−5/(12K

2/3
0 )} on {r < δ/K0} ∩B(ζ,R0),

−5/(12K
2/3
0 ) on {r < δ/K0} \B(ζ,R0).

If κ is chosen as in the proof of the preceding lemma, we choose φζ,δ as a

regularization of κ ◦
≈
ψ ζ,δ.

This function is defined and plurisubharmonic on {r < δ/K0}, and it
satifies (i). To see that the estimate (ii) on the Levi form of φζ,δ holds on
Q
δ/K

5/6
0

(ζ) we may assume that the boundary system L2, . . . , Ln−1, L∗ is

defined on B(ζ, 2R0). If we write X = b1N +
∑n−1

p=2 bpLp + bnL∗, then

(4.5)

b1 =
1

|∇r|
〈∂r,X〉,

bk = Xk + b1 · (rz̄nsk − rz̄k)−Xn · sk, k = 2, . . . , n− 1,

bn = Xn − b1 · rz̄n .

On F−1
ζ ({ψζ,δ > −1/(3K

2/3
0 )}) we obtain

Lφζ,δ ≥ κ′ ◦ ψ̃ζ,δ ◦ Fζ ·Lψζ,δ(Fζ(z), F
′
ζ(z)X) ≥ Lψζ,δ(Fζ(z), F

′
ζ(z)X)

≥ 1

2K∗

(∣∣(∂ρζ(Fζ(z)), F ′ζ(z)X)∣∣2
δ2

+
1

δ

n−1∑
p=2

|〈∂(Fζ)p(z), X〉|2 +
|Xn|2

τn(ζ, δ)2

)

≥ 1

2K∗

(∣∣(∂ρζ(Fζ(z)), F ′ζ(z)X)∣∣2
δ2

+
1

K∗δ

n−1∑
p=2

|〈∂(Fζ)p(z), X〉|2+
|Xn|2

τn(ζ, δ)2

)
.
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Now we have 〈∂ρζ(Fζ(z), F ′ζ(z)X〉 = 〈∂r(z), X〉. Next we observe that

〈∂[Fζ ]p(z), X〉 =

n∑
ν=2

∂[Fζ ]p
∂zν

(z)Xν

=
n−1∑
ν=2

∂[Fζ ]p
∂zν

(z)bν − b1rz̄n
n−1∑
ν=2

∂[Fζ ]p
∂zν

(z)sν + σp ◦ Fζ · (bn + b1 rz̄n),

where the functions σp are the coefficients in the representation

L̂∗ = L̂n +

n−1∑
p=2

σpL̂p

and L̂k are the vector fields into which the Lk transform under Fζ . The σp
are given by

(4.6) σp ◦ Fζ =

n−1∑
ν=2

∂[Fζ ]p
∂zν

(z)sν +
∂[Fζ ]p
∂zn

(z).

By computation one can check that

σp = −
n−1∑
l=2

L̂pl̄L̂nl̄,

where the Lnl̄ and Lpl̄ are defined as in the first step in the proof of Lemma
3.2.2. Now by Lemma 3.2.1 we get, on Rδ(ζ),

|σp| ≤
√
δ/τn(ζ, δ).

This implies (M2 > 1 being independent of K∗) that

1

K∗δ
|〈∂[Fζ ]p(z), X〉|2 ≥

1

K∗δ

∣∣∣∣ n−1∑
ν=2

∂[Fζ ]p
∂zν

(z)bν

∣∣∣∣2 − M2|b1|2

K∗δ
− |bn|

2|σp|2

K∗δ

≥ c′

K∗δ

n−1∑
ν=2

|bν |2 −
M2

K∗δ
|b1|2 −

1

K∗

|bn|2

τn(ζ, δ)2

≥ c′

K∗δ

n−1∑
ν=2

|bν |2 −
M2

K∗δ
|b1|2 −

C2
e

K∗

|bn|2

η(ζ, δ)2

with some constant c′ > 0, because the matrix A(z) :=
(∂Fp
∂zν

(z)
)n−1

p,ν=2
is

invertible, and

(4.7) |A(z) · Y | ≈ |Y |
on Rδ(ζ). Plugging all this into the lower estimate on the Levi form of φζ,δ we
obtain the desired lower bound on Lφζ,δ . Note that, with some unimportant
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constant M > 0, one has

|Xn|2

τn(ζ, δ)2
≥ |bn|2

τn(ζ, δ)2
− 2
|b1|2|rzn |2

τn(ζ, δ)2
≥ |bn|2

C2
eηn(ζ, δ)2

−M |〈∂r,X〉|
2

δ
.

In what follows we will need another two weight functions that can be
constructed in analogy to the corresponding ones in [Cat2, Cho-1, Cho-2].

Lemma 4.3. For a sufficiently large constant K0 > 0 and small enough
δ0 > 0 we can find a family (λδ)0<δ<δ0 of plurisubharmonic functions such
that 0 ≤ λδ ≤ 1 and, on Uk,

Lλδ

(
z; b1N +

n−1∑
p=2

bpLp + bnL∗

)

≥


1

K0

(
|b1|2

δ2
+
|b2|2 + · · ·+ |bn−1|2

δ
+
|bn|2

τn(z, δ)2

)
if n ≥ 3,

1

K0

(
|b1|2

δ2
+
|b2|2

τ2(z, δ)2

)
if n = 2,

where (L2, . . . , L∗) denote the vector fields of a boundary system as in Lem-
ma 3.1.1.

Proof. Let K0 and δ0 be as in the preceding lemma. We apply Lemma
3.5.1 and put

λδ :=
12K

2/3
0

5N0

∑
ν∈Tδ

(
φζ(ν),δ +

5

12K
2/3
0

)
.

This function has values between 0 and 1 and its Levi form satisfies the
desired estimates.

We define for small t, ε0 > 0 the function

Jζ,t(z̃) := (t2 + |z̃1|2 + B(ζ, z̃ ′)2)1/2

with B as in (4.2), and for a small radius 0 < R1 < R0 the open set

Uζ,t := {ρζ < ε0t} ∪ {|z̃| < R1 | ρζ(z̃) < ε0Jζ,t(z̃)}.
The functions λδ serve as bricks in the construction of the following

family of plurisubharmonic functions:

Lemma 4.4. Let n ≥ 2. Then, for suitable R1 ≤ R0/(2L
3
0) and t0, ε0 > 0,

we can find for 0 < t ≤ t0 a smooth plurisubharmonic function Eζ,t on the
domain Uζ,t such that, with a universal constant L1 > 1:

(i) −L1Jζ,t ≤ Eζ,t ≤ −(1/L1)Jζ,t.
(ii) The Levi form of Eζ,t satisfies

LEζ,t(z̃, Y ) ≥ 1

L1

(
|Y1|2

Jζ,t(z̃)2
+
|Y2|2 + · · ·+ |Yn−1|2

Jζ,t(z̃)
+

|Yn|2

τn(ζ,Jζ,t(z̃))2

)
.
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(iii) The domain

Dζ
t := {z̃ ∈ B(0, R1) | ρζ(z̃) < t or ρζ(z̃) < −ε0Eζ,t(z̃)}

is pseudoconvex.

Proof. For n = 2 this is [Cat2, Prop. 4.1], and for n ≥ 3 we can copy the
proof of [Cho-2, Prop. 2.2].

Remark 4.5. (a) After shrinking δ0 once again we can achieve that for

each δ ∈ (0, δ0) we can stick together the domains F−1
ζ (Dζ

δ/K0
) and {r < t0}

whenever ζ ∈ Sδ. For details the reader may consult [Cat2, Sec. 5] and
[Cho-2, Prop. 2.7]. During this procedure the parameters t0 and ε0 must
possibly be shrunk. We will denote the resulting domain by Dζ,δ. By the
preceding lemma we obtain the following: There exists θ0 > 0 such that for
any z ∈ Dζ,δ and 0 < θ ≤ θ0,{

F−1
ζ (P θz̃ ) ⊂ Dζ,δ if z̃ := Fζ(z) ∈ Dζ

δ/K0
,

∆n(z, c0t0) ⊂ Dζ,δ otherwise,

where for θ ∈ (0, θ0] we denote by P θz̃ the polydisc

P θz̃ := ∆(z̃1, θJζ,δ(z̃))×∆n−2

(
z̃′′,
√
θJζ,δ(z̃)

)
×∆(z̃n, τn(ζ, θJζ,δ(z̃)).

(b) Using Lemma 4.4(i) we see that we can choose s1 ∈ (0, 1) indepen-
dently of δ, ζ in such a way that the function

Ŵζ,δ(z) :=

{
max{Eζ,δ/K0

◦ Fζ ,−s1} on F−1
ζ (D

δ/K0

ζ ),

−s1 on Dζ,δ \ F−1
ζ (D

δ/K0

ζ ),

becomes plurisubharmonic on Dζ,δ whenever δ < t0.

5. Holomorphic auxiliary functions. We can proceed in a similar
manner to the construction of peak functions in [DieHer]. These were of
the form (1− c)

∑∞
m=0 c

mFm, where the “bricks” Fm had to satisfy certain
conditions. In the next lemma we want to construct the functions Fm that
are suitable for the problem at hand.

Lemma 5.1. There exist constants Ĉ, k0,N1 > 0 and for any ζ ∈ ∂D
and A ∈ D a family (FA,ζ,k)0<k<k0 ⊂ O(D) with the following properties:

(i) For any k ∈ (0, k0) we have FA,ζ,k ∈ O(Dζ,k), FA,ζ,k(ζ) = 1.
(ii) Let 0 < k < k0 and ζ ∈ ∂D. Then:

(a) If A /∈ B(ζ,R1), then FA,ζ,k(A) = 0.
(b) If A ∈ B(ζ,R1), then

FA,ζ,k(A) =

{
1 if Vζ,k(A) ≤ 1,

0 if Vζ,k(A) > 1,

where Vζ,k(z) := |[Fζ(z)]1|2/k2 + (1/k)B(ζ, [Fζ(z)]
′).
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(iii) For any k ∈ (0, k0) we have ‖FA,ζ,k‖H∞(D) ≤ Ĉ.
(iv) For z ∈ D ∩B(ζ,R0),

|FA,ζ,k(z)− 1| ≤ Ĉ
(
|[Fζ(z)]1|

k
+
|[Fζ(z)]′′|√

k
+
|[Fζ(z)]n|
τn(ζ, k)

)
.

(v) For any z ∈ D, z /∈ QN1k(ζ) and p ≤ k,

|FA,ζ,p(z)| ≤ Ĉp/k.

We will prove this for n ≥ 3. (The case n = 2 goes in a completely anal-
ogous way.) We will apply the ∂-technique developed by [Hör] with suitable
plurisubharmonic weight functions on the pseudoconvex domain Dζ,k.

Before proceeding to the details we need some preparations.

Let U0 and δ0 be as before. For 0 < t < δ0 we define

(5.1)
V ′ζ,t(w) :=

|w1|2

t2
+

1

t
B(ζ, w′), Vζ,t := V ′ζ,t ◦ Fζ ,

V ′′ζ,t(w) :=
|w1|2

t2
+
|w′′|2

t
+
|wn|2

τn(ζ, t)2
, V̂ζ,t := V ′′ζ,t ◦ Fζ .

Then

(5.2) Vζ,t ≤ (2m+ 1) max{V̂ζ,t, V̂ m
ζ,t}, V̂ζ,t ≤ (2m+ 1) max{Vζ,t, V

1/m
ζ,t }.

We further define, for A ∈ B(ζ,R0), the functions

(5.3)

ṼA,ζ,t(w) :=
|w1 − [Fζ(A)]1|2

t2

+
|w′′ − [Fζ(A)]′′|2

t
+
|wn − [Fζ(A)]n|2

τn(ζ, t)2
,

VA,ζ,t := ṼA,ζ,t ◦ Fζ .

We have

(5.4) VA,ζ,t(z) ≥ max
{

1
2 V̂ζ,t(z)− 2V̂ζ,t(A), 1

2 V̂ζ,t(A)− 2V̂ζ,t(z)
}
.

The ∂-equation. Let χ : R → [0, 1] denote a smooth function with
χ(x) = 1 for x ≤ 2 and χ(x) = 0 for x ≥ 3. With s ≥ 1/(2 + 4(2m+ 1))2 to
be chosen later, we write

χ1(z) :=

{
χ(sVζ,k(z)) if |z − ζ| < R1,

0 if |z − ζ| ≥ R1.

Then there exists k0 > 0 such that χ1 is smooth on Dζ,k for any k ≤ k0. In
fact, if |z− ζ| = R1/2, then |Fζ(z)| ≥ R1/(2L0) and using (3.4) and Lemma

3.2.3 we get Vζ,k(z) ≥ γ · k−1/(2m) with an unimportant constant γ, and
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finally sVζ,k(z) ≥ γ
(2+4(2m+1))2k1/(2m) ≥ 3 if we choose

k ≤ k0 :=

(
γ

3(2 + 4(2m+ 1))

)4m

.

This proves the smoothness of χ1 on Dζ,k.

We intend to solve the equation

(5.5) ∂uk = ∂χ1

by means of Hörmander’s theory of the ∂-equation with plurisubharmonic
weights. The desired functions will then be given by

FA,ζ,k = χ1 − uk.
To ensure that the FA,ζ,k behave in the desired manner, we must choose
the plurisubharmonic weight functions carefully. We want them to exhibit
a logarithmic pole at ζ and A. We proceed as follows.

5.1. Choosing plurisubharmonic weights. Let λ ∈ C∞(R) be an
increasing function such that λ(x) = x for x ≤ 1/2 and λ(x) = 2/3 for
x ≥ 3/4.

We can choose s0 > 3(192m(2m + 1))m such that for any ζ ∈ ∂D and
k ∈ (0, t0) we have

(5.6) {s0Vζ,k ≤ 1} ⊂ Q
k/K

5/6
0

(ζ) ∩ {r < k/K0}.

Furthermore, by Lemma 4.4(i),

(5.7) Eζ,k/K0
(w) ≥ −L1Jζ,k/K0

(w) ≥ −L8k

for w ∈ Rk/K0
(ζ), with some unimportant L8 > 0.

Hence we can find a small k0 � 1 such that

(5.8) Eζ,k/K0
≥ −L8k0 > −s1

on {s0V
′
ζ,k ≤ 1} whenever 0 < k ≤ k0. (For the definition of s1, see Remark

4.5(b).)

Lemma 5.1.1.

(i) Assume that |A− ζ| ≥ R0/(2L
3
0). Define

wA,ζ(z) = log λ(s0Vζ,k(z)) + log
|z −A|2

R2
0

and choose s = 3. Then

wA,ζ ≥ λ(2s0/3)− 2 log 4− 6 logL0 on supp(∂χ1).

(ii) Assume that |A− ζ| < R0/(2L
3
0) and Vζ,k(A) ≤ 1 and let

wA,ζ(z) := log λ(s0Vζ,k(z)) + log λ(VA,ζ,k(z)).
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If s = (2 + 4(2m+ 1))−2, then

wA,ζ ≥ log λ(2s0/s) + log
2

3
on supp(∂χ1).

(iii) Assume that |A− ζ|<R0/(2L
3
0) and Vζ,k(A)>1. There is a constant

v∗∈(0, 1), depending only on R0, such that min∂B(ζ,7R0/8) VA,ζ,k≥v∗.
Define ωk := Jζ,k(Fζ(A)) and choose

wA,ζ := log λ(s0Vζ,k) + log λ

(
3

4v∗
VA,ζ,ωk

)
.

(For the definition of VA,ζ,t see (5.3).) Let s := 3 ·(192m(2m+1))m.
Then

wA,ζ ≥ log λ(2s0/s)− log(128m) on supp(∂χ1).

Proof. (i) We first note

|z −A| ≥ |A− ζ| − |z − ζ| ≥ R0

2L3
0

− |z − ζ| ≥ R0

2L3
0

− L0|Fζ(z)|

and, for z ∈ supp(∂χ1), using Vζ,k(z) ≤ 1,

(5.9) |[Fζ(z)]1| ≤ k, |[Fζ(z)]′′| ≤
√
k, |[Fζ(z)]n| ≤ τn(ζ, k) ≤ c1k

1/(2m).

Combining this with Lemma 3.2.3 and (3.4) we obtain

L0|Fζ(z)| ≤ L0ĉ1k
1/(2m)

with an unimportant constant ĉ1 and hence R0/(2L
3
0)−|z−ζ| ≥ R0/(2L

3
0)−

L0|Fζ(z)| ≥ R0/(4L
3
0) if k ≤ k0 � 1. This proves

wA,ζ ≥ λ(2s̃/3)− 2 log 4− 6 logL0 on supp(∂χ1).

(ii) We have to estimate VA,ζ,k from below on supp(∂χ1).

By (5.4) and the second estimate from (5.2), we see that

VA,ζ,k(z) ≥ 1
2 V̂ζ,k(z)− 2V̂ζ,k(A) ≥ 1

2 V̂ζ,k(z)− 2(2m+ 1).

For z ∈ supp(∂χ1) we have, using the first estimate from (5.2),

max{V̂ζ,k(z), V m
ζ,k(z)} ≥

1

2m+ 1
Vζ,k(z) ≥

2

(2m+ 1)s
≥ 1√

s

since s < (2m+ 1)−2. This and the above estimate imply

VA,ζ,k(z) ≥
1

2
√
s
− 2(2m+ 1) = 1

by our choice of s. From this we get the desired estimate.

(iii) For z ∈ ∂B(ζ, 7R0/8) we obtain

|Fζ(z)− Fζ(A)| ≥ L−1
0 |z − ζ| − L0|ζ −A| ≥

3

8L0
R0 =: R3.
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On the other hand ω2
k ≤ k2

0 + L̂2
6R

2
0 ≤ L2

7R
2
0, with unimportant constants

L6, L7. This leads to

VA,ζ,ωk(z) ≥ min
|w|≥R3

(
|w1|2

(L7R0)2
+
|w′′|2

L7R0
+

|wn|2

τn(ζ, L7R0)2

)
,

which implies the existence of v∗.

For any y 6= 0 we can show (by elementary estimates) that Vζ,Jζ,k(y)(y) ≥
1/(24m) provided that V ′ζ,k(y) ≥ 1. We exploit this for y := Fζ(A). Since

V ′ζ,k(Fζ(A)) = Vζ,k(A) ≥ 1 we get

V̂ζ,ωk(A) = V ′′ζ,ωk(Fζ(A)) ≥ 1

24m
,

so that for z ∈ supp(∂χ1),

3

4v∗
VA,ζ,ωk(z) ≥ 3

4
VA,ζ,ωk(z) ≥ 3

8
V̂ζ,ωk(A)− 3

2
V̂ζ,ωk(z)

≥ 3

8
V̂ζ,ωk(A)− 3

2
(2m+ 1) max{V̂ζ,ωk(z), V

1/m
ζ,ωk

(z)}

≥ 3

8
V̂ζ,ωk(A)− 3

2
(2m+ 1) max{V̂ζ,k(z), V

1/m
ζ,k (z)}

≥ 1

64m
− 3

2
(2m+ 1)

(
3

s

)1/m

=
1

128m

by the choice of s.

Remark 5.1.2. The function wA,ζ can be viewed as a function on Dζ,k.

Proof. In case (i) of Lemma 5.1.1, we see that wA,ζ is defined onB(ζ,R0),

but on ∂B(ζ,R0) the function s0Vζ,k has values ≥ s0L5k
−1/(2m) ≥ 1 if k is

sufficiently small (here, L5 is an unimportant constant). Hence we can define
λ ◦ Vζ,k := log(2/3) outside B(ζ,R0).

In case (ii), we use

VA,ζ,k(z) ≥ 1
2 V̂ζ,k(z)− 2V̂ζ,k(A) ≥ 1

2 V̂ζ,k(z)− 2 = 1
2V
′′
ζ,k(Fζ(z))− 2.

On ∂B(ζ,R) we have |Fζ(z)| ≥ R0/L0, and, as in case (i), we find that
VA,ζ,k(z) ≥ 1 on ∂B(ζ,R) if k is small enough.

Case (iii) is similar to case (ii).

The above functions wA,ζ are not yet plurisubharmonic, but we can over-
come this by

Lemma 5.1.3. One can choose a constant M1 uniformly in ζ and k ≤ k0

so large that the function

ŵA,ζ := M1Ŵζ,k + wA,ζ +M1|z|2

is plurisubharmonic throughout Dζ,k.
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Proof. For a set M let ξM denote the characteristic function of M .
In case (i) of Lemma 5.1.1,

wA,ζ = log λ(s0Vζ,k(z)) + log
|z −A|2

R2
0

.

The function log λ(s0Vζ,k) = log λ(s0V
′
ζ,k) ◦ Fζ is not plurisubharmonic. We

consider the Levi form of log λ(s0V
′
ζ,k). By computation we find

Llog λ(s0V ′ζ,k) = s0(log λ)′(s0V
′
ζ,k)LV ′ζ,k

+ s2
0(log λ)′′(s0V

′
ζ,k) ∂V

′
ζ,k∂V

′
ζ,k

≥ s2
0(log λ)′′(s0V

′
ζ,k) ∂V

′
ζ,k∂V

′
ζ,k

≥ −K1 · ξ{1/2≤s0V ′ζ,k≤3/4}s
2
0 ∂V

′
ζ,k∂V

′
ζ,k with K1 := max

[1/2,3/4]
|(log λ)′′|

≥ −K1 · ξ{1/2≤s0V ′ζ,k≤3/4}s0 LV ′ζ,k
.

But the Levi form of Eζ, k/K0
satisfies

LEζ, k/K0
(w;Y ) ≥ 1

L1

(
|Y1|2

Jζ,k/K0
(w)2

+

∑n−1
l=2 |Yl|2

Jζ,k/K0
(w)

+
|Yn|2

τn(ζ,Jζ,k/K0
(w))2

)
.

On {s0V
′
ζ,k ≤ 3/4} we even have

(5.10) LEζ, k/K0
(w;Y ) ≥ L9

(
|Y1|2

k2
+

∑n−1
l=2 |Yl|2

k
+
|Yn|2

τn(ζ, k)2

)
,

with some unimportant constant L9 > 0. But if V ′ζ,k(w) ≤ 1, we get

1

k

2m∑
l=2

‖Pl(ζ, ·)‖ |wn|l−2|dwn|2 ≤ 2m
|dwn|2

τn(ζ, k)2
,

and therefore
4mK1s0L

−1
9 Eζ, k/K0

+ log λ(s0V
′
ζ,k)

becomes plurisubharmonic. From (5.8) we infer

(5.11) {s0Vζ,k ≤ 3/4} ⊂ {Ŵζ,k = Eζ, k/K0
},

and the claim follows in case (i).
In case (ii) we have

wA,ζ(z) := log λ(s0Vζ,k(z)) + log λ(VA,ζ,k(z))

and we need to estimate the Levi form of log λ(VA,ζ,k) = log λ(ṼA,ζ,k) ◦ Fζ .
First we obtain (as in case (i))

L
log λ(ṼA,ζ,k)

≥ −K1ξ{1/2≤VA,ζ,k≤3/4} ·LV ′′ζ,k

with K1 as above. But, after shrinking k0, we find, with some constant
L10 > 0,

Jζ,k/K0
(w) ≤ L10k0 < s1/L1
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for all w such that V ′′ζ,k(w) ≤ 1. Moreover

LEζ, k/K0
≥ L11LV ′′ζ,k

on {1/2 ≤ VA,ζ,k ≤ 3/4} with some constant L11 > 0. Plugging Fζ into the

function M1Eζ, k/K0
+ log λ(s0V

′
ζ,k) + log λ ◦ ṼA,ζ,k, we obtain the assertion,

after enlarging M1 if necessary.
In case (iii),

wA,ζ = log λ(s0V
′
ζ,k) ◦ Fζ + log λ

(
3

4v∗
ṼA,ζ,ωk ◦ Fζ

)
.

The Levi form of the first member is treated as before. To estimate the Levi
form of the second term we start with

L
log λ( 3

4v∗
ṼA,ζ,ωk )

≥ − 3

4v∗
K1 · ξ{ṼA,ζ,ωk≤v∗}

·LV ′′ζ,ωk
.

Now, on {ṼA,ζ,ωk ≤ v∗} we have

(5.12) Jζ,k/K0
≤ 4m+2(m+ 1)ωk.

Next we can choose a number t1 (independently of k, ζ) such that

4t21 + 2t1 + 2τn(ζ, t1) < (R1/10)2.

Two cases can occur:

(1) Suppose that ωk ≤ min
{

s1
2L14m+2(m+1)

, t1
}

. Then

{ṼA,ζ,ωk ≤ v∗} ⊂ D
k/K0

ζ ∩ {Eζ,k/K0
≥ −s1/2},

hence
{VA,ζ,ωk ≤ v∗} ⊂ F

−1
ζ (D

k/K0

ζ ) ∩ {Ŵζ,k = Eζ,k/K0
◦ Fζ}.

From Lemma 4.4(ii) and (5.12) we see that for a large enough M1 we can

achieve that M1Ŵζ,k + wA,ζ becomes plurisubharmonic on Dζ,k.

(2) Suppose that ωk ≥ min
{

s1
2L14m+2(m+1)

, t1
}

. Then

L
log λ( 3

4v∗
ṼA,ζ,ωk )

≥ − 3

4v∗
K1 · ξ{ṼA,ζ,ωk≤v∗}

·L|w|2

and

Llog λ( 3
4v∗

VA,ζ,ωk ) ≥ −
3

4v∗
K1 · ξ{VA,ζ,ωk≤v∗} ·L|Fζ |2 ≥ −L10L|z|2 ,

with some universal constant L10, as follows from the definition of Fζ . This
gives the claim, after another enlargement of M1.

With a view to (v) of Lemma 5.1 we introduce one more weight function.

Lemma 5.1.4. For any 0 < k ≤ k0 let

Ûζ,k := log
k

k − Ŵζ,k

.
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Then Ûζ,k is plurisubharmonic on Dζ,k. If L1 is the constant from Lemma
4.4, then, given two numbers p ≤ k ≤ k0, we have

Ûζ,p(x) ≤ logL1 + log(k0/s1) + log(p/k)

whenever x ∈ Dζ,p but x /∈ Qk(ζ).

Proof. Let x ∈ Dζ,p \Qk(ζ). Then we consider two cases:

(a) If Ŵζ,p(x) = −s1, then

Ûζ,p(x) = log
p

p+ s1
≤ log

p

k
+ log

k0

p+ s1
< log

k0

s1
+ log

p

k
.

(b) Assume that Ŵζ,p(x) = Eζ,p/K0
(Fζ(x)). We use Jζ,p/K0

(Fζ(x)) ≥
(p/K0)2 + k2, because Fζ(x) /∈ Rk(ζ), which implies

Eζ,p/K0
(Fζ(x)) ≤ −L−1

1

√
(p/K0)2 + k2,

and hence

Ûζ,p(x) ≤ log
p

p+ L−1
1

√
(p/K0)2 + k2

≤ logL1 + log(p/k).

Now we define the desired plurisubharmonic weight function on Dζ,k:

(5.13) Φk := 2nŵA,ζ + 2Ûζ,k.

5.2. Proof of Lemma 5.1. Applying [Her-2a, Theorem 4], we find a
smooth solution uk to

∂uk = v = ∂χ1

such that

(5.14)
�

Dζ,k

|uk|2e−Φk d2nz ≤ K3

�

Dζ,k

|∂χ1|2∂∂Φke
−Φk d2nz,

where, for a (0, 1)-form v = v1dz̄1 + · · · + vndz̄n, we denote by |v|2
∂∂Φk

the square of the length of v measured in the hermitian metric ds2 :=∑n
a,b=1

∂2Φk
∂z1∂z̄b

dza dz̄b. If (Hab̄)na,b=1 denotes the inverse of the coefficient ma-

trix
(
∂2Φk
∂z1∂z̄b

)n
a,b=1

, then |v|2
∂∂Φk

=
∑n

a,b=1H
ab̄vavb.

We estimate the right-hand side of (5.14) as follows.

Lemma 5.2.1. With some unimportant constant K4 > 0 one has

(5.15)
�

Dζ,k

|∂χ1|2∂∂Φke
−Φkd2nz ≤ K4 Vol(Q3k/s(ζ)).

Proof. First of all,

∂χ1 = sχ′(sVζ,k)∂Vζ,k = sχ′(sVζ) · F ∗ζ ∂V ′ζ,k,
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hence

|∂χ1|2∂∂Φk ≤ s
2(maxχ′)2 · ξ{sVζ,k≤3/4}|F ∗ζ ∂V ′ζ,k|2∂∂Φk .

But

∂V ′ζ,k∂V
′
ζ,k ≤ V

′
ζ,kLV ′ζ,k

≤ 1

s
LV ′ζ,k

on {sV ′ζ,k ≤ 3/4}. On the other hand, using (5.10), we get

LEζ,k/K0
≥ L9

2m
LV ′ζ,k

≥ L9s

2m
∂V ′ζ,k∂V

′
ζ,k

and hence

LEζ,k/K0
◦Fζ ≥

L9s

2m
F ∗ζ ∂V

′
ζ,kF

∗
ζ ∂V

′
ζ,k,

which gives

(5.16) |∂χ1|2∂∂Φk ≤
2ms

K5L9
(maxχ′)2 · ξ{sVζ,k≤3/4}

if we recall (see (5.8) and (5.11)) that supp(∂χ1) ⊂ {sVζ,k ≤ 3/4} ⊂
{s0Vζ,k ≤ 3/4} ⊂ {Ŵζ,k = Eζ, k/K0

}, and therefore,

LΦk ≥ K5LEζ,k/K0
◦Fζ ≥

K5L9s

2m
F ∗ζ ∂V

′
ζ,kF

∗
ζ ∂V

′
ζ,k

with some constant K5 > 0.
We estimate Φk from below on supp(∂χ1) by

Φk = 2nŵA,ζ + Ûζ,k = 2n(M1Ŵζ,k + wA,ζ +M1|z|2) + Ûζ,k

≥ −2nM1s1 + 2nwA,ζ + Ûζ,k

≥ −K6 + Ûζ,k by Lemma 5.1.1.

But on supp(∂χ1) we have Jζ,k/K0
◦ Fζ ≤ L1K7k with some constant K7

> 0, and hence

Ûζ,k = log
k

k − Eζ,k/K0

≥ log
k

k + L−1
1 Jζ,k/K0

◦ Fζ
≥ log

1

1 +K7
.

This altogether shows that e−Φk ≤ K8 on supp(∂χ1), and in particular
�

Dζ,k

|∂χ1|2∂∂Φke
−Φk d2nz

≤ 2msK8

K5L9
(maxχ′)2 Vol(supp(∂χ1)) ≤ K4 Vol(Q3/s(ζ))

with an unimportant constant K4, as desired.

Lemma 5.2.2. The function FA,ζ,k satisfies (i) and (ii) of Lemma 5.1.

Proof. (i) Certainly, by our construction, FA,ζ,k is holomorphic on Dζ,k.
Since e−Φk is not locally integrable at ζ and A, the function uk must have
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zeros at ζ and A. Hence

FA,ζ,k(ζ) = χ1(ζ) = χ(0) = 1.

(ii) By our construction of the ∂-data we have, with R1 as in Lemma 4.4,

FA,ζ,k(A) = χ(sVζ,k(A)) =


0 if |A− ζ| ≥ R1,

1 if |A− ζ| ≤ R1, Vζ,k(A) ≤ 1,

0 if |A− ζ| ≤ R1, Vζ,k(A) > 1.

Lemma 5.2.3. The FA,ζ,k satisfy (iii) of Lemma 5.1.

Proof. We fix z ∈ D and consider two cases:
(1) Suppose that z /∈ F−1

ζ (Dζ
k/K0

). Since the polydisc Pz := ∆n(z, c0t0)

is contained in Dζ,k, by the mean value inequality we get

|FA,ζ,k(z)|2 ≤
1

Vol(Pz)

�

Pz

|FA,ζ,k(x)|2 d2nx(5.17)

≤ 2 + (c0t0)−2n
�

Pz

|uk(x)|2 d2nx

≤ 2 + (c0t0)−2n Vol({Vζ,k ≤ 3/s}) exp
(

max
Pz

Φk

)
≤ C∗,

with some constant C∗, uniformly in z,A, ζ, k.
(2) Assume that z ∈ F−1

ζ (Dζ
k/K0

). Now we set z̃ := Fζ(z) and denote by

Pz̃ the polydisc around z̃ with polyradius (σ,
√
σ, . . . ,

√
σ, τn(ζ, σ)), where

σ := θ0Jζ,k(z̃). Then again Pz̃ ⊂ Dζ
k, and by the mean value inequality,

(5.18) |FA,ζ,k(z)|2 = |FA,ζ,k ◦ F−1
ζ (z̃)|2

≤ 1

σnτn(ζ, σ)2

�

Pz̃

|FA,ζ,k ◦ F−1
ζ (y)|2 d2ny

≤ C ′

σnτn(ζ, σ)2

�

F−1
ζ (Pz̃)

|FA,ζ,k(x)|2 d2nx

≤ C ′′

σnτn(ζ, σ)2

(
Vol(F−1

ζ (Pz̃)) +
�

F−1
ζ (Pz̃)

|uk(x)|2 d2nx
)

≤ C ′′′

σnτn(ζ, σ)2
(σnτn(ζ, σ)2 + knτn(ζ, k)2) ≤ C̃,

where C̃ does not depend on A, z, ζ, k, since σ ≥ θ0k. Hence in each case
|FA,ζ,k(z)| ≤ Ĉ with some unimportant constant Ĉ.

By means of the Schwarz lemma we prove (iv):

Lemma 5.2.4. The functions FA,ζ,k satisfy (iv) of Lemma 5.1.
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Proof. We let ŝ := min
{

1
6ms ,

1√
3s
, 1
}

. Then first of all we have

Qŝ C−1
e k(ζ) ⊂ Q(ŝ C−1

e )1/(2m)k(ζ) ⊂ {Vζ,k < 2/s}.

Hence uk is holomorphic on Q(ŝ C−1
e )1/(2m)k(ζ), and in particular uk ◦F−1

ζ

must be holomorphic on R(ŝ C−1
e )1/(2m)k(ζ). Further, we find t > 0, depending

only on ŝ and Ce, such that for each x ∈ RŝC−1
e k(ζ) the polydisc about x

with polyradius (tk, t
√
k, tτn(ζ, k)) is contained in R(ŝ C−1

e )1/(2m)k(ζ).

Therefore we can apply the mean value inequality to find

|uk ◦ F−1
ζ (x)|2 ≤ 1

t2nknτn(ζ, k)2

�

R
(ŝ C−1

e )1/(2m)k
(ζ)

|uk ◦ F−1
ζ (y)|2 d2ny

≤ I := C ′
1

knτn(ζ, k)2

�

Q
(ŝ C−1

e )1/(2m)k
(ζ)

|uk(x̂)|2 d2nx̂,

since the Jacobian determinant of Fζ is bounded away from zero indepen-
dently of k, z, ζ. From (5.14) and (5.15) and the fact that Φk < 0 we obtain
I ≤ C ′′ uniformly in k, z, ζ. Thus

max
R
ŝ C−1

e k
(ζ)
|uk ◦ F−1

ζ | ≤
√
C ′′.

This, in conjunction with uk ◦F−1
ζ (0) = 0 and the Schwarz lemma, implies,

for all w ∈ Rŝ C−1
e k(ζ),

|uk ◦ F−1
ζ (w)| ≤ Ce

√
C ′′

ŝ
max

{
|w1|
k
,
|w′′|√
k
,
|wn|

τn(ζ, k)

}
.(5.19)

Now let z ∈ D be arbitrary. We consider two cases:

(1) Suppose that z ∈ Q
Ĉ−1
e k

(ζ). Then w := Fζ(z) ∈ RĈ−1
e k

(ζ), and hence

|uk(z)| = |uk ◦ F−1
ζ (w)| ≤ max

{
|[Fζ ](z)1|

k
,
|[Fζ(z)]′′|√

k
,
|[Fζ(z)]n|
τn(ζ, k)

}
,

from which (iv) of Lemma 5.1 follows.

(2) Suppose that z /∈ Q
Ĉ−1
e k

(ζ). Then

|[Fζ(z)]1|2

k2
+
|[Fζ(z)]′′|2

k
+
|[Fζ(z)]n|2

τn(ζ, k)2
≥ ŝC−2

e ,

from which, in conjunction with (iii), the claim follows.

Finally we establish the last property (v), which will later allow us to
construct a holomorphic “peaking function” at ζ.

Lemma 5.2.5. For the family of functions FA,ζ,k statement (v) of Lemma
5.1 holds.
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Proof. Assume that 0 < k ≤ k0, and N1 := 1 + 3(2 + 4(2m + 1))2. Let
0 < p ≤ k be given.

(A) We first handle z ∈ B(ζ,R0)∩D\QN1k(ζ). Let us estimate |FA,ζ,p(z)|
from above. Put z̃ = Fζ(z) and denote by P̃z̃,k the polydisc around z̃ with

polyradius (θσ,
√
θσ, . . . ,

√
θσ, τn(ζ, θσ)), where σ := Jζ,k(z̃) and the num-

ber θ will be chosen later. Finally let Pz,k := F−1
ζ (P̃z̃,k). We want to show

that

(5.20) Pz,k ∩ suppχ(sVζ,p) = ∅.

Assume that there exists w ∈ Pz,k ∩ supp χ(sVζ,p). Then Vζ,p(w) ≤ 3/s

and Fζ(w) ∈ P̃z̃,k, hence

|[Fζ(w)]1 − [Fζ(z)]1| < θJζ,k(z̃)

and

(5.21) |[Fζ(z)]1| ≤ |[Fζ(w)]1|+ θJζ,k(z̃) ≤
3

s
p+ θσ.

In a similar way we obtain

|[Fζ(z)]′′| ≤
3

s

√
p+
√
θσ,(5.22)

|[Fζ(z)]n| ≤
3

s
τn(ζ, p) + τn(ζ, θσ).(5.23)

This yields

σ ≤ k+ |[Fζ(z)]1|+ |[Fζ(z)]′′|2 +

2m∑
l=2

‖P (ζ, ·)‖ |[Fζ(z)]n|l ≤ k+T1(p+ θ1/mσ)

with T1 := 4m+2m(1 + 3/s)2m. So choose θ := min{θ0, (2T1)−m} to obtain
σ ≤ 2T1p. Plugging this into (5.21) through (5.23) we find

Fζ(z) ∈ R(1+3/s)k(ζ) ⊂ RN1k(ζ),

contrary to our assumption on z.

In particular, FA,ζ,p = uk on Pz,k and FA,ζ,p ◦ F−1
ζ = up ◦ F−1

ζ on P̃z̃,p
for p ≤ k. The mean value property gives

|FA,ζ,p(z)|2 = |FA,ζ,p ◦ F−1
ζ (z̃)|2 =

1

Vol(P̃z̃,p)

�

P̃z̃,p

|FA,ζ,p ◦ F−1
ζ (y)|2 d2ny

=
1

Vol(P̃z̃,p)

�

P̃z̃,p

|up ◦ F−1
ζ (y)|2d2ny ≤ C̃

Vol(P̃z̃,p)

�

Pz,p

|up(x)|2d2nx

≤ C̃1 exp
(

max
Pz,p

Φp

)
≤ C̃2 exp

(
2 max
Pz,p

Ûζ,p

)
.
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But by Lemma 5.1.4 we have 2 maxPz,p Ûζ,p ≤ 2 log
(
L1

k0
s ·

p
k

)
, because for

p ≤ k one has Pz,p ∩QN1k/2(ζ) = ∅, which can be shown similarly to (5.20).

This implies C̃2 exp(2 maxPz,p Ûζ,p) ≤ C̃3(p/k)2 with some C̃3 > 0.
(B) It remains to estimate |FA,ζ,p(z)| for z ∈ D \ B(ζ,R0). But then

the polydisc ∆n(z, c0t0) ⊂ Dζ,k/K0
introduced in Remark 4.5 is contained in

Dζ,k/K0
and we apply the mean value inequality. Since χ1 =0 on ∆n(z0, c0t0),

we have

|FA,ζ,p(z)|2 = |up(z)|2 ≤
1

Vol(∆n(z, c0t0))

�

∆n(z,c0t0)

|up(x)|2 d2nx

≤ K9 exp
(

max
∆n(z,c0t0)

e2Φp
)

by (5.14), (5.15)

≤ K10(p/k)2,

with unimportant constants K9,K10 > 0, because ∆n(z, c0t0) ∩Qk(ζ) = ∅.
This completes the proof of Lemma 5.2.5 and hence of Lemma 5.1.

6. Estimation of the Carathéodory distance from below. We
recall that at the beginning of Sec. 3.4 we denoted, for a point z ∈ Sδ0 , the
orthogonal projection of z by z∗. For small enough δ0 this is well-defined.

We fix A,B ∈ D with δD(A), δD(B) ≤ δ0. Let ζ := B∗. Then we study
the properties of the function

FA,B := (1− c)
∞∑
l=0

clFA,B∗,d−l−1

for

1

2
< c < 1 and d >

(
nL0Ce
c3δ0

)m2

+ 4m(1 + 3N1) +
4(n+ 1 + γ1)N1

γ1

with
γ1 :=

c3

L0Ce
,

where c3 and Ce are the constants from (3.9).
Our first step is now

Lemma 6.1. The number c can be chosen uniformly in A and B in such
a way that:

(a) The series that defines FA,B converges locally uniformly at each
z0 ∈ D, and in particular FA,B defines a holomorphic function on D.

(b) |FA,B| < 1 on D.

Proof. Let z0 ∈ D. We consider the sets

U∗l := D ∩B(B∗, R0/2) ∩ {VB∗,d−l−1 ≤ 1}.
Certainly U∗l+1 ⊂ U∗l for any l ≥ 0. We proceed in two steps.
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Step 1. Assume that z0 ∈ U∗1 . Since

VB∗,d−l−1(z) = |[FB∗(z)]1|2d2(l+1) + dl+1B(B∗, [FB∗(z)]
′)

for any z ∈ D ∩ B(B∗, R0/2), there exist only finitely many l for which
VB∗,d−l−1(z) < 1. Hence the number

mz0 := max{µ | z0 ∈ U∗µ}

is well-defined. Since further z0 /∈ U∗mz0+1 there exists an open neighborhood

W 3 z0 such that z ∈ U∗mz0−1 \ U∗mz0+1 for any z ∈W . In particular,

mz0 − 1 ≤ mz ≤ mz0 + 1

for all z ∈W . We next want to show that the series

T (z) := (1− c)
∞∑

l=mz0+2

clFA,B∗,d−l−1(z)

converges uniformly on W . For all z ∈ W we have VB∗,d−mz0−2(z) > 1, in

particular z /∈ Q4−m d−mz0−2(B∗).

We note that for p := d−l−1 and k := 4−m d−mz0−2N −1
1 we have

p/k = 4mdmz0+2N1d
−l−1 = 4mN1d

−1 < 1

whenever l ≥ mz0 + 2, so we can apply Lemma 5.1(v) to obtain

(6.1) sup
z∈W
|FA,B∗,d−l−1(z)| ≤ p/k = 4mN1Ĉd

mz0+2d−l−1.

This proves the desired local uniform convergence of FA,B on D∩B(B∗, R0).

With a view to (b), for the points of D ∩ B(B∗, R0) we plug (6.1) into
the series T and find, for z ∈W ,

|T (z)| ≤ (1− c)
∞∑

l=mz0+2

cl|FA,B∗,d−l−1(z)|

≤ 4mN1Ĉ(1− c)dmz0+1
∞∑

l=mz0+2

(
c

d

)l

= 4mN1Ĉ(1− c)dmz0+1

(
c

d

)mz0+2

· d

d− c
≤ 4mN1Ĉ

d− 1
(1− c) · cmz0+2.

To prove (b) on D ∩B(B∗, R0/2) we have to consider the sum

T1(z) := (1− c)
mz0+1∑
l=0

clFA,B∗,d−l−1(z).
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This can be done using Lemma 5.1(iv), namely

T1(z) = (1− c)
mz0+1∑
l=0

cl + (1− c)
mz0+1∑
l=0

cl(FA,B∗,d−l−1(z)− 1)

= 1− cmz0+2 + (1− c)
mz0+1∑
l=0

cl(FA,B∗,d−l−1(z)− 1)

and

mz0+1∑
l=0

cl|FA,B∗,d−l−1(z)− 1|

≤ Ĉ
mz0+1∑
l=0

cl
(
|[Fζ(z)]1|
d−l−1

+
|[Fζ(z)]′′|√
d−l−1

+
|[Fζ(z)]n|
τn(ζ, d−l−1)

)
= Ĉ(S1(c, d)|[Fζ(z)]1|+ S2(c, d)|[Fζ(z)]′′|+ S3(c, d)[Fζ(z)]n|)),

where

S1(c, d) =

mz0+1∑
l=0

d(cd)l = d
(cd)mz0+2 − 1

cd− 1
≤ d

cd− 1
(cd)mz0+2,

S2(c, d) =

mz0+1∑
l=0

√
d (c
√
d)l ≤

√
d

c
√
d− 1

(c
√
d)mz0+2,

S3(c, d) =

mz0+1∑
l=0

cl

τn(ζ, d−l−1)
.

Now we note that

τn(ζ, d−l−1) = min
2≤k≤2m

(
d−l−1

‖Pk(ζ, ·)‖

)1/k

≥ d
mz0−l

2m min
2≤k≤2m

(
d−mz0−1

‖Pk(ζ, ·)‖

)1/k

≥ d
mz0−l

2m τn(ζ, d−mz0−1),

which implies that

S3(c, d) ≤ d−mz0/(2m)

τn(ζ, d−mz0−1)

mz0+1∑
l=0

(cd1/(2m))l

≤ d−mz0/(2m)

τn(ζ, d−mz0−1)

(cd1/(2m))mz0+2

cd1/(2m) − 1
=

d1/m

cd1/(2m) − 1

cmz0+2

τn(ζ, d−mz0−1)
.

But by definition of mz0 we have

S1(c, d)|[Fζ(z)]1| ≤
d2

cd− 1
cmz0+2 |[Fζ(z)]1|

d−mz0−1 ≤
2d2

d− 2
cmz0+2,
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S2(c, d)|[Fζ(z)]′′| ≤
d

c
√
d− 1

cmz0+2 |[Fζ(z)]′′|
d−(mz0+1)/2

≤ n 2
√
d√

d− 2
cmz0+2,

S3(c, d)|[Fζ(z)]n| ≤
d1/m

cd1/(2m)− 1

|[Fζ(z)]n|
τn(ζ, d−mz0−1)

cmz0+2≤ 2d1/m

d1/(2m)− 2
cmz0+2.

Plugging this into the expression for T1(z) we get, for z ∈W ,

|T1(z)| ≤ 1− cmz0+2 + 2(n+ 2)Ĉ
d2

d1/(2m) − 2
(1− c)cmz0+2,

and altogether

(6.2) |FA,B∗(z)− (1− cmz0+2)|

≤ (1− c)
(

2(n+ 2)Ĉd2

d1/(2m) − 2
+

4mN1Ĉ

d− 1

)
cmz0+2 ≤ 1

2
cmz0+2,

if we choose c so close to 1 that

(6.3) (1− c)
(

2(n+ 2)Ĉd2

d1/(2m) − 2
+

4mN1Ĉ

d− 1

)
<

1

2
.

Thus we obtain properties (a) and (b) of FA,B∗ within D ∩B(B∗, R0/2).

Step 2. Assume that z0 /∈ U1. Then |z0−B∗| ≥ 1
2R0 or |z0−B∗| < 1

2R0

and simultaneously VB∗,d−2(z0) > 1. In each case we have

|z0 −B∗| > γ1 ·
1

d
,

hence we can find an open neighborhood W of z0 such that

|z −B∗| > γ1 ·
1

2d

on W . If we choose

(6.4) k :=
γ1

4N1(n+ 1 + γ1)
· 1

d
,

we see that d−2 < k and W ∩QN1k(B
∗) = ∅.

Again we apply Lemma 5.1(v), where we put p = d−l−1 for l ≥ 1 and k
is as in (6.4). This gives, for l ≥ 1,

|FA,B∗,d−l−1(z)| ≤ 4ĈN1(n+ 1 + γ1)

dl

on W . So we obtain the uniform convergence of the series FA,B on W , hence
its holomorphy, and
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|FA,B(z)| ≤ (1− c)
∞∑
l=0

cl|FA,B∗,d−l−1(z)|

≤ (1− c)
(
Ĉ + 4ĈN1(n+ 1 + γ1)

∞∑
l=1

(
c

d

)l)
≤ 2(1− c)Ĉ(1 + 8ĈN1(n+ 1 + γ1)).

If c is chosen close enough to 1 that (6.3) is also satisfied, we obtain |FA,B|
< 1.

Next we begin establishing the lower estimate for the Carathéodory dis-
tance stated in (2.8).

Lemma 6.2. There exists a constant K > 0 such that

dCara
D (A,B) ≥ 1

K
%(A,B)

for any A,B ∈ D with d(A,B) ≥ KδD(B).

Proof. Let %(A,B), %B(A), and %A(B) be defined as in Theorem 2.1.

(A) We may replace the open neighborhood U0 of ∂D by U ′0 := D ∩Sδ0 ,
where δ0 is as described before the statement of Lemma 6.1.

If A,B ∈ U ′0 we will prove

dCara
D (A,B) ≥ 2

K
%B(A).

By symmetry of dCara
D (A,B) we will obtain

dCara
D (A,B) ≥ 1

K
%(A,B).

If A /∈ U ′0, B ∈ U ′0, we will likewise show that dCara
D (A,B) ≥ 2

K %B(A).

The case B /∈ U ′0, A ∈ U ′0 is treated similarly. The case A,B /∈ U ′0 is
trivial, since we only need to apply the Schwarz lemma to D and a large
enough ball B̂ that contains D.

(B) The hard part of the proof is where A or B (or both) are allowed to
lie arbitrarily close to ∂D.

(B.1) Assume that A,B ∈ U ′0. We define FA,B as in the preceding lemma
and put

fA,B :=
FA,B − FA,B(A)

1− FA,B(A)FA,B
.

This function is holomorphic on D and has values in the unit disc. We get
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dCara
D (A,B) ≥ 1

2
log

(
1 +

2|fA,B(B)|
1− |fA,B(B)|

)
(6.5)

≥ 1

2
log

(
1 +

2|fA,B(B)|2

1− |fA,B(B)|2

)
=

1

2
log

(
1 +

2|FA,B(A)− FA,B(B)|2

(1− |FA,B(A)|2)(1− |FA,B(B)|2)

)
.

Let c3 and Ce be as in (3.9). We can assume that

(6.6) δD(B) ≤ 4
− log d

2 log(1/c)
c3

6mL0Ce
,

otherwise the estimate of the lemma is obtained from the Schwarz lemma
for the Carathéodory distance, applied to D and the ball B(A,RD).

As in the proof of the preceding lemma, we let

U∗l := D ∩B(B∗, R0/2) ∩ {VB∗,d−l−1 ≤ 1}, l ≥ 0.

If B /∈ U∗0 , we have VB∗,d−1(B) > 1, which implies

δD(B) ≥ 1

L0d

1

1 + Ce/c3
,

so there is nothing to do, as explained before.

Assume that B ∈ U∗0 . Then mB := max{µ | B ∈ U∗µ} is well-defined,
and from B /∈ U∗mB+1 we obtain

(dmB+2|[FB∗(B)]1|)2 + dmB+2
(
|[FB∗(B)]′′|2 +

2m∑
l=2

‖Pl‖ |[FB∗(B)]n|l
)
≥ 1.

In conjunction with (2.4) and (3.9) this implies

(6.7) mB + 2 ≥ 1

log d

(
2 log

c3

6nCeL0
+ log

1

δD(B)

)
,

which gives, combined with (6.6),

(6.8) cmB+2 ≤
(

6mCe
c3

) 2 log(1/c)
log d

δD(B)
log(1/c)
log d .

From (6.2) we obtain

|FA,B(B)− (1− cmB+2)| ≤ 1
2c
mB+2,

hence, after a little computation,

1− |FA,B(B)|2 ≤ 3cmB+2 ≤ 3/4.

We plan to plug this into (6.5). For this we have to estimate 1−|FA,B(A)|2.
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Two cases can occur: If A /∈ U∗0 we have FA,B(A) = 0, and by (6.5),

dCara
D (A,B) ≥ 1

2
log

(
1 +

2|FA,B(B)|2

1− |FA,B(B)|2

)
(6.9)

≥ 1

2
log

(
1 +

1

24

(
c3

6mCe

) 2 log(1/c)
log d

δD(B)
− log(1/c)

log d

)
.

From this the desired estimate for dCara
D (A,B) follows.

The alternative case is that A ∈ U∗0 . Now we define

mA,B∗ := max{µ | A ∈ U∗µ}

and derive from

(dmA,B∗+1|[FB∗(A)]1|)2 +dmA,B∗+1
(
|[FB∗(A)]′′|2 +

2m∑
l=2

‖Pl‖ |[FB∗(A)]n|l
)
≤1,

combined with Lemma 3.4.2(e), that

(6.10) mA,B∗ ≤
log(2/d′(A,B))

log d
, cmA,B∗ ≥

(
d′(A,B)

2

)log(1/c)
log d

.

In order to apply (6.5) we note that

FA,B(A) = (1− c)
∑

l:A∈U∗l

cl = 1− cmA,B∗+1,

which yields

(6.11) 1− |FA,B(A)|2 = 2cmA,B∗+1 − c2mA,B∗+2 ≤ 2cmA,B∗+1,

and further

|FA,B(A)− FA,B(B)| ≥ |−cmA,B∗+1 + cmB+2| − 1
2c
mB+2

≥ 1
2c
mB+2 − cmA,B∗+1 = cmA,B∗+1

∣∣1− 1
2c
mB−mA,B∗+1

∣∣.
This, combined with (6.5), (6.8), (6.11), and (6.10), yields

dCara(A,B) ≥ 1

2
log

(
1 +

1

3

(
1

c

)mB−mA,B∗−1(
1− 1

2
cmB−mA,B∗+1

)2)
≥ 1

2
log

(
1 +K ′

(
1− 1

2
K ′
(
δD(B)

d′(A,B)

)ν)2(d′(A,B)

δD(B)

)ν)
≥ 1

2
log

(
1 +

K ′

2

(
d′(A,B)

δD(B)

)ν)
≥ ν

2
log

(
1 +

(
1

2
K ′
)1/ν d′(A,B)

δD(B)

)
,
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where

ν :=
log(1/c)

log d
, K ′ =

(
3mCe
c3

)2ν

.

Hence we choose

(6.12) K :=
1

ν
K ′ 1/ν

and obtain the estimate

dCara(A,B) ≥ 2

K
log

(
1 +

3

K

d(A,B)

δD(B)

)
.

(B.2) Suppose that A /∈ U ′0. Then, by our choice of the number d we
even have A /∈ U∗0 , and the arguments apply that led to (6.9).

So it remains to compare %B(A) with log
(
1 + 1

K
d(A,B)
δD(B)

)
. For this we

observe that by Lemma 3.4.2,

|[FB(A)]′′|2

δD(B)
≤ 3

d′(A,B)

δD(B)
,

and hence

|[FB(A)]′′|√
δD(B)

≤

√
3
d′(A,B)

δD(B)
≤
√

3

K

d′(A,B)

δD(B)

and
|[FB(A)]|√
δD(B)

≤ L0
|A−B|√
δD(B)

≤ L0

√
RD
|A−B|
δD(B)

,

which implies
|[FB(A)]′′|√

δD(B)
≤ (3 + L0

√
RD)

d(A,B)

δD(B)
.

Likewise we obtain

|[FB(A)]n|
τn(B, δD(B))

≤ τn(B, 2d′(A,B))

τn(B, δD(B))

=
τn(B, 2d′(A,B))

2d′(A,B)

δD(B)

τn(B, δD(B))

2d′(A,B)

δD(B)
≤ 2d′(A,B)

δD(B)
,

since the function t 7→ t/τ(B, t) is increasing in t.

As before, it is easy to see that

|[FB(A)]n|
τn(B, δD(B))

≤ L0
|A−B|

τn(B, δD(B))
≤ CeL0

c3

|A−B|
δD(B)

.

This, in conjunction with (3.8), proves, after enlarging K,

1

2
log

(
1 +

1

K

d(A,B)

δD(B)

)
≥ %B(A).
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We come to the alternative case where A and B are close to each other.

Lemma 6.3. If d(A,B) ≤ KδD(B), then

dCara
D (A,B) ≥ %B(A).

Proof. From (2.4) and Lemma 3.4.2(e) we deduce A,B ∈ Q
K̂δD(B)

(B∗)

if we choose

K̂ := (3 + L0Ce/c3)K.

We may assume that

(6.13) δD(B) ≤ s1

K̂L1(2 + n+ 2m)

where L1 and s1 are as in Lemma 4.4 and Remark 4.5.

Our plan is to compare the Carathéodory distances of the domains D
and Q

K̂ δD(B)
(B∗) at A and B. In Lemma 4.4 and Remark 4.5 we choose

δ := 2K0K̂ δD(B).

Then our key lemma is

Lemma 6.4. With a universal constant L̃ that does not depend on A or B
the following holds: Given f ∈ H∞(Qδ/K0

(B∗)) one can find f̂ ∈ H∞(DB∗,δ)
such that

(a) f̂(A) = f(A), f̂(B) = f(B), and

(b) ‖f̂‖∞ ≤ L̃‖f‖∞.

We postpone a sketch of proof of this for a moment.

With this lemma in hand we can give

Proof of Lemma 6.3. From the definition of FB∗ it follows that, with a
uniform constant C∗∗ > 0, for all z ∈ D one has

|FB(z)− FB∗(z)| ≤ C∗∗δD(B).

We apply Lemma 6.4 to

f = f1 :=
[FB]1
δ/K0

and find

‖f1‖∞ ≤
|[FB∗ ]1|+ C∗∗δD(B)

δ/K0
≤ |[FB

∗ ]1|+ C∗∗δ/(K0K̂)

δ/K0
≤ 1 + C∗∗.

This yields, in conjunction with Lemma 6.4,

dCara(A,B) ≥ 1

2
log

(
1 + 2

|f1(A)|
L̃(1 + C∗∗)

)
=

1

2
log

(
1 +

|[FB]1(A)|
L̃K̂(1 + C∗∗)δD(B)

)
.
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Next, for 2 ≤ l ≤ n− 1 we choose

f = fl :=
[FB]l√
δ/K0

.

A similar argument yields

dCara(A,B)≥ 1

2
log

(
1 + 2

|fl(A)|
L̃(1 + C∗∗)

)
=

1

2
log

(
1 +

|[FB]l(A)|
L̃K̂(1 + C∗∗)

√
δD(B)

)
.

Finally let

fn :=
[FB]n

τn(B, δ/K0)
.

Then

‖fn‖∞ ≤
|[FB∗ ]n|+ C∗∗δD(B)

τn(B, δ/K0)
≤ Ce
c3

(1 + C∗∗)

and as before we deduce

dCara(A,B) ≥ 1

2
log

(
1 +

c3

CeL̃K̂(1 + C∗∗)

|[FB]n(A)|
τn(B, δD(B))

)
and so

dCara(A,B) ≥ 1

2
log

(
1 + C ′

(
|[FB]1(A)|
δD(B)

+
[FB]′′(A)√
δD(B)

+
|[FB]n(A)|
τn(B, δD(B))

))
with

C ′ :=
c3

nCeL̃K̂(1 + C∗∗)
.

Keeping in mind that we are assuming d(A,B) ≤ KδD(B), we can estimate
the right-hand side from below by %B(A) and see that the asserted lower
bound on dCara(A,B) is true.

Proof of Lemma 6.4. The proof proceeds very much along the lines of the
proof of Lemma 5.1(iii). Therefore we give a sketch here, omitting technical
details.

First, fix f ∈ H∞(Qδ/K0
(B∗). We choose a smooth function χ : Cn →

[0, 1] such that χ = 1 on R3δ/(4K0)(B
∗) and χ = 0 on Cn \ R7δ/(8K0)(B

∗).

Then we want to solve the ∂-equation ∂u = α on DB∗,δ, where

α := ∂(χ ◦ FB∗) · f.

The solution u is to vanish at A and B, so we need a suitable plurisubhar-
monic weight function ΦA,B on DB∗,δ.

We set t := δ/K0 and try the function

w̃A,B = log λ ◦ ṼA,B∗,t + log λ ◦ ṼB,B∗,t,
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where λ ∈ C∞ is defined as earlier, namely λ(x) = x for x ≤ 1/2 and
λ(x) = 2/3 for x ≥ 3/4. With K1 := max |(log λ)′′| we obtain

Lw̃A,B ≥ −K1(ξ{ṼA,B∗,t≤3/4} + ξ{ṼB,B∗,t≤3/4})LV ′′
B∗,t

.

Now

{ṼA,B∗,t ≤ 3/4} ∪ {ṼB,B∗,t ≤ 3/4} ⊂ R
K̃t

(B∗),

where K̃ := 4 + L0Ce/(K̂c3). Because of our choice of δ and the condition
(6.13) on δD(B) we find a constant M3 > 1 such that

ΦA,B := 2nŵA,B ◦ FB∗ +M3WB∗,δ

is plurisubharmonic on DB∗,δ. Further, ΦA,B < 0 everywhere, and since
supp(α) ⊂ DB∗,δ \ Q3δ/(4K0)(B

∗), we have ΦA,B ≥ −4n log 2 − M3s1 on
supp(α).

In analogy to the proof of Lemma 5.2.1 we find a smooth solution u on
DB∗,δ to ∂u = α such that

�

DB∗,δ

|u|2e−ΦA,B d2nz ≤ Ĉ ′‖f‖2∞Vol(Qδ/K0
(B∗))

with an unimportant constant Ĉ ′. The desired function is now

f̂ := χ ◦ FB∗ · f − u.

Since e−ΦA,B is not locally integrable at A and at B, we have u(A) =

u(B) = 0, so the holomorphic function f̂ satisfies (a).

The proof of estimate (b) is based upon the mean value inequality for |f̂ |.
It goes analogously to the proof of Lemma 5.1(iii).

Let z ∈ D be fixed. Two cases are possible.

Case (i). Let z /∈ F−1
B∗ (DB∗

δ/K0
). Then the polydisc Pz := ∆n(z, c0t0) (see

Remark 4.5) is contained in DB∗,δ, and we obtain

|f̂(z)|2 ≤ 1

Vol(Pz)

�

Pz

|f̂(x)|2 d2nx

≤ 2

Vol(Pz)

(
Vol(Pz)‖f‖2∞ + 28neM3s1

�

Pz

|u(x)|2e−ΦA,B d2nx
)
≤ L̃2

1‖f‖2∞

with some constant L̃1.

Case (ii). Assume that z ∈ F−1
B∗ (DB∗

δ/K0
). Again we put z̃ := FB∗(z)

and choose Pz := F−1
B∗ (Pz̃), where Pz̃ denotes the polydisc around z̃ with

polyradius (σ,
√
σ, . . . ,

√
σ, τn(B∗, σ)), where σ := θ0JB∗,δ/K0

(z̃). (For θ0
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see Remark 4.5). Then, as in the proof of Lemma 5.2.3, we have

|f̂(z)|2 = |f̂ ◦ F−1
B∗ (z̃)|2 ≤ 1

Vol(Pz̃)

�

Pz̃

|f̂ ◦ F−1
B∗ |

2 d2nx

≤ 2‖f‖2∞ +
2

Vol(Pz̃)

�

Pz̃

|u ◦ F−1
B∗ (x)|2 d2nx

≤ 2‖f‖2∞ +
C ′′

Vol(Pz̃)

�

F−1
B∗ (Pz̃)

|u(y)|2 d2ny ≤ L̃2
2‖f‖2∞,

as before. From this we obtain estimate (b).

7. The upper bound for the Kobayashi distance. We will estimate
the Kobayashi distance from above as stated in the main theorem. This
will complete the proof of the theorem, as already explained at the end of
Section 2.

We start with the following remark: If x, y belong to T := {(x, y) ∈
D ×D | δD(x), δD(y) ≥ δ0}, then

dKob
D (x, y) ≤ log(1 + C̃|x− y|)

with some constant C̃.

Indeed, T is compact. From the continuity of dKob
D on D ×D it follows

that, with a uniform constant C̃ > 1, we have

dKob
D (x, y)

log(1 + C̃|x− y|)
≤ 1

whenever |x− y| ≥ δ0/2 and δD(x), δD(y) ≥ δ0.

If |x− y| < δ0/2, we apply the Schwarz lemma to B(y, δ) ⊂ D to obtain

dKob
D (x, y) ≤ dKob

B(y,δ0)(x, y) ≤ log

(
1 +

2

δ0
|x− y|

)
.

In each case (since |x− y| . d(x, y)) we obtain the desired upper bound for
dKob
D (x, y).

Next we establish the upper bound claimed for dKob
D (A,B) in the main

theorem for A,B ∈ D with δD(A), δD(B) ≤ δ0.

As usual, for P ∈ Sδ0 we denote by P ∗ the orthogonal projection of P
to the boundary ∂D and by ν(P ∗) the inner unit normal to ∂D at P ∗.

From [Her-3, Lemma 7.1] (which carries over to general n ≥ 2) we obtain

Lemma 7.1. Let P ∈ D ∩ Sδ0 and 0 < t < s < δ0. Then

dKob
D (P ∗ − tν(P ∗), P ∗ − sν(P ∗)) ≤ 1

2
log

(
1 +

2|t− s|
t

)
.
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The construction of the polyhedra Qδ(x) for x ∈ D ∩ Sδ0 and δ < δ0

allows one to choose M0 � 1 such that

Q2δD(x)/M0
(x) ⊂ D for any x ∈ D ∩ Sδ0 .

Lemma 7.2. Suppose that A′, B′ ∈ D with

(7.1) δ0 > min{δD(A′), δD(B′)} ≥M0 d(A′, B′).

Then

dKob
D (A′, B′) ≤ 2M0%(A′, B′).

Proof. Assume first that d(A′, B′) = d′(A′, B′). Further let δD(A′) ≥
δD(B′) and δD(B′) < δ0. From A′ ∈ Qd′(A′,B′)(B′) and (7.1) we obtain
A′ ∈ QδD(B′)/M0

(B′). Now, by the invariance property of the Kobayashi
distance,

dKob
D (A′, B′) ≤ dKob

Q2δD(B′)/M0
(B′)(A

′, B′) = dKob
R2δD(B′)/M0

(B′)(FB′(A
′), 0)

=
1

2
log

(
1 +

2µ′(A′, B′)

1− µ′(A′, B′)

)
,

where

µ′(A′, B′) = max

{
M0
|[FB′(A′)]1|
δD(B′)

,

√
M0 |[FB′(A′)]′′|√

δD(B′)
,

|[FB′(A′)]n|
τ(B′, 2δD(B′)/M0)

}
.

But µ′(A′, B′) < 2−1/(2m), hence

dKob
D (A′, B′)

≤ M0

1− 2−1/(2m)
log

(
1 + max

{
|[FB′(A′)]1|
δD(B′)

,
|[FB′(A′)]′′|√

δD(B′)
,
|[FB′(A′)]n|
τ(B′, δD(B′))

})
.

But (using again Lemma 3.4.2(e)) we see that the right-hand side is ≤
2M0 %(A′, B′).

Assume now that d(A′, B′) = |A′ −B′|. Then we use

D ⊃ B(B′, δD(B′)) ⊃ B(B′, δD(B′)/M0) 3 A′.
As above we get

dKob
D (A′, B′) ≤ dKob

B(B′,δD(B′)/M0)(A
′, B′) ≤ 1

2
log

(
1 + 2

|A′ −B′|
δD(B′)

)
=

1

2
log

(
1 + 2

d(A′, B′)

δD(B′)

)
≤ %(A′, B′) + %(B′, A′).

We have to make two more steps in order to remove the condition (7.1).

Lemma 7.3. There exist constants C∗, C̃ > 0 such that for any T > 0
the point z− 4C∗TδD(B)ν(B∗) belongs to D whenever z ∈ QTδD(B)(B) and

B is a point in D ∩ Sδ0 with δD(B) ≤ C̃/T .
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Proof. Let B ∈ D be close to ∂D. Then (recall that r was chosen as a
defining function for D) we have

r(z − 4C∗TδD(B)ν(B∗)) = ρB
(
FB(z − 4C∗TδD(B)ν(B∗))

)
.

Now analysis of the Taylor expansions of ρB (see Lemma 2.1.1) and of FB
at z gives the claim.

Now let T := 3Ĉ2
1 , where Ĉ1 is the constant from Lemma 3.4.2.

Lemma 7.4. Suppose that A′, B′ ∈ D ∩ Sδ0 with

(7.2)
1

M0
min{δD(A′), δD(B′)} ≤ d(A′, B′) ≤ 3Ĉ2

1 min{δD(A′), δD(B′)}.

Then

dKob
D (A′, B′) ≤ 2M0%(A′, B′).

Proof. We assume that δD(B′) ≤ δD(A′) and introduce the auxiliary
points

A′′ := A′ − T δD(B′)ν(B′ ∗), B′′ := B′ − T δD(B′)ν(B′ ∗).

We use that A′ ∈ QTδD(B′)(B
′) and obtain, by means of the Schwarz lemma,

dKob
D (A′, B′) ≤ dKob

D (A′, A′′) + dKob
D (A′′, B′′) + dKob

D (B′, B′′)

≤ 2 log(1 + 2T ) + dKob
D (A′′, B′′)

≤ 2 log(1 + 2T ) + dKob
Q′
TδD(B′)(B

′)(A
′′, B′′)

= 2 log(1 + 2T ) + dKob
QTδD(B′)(B

′)(A
′, B′),

where Q′TδD(B′)(B
′) := {z − 4C∗TδD(B′)ν(B′ ∗) | z ∈ QTδD(B′)(B

′)} ⊂ D.

But now we can repeat the estimation made in the first part of the
proof of Lemma 7.2 to bound dKob

QTδD(B′)(B
′)(A

′, B′) from above. The lower

bound (1/M0) min{δD(A′), δD(B′)} ≤ d(A′, B′) allows us also to estimate
the quantity 2 log(1 + 2T ) in terms of %(A′, B′).

In a final step we prove the desired upper bound on the Kobayashi dis-
tance.

Theorem 7.5. For any A,B ∈ D ∩ Sδ0/2,

dKob
D (A,B) ≤ C∗%(A,B).

Proof. We assume that d(A,B) < δ0/2. The claim will follow from the
triangular inequality: We put

A′ = A− d(A,B)ν(A∗), B′ = B − d(A,B)ν(B∗).
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Then

d(A′, B′) ≤ Ĉ2
1 (d(A,A′) + d(B,B′) + d(A,B))

≤ Ĉ2
1 (|A−A′|+ |B −B′|+ d(A,B))

≤ 3Ĉ2
1d(A,B) ≤ 3Ĉ2

1 min{δD(A′), δD(B′)}
and

dKob
D (A,B) ≤ dKob

D (A,A′)+dKob
D (A′, B′)+dKob

D (B,B′)

≤ 1

2
log

(
1+2

d(A,B)

δD(A)

)
+

1

2
log

(
1+2

d(A,B)

δD(B)

)
+dKob

D (A′, B′),

from which, in conjunction with Lemmas 7.2 and 7.4 applied to A′, B′, and
with the estimate d(A′, B′) ≤ 3Ĉ2

1d(A,B), the claim follows.
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