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Estimation of the Carathéodory distance on pseudoconvex
domains of finite type whose boundary has Levi form of
corank at most one

by GREGOR HERBORT (Wuppertal)

Abstract. We study the class of smooth bounded weakly pseudoconvex domains
D C C"™ whose boundary points are of finite type (in the sense of J. Kohn) and whose
Levi form has at most one degenerate eigenvalue at each boundary point, and prove
effective estimates on the invariant distance of Carathéodory. This completes the author’s
investigations on invariant differential metrics of Carathéodory, Bergman, and Kobayashi
in the corank one situation and on invariant distances on pseudoconvex finite type domains
in dimension two.

1. Introduction. Invariant metrics and distances render valuable ser-
vices in the study of mapping theory for a long time (see e.g. [Kxl [Vor]).
Indeed, their boundary behavior is important for the question of whether or
not there exists a biholomorphic or proper holomorphic mapping between
two given bounded domains in C".

The most important of such distance functions were introduced by Cara-
théodory, Bergman, and Kobayashi. We recall their definitions.

The Carathéodory distance on a bounded domain D C C" is defined by

d%ar%A’ B) :={d”(f(A), f(B)) | f : D — E, holomorphic},

where E denotes the unit disc in the plane and d¥ the Poincaré distance
on [E, in detail

1+ p(a,b a—2b
D) ) = |2
— p(a,b) 1—ab
It was introduced by C. Carathéodory in 1926 and was the first known
distance function in several complex variables that remains invariant under

biholomorphic mappings. The Carathéodory distance of the unit disc agrees
with the Poincaré distance.

1
d¥(a,b) == §log
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The Carathéodory pseudodifferential metric is given by
F5&2(z; X) == sup{|(8f(z), X)| | f : D — E, holomorphic, f(z) = 0},

where for a vector X € C" and a differentiable function f we denote by
(0f(z),X) the directional derivative

012, %) =3 2L )%,
k=1

D2,

The Kobayashi differential metric is defined as follows:

FE°(2: X) :=inf{a~! > 0| 3f : E — D, holomorphic,

f(0) =z, f/(0) = aX}.
Our results that we will state in Section 2 will also involve the Bergman
metric F'5 which is defined as the Kihler metric with potential log Kp(z, z),
where Kp : D x D — C denotes the Bergman kernel function on D.

In many special cases good estimates have been found for the Carathéo-
dory pseudodifferential metric; see |[Catll [Gral [Her-1, [Her-2a]. In the case
of the pseudodifferential metrics of Kobayashi and Bergman it is possible
to get good and in some cases even precise estimates also for the associated
distances d%‘)b and d%, respectively, because these are the “integrated forms”
of the corresponding differential metrics; see [Bal-Bonl [Died-Ohs|, [Her-3].

By “integrated form” we mean the following: Assume that Fp is one
of the pseudodifferential metrics of Bergman or Kobayashi. For two points
A,B € D we define Z(A, B) as the family of all piecewise smooth paths
v :[0,1] = D from A to B. Then we call

1

Ay (A, B) = inf { | Fp(y(1); 4(1)) dt | 7 € 2(4, B)}
0

the integrated form of Fp. We have d% = dFB’ which follows from the

definition from Riemannian geometry, and d%"b =d FiKob, which was proved
by H. L. Royden [Roy].

The case of the Carathéodory distance is more difficult, because the
“integrated form” of Carap(z; X) is the inner distance associated to d$®
(see [Rei]). In general, however, the inner Carathéodory distance is not equal
to the Carathéodory distance. A simple example is given by the annulus in
the plane.

In this article we continue the investigations of [Her-3] on the boundary
behavior of the above invariant distances on a finite type pseudoconvex
domain D C C?. We treat the more general case of bounded pseudoconvex
domains with a smooth boundary such that at each boundary point of D
the Levi form of the boundary has at most one degenerate eigenvalue.



Estimation of the Carathéodory distance 211

We establish precise estimates for dg‘“a, d%‘)b, and dlB) analogous to those
obtained for the distances of Bergman and Kobayashi in [Her-3].

The paper is organized as follows: In Section 2 we state as a main result
the estimation of the distances of Carathéodory, Bergman, and Kobayashi,
after we have introduced all the necessary notations (distinguished normal
coordinates, and pseudoballs). In Section 3 we establish the “engulfing prop-
erty” for these pseudoballs (that are constructed in analogy to those from
[IN-S-W!, [Cat2]); compare [Cat2), §1]. Section 4 contains the construction of
some plurisubharmonic auxiliary functions that will be needed in order to
apply a O solution theorem from Hormander’s L2-theory for the Cauchy—
Riemann operator. In Section 5 we construct, given two points in D, a fam-
ily of holomorphic auxiliary functions that exhibit a good behavior at those
points. By means of these functions we construct in Section 6 an appropriate
candidate for the supremum that defines the Carathéodory distance. Finally,
in Section 7 we show the corresponding upper estimates for the Kobayashi
and Bergman distances.

REMARK. It should be mentioned here that also K. Verma, in a joint
paper [BMV] with G. Balakumar and P. Mahajan, has independently ob-
tained precise estimates on the Carathéodory and Kobayashi distances on
pseudoconvex finite type Levi corank one domains.

2. Statement of the results. Throughout this section we assume that
D cc C” is smoothly bounded and pseudoconvex. We choose a defining
function r € C*°(Up), where Uy is an open neighborhood of dD.

DEFINITION 2.1. A boundary point ¢ of D is said to be of finite reqular
type if there exists a bound N such that any non-singular holomorphic curve
passing through ¢ has an order of contact of at most N with 9D at ¢. The
maximal order of contact between such a non-singular curve and 9D at ( is
called the regular type and is denoted by t(0D, ().

REMARK 2.1. The pseudoconvexity assumption on D implies that ¢(0D, ()
is an even integer.

Throughout this paper we will suppose that

(a) each boundary point ¢ is of finite type, and
(b) the rank of the Levi form of 9D at ( is at least n — 2.

In this case the Catlin multitype of any ¢ € D is given by
A (0D, Q) = (1,2,...,2,1(dD,()).

If we write M,, := {r = r(w)}, then the hypersurface M, is also smooth
for all w that lie sufficiently close to D, and further w — t(M,,w) is an
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upper semicontinuous function of w, hence we can find an integer m such
that

(2.1) t(My,w) < 2m
for any w in a suitable neighborhood Uy of 0D.

2.1. Normal coordinates and pseudoballs. Let ( € Uy. We want
to put the defining function r of D near ¢ in a “normalized” form so that

certain unwelcome pure terms in its Taylor expansion about ( disappear.
In [Her-2a] the following was proved:

LEMMA 2.1.1. There exists a radius Ry > 0 and for any ¢ € Uy a
holomorphic mapping F; : C" — C" such that:

(a) Ower the ball B((,2Ry), the function r is normalized to r = p¢ o F¢,
where

2m
pc(w) =7(¢) + Rew; + |w”|* + ZPj(C,wn)
j=2

2m n—1
+ (Im wl) Z Qj(C7 wn) +2Re Z waQa(Cv wn) =+ R(Ca w)7
a=2

j=2
and
(i) the Pj(¢,-) and Q;(C,-) are real-valued homogeneous polynomi-
als of degree j and do not exhibit pure terms,
(ii) the gq are complex polynomials without holomorphic terms,
(iii) the remainder term R can be estimated by
IR(¢,w)] < Co(|Tmw* + [Tmwy [*(Juw”| + fwn])
+ [Imws |([w”|? 4 [P "]+ w” P wn] + wn [P ).

(b) The mapping F¢ can be described as follows: If n > 3, then

FC = ﬁc oo,
where o is a permutation of the coordinates (z1,...,z,), and
» ((8T(C)7 Z_C)+f1(€7zn_Cn))(1+f2(C7zn_Cn))
(22) Fe(z) = A(Q) - (2" = ") + h(Cs 2n — Gn) ;
2n — Cn
where 2" = (29,...,2n-1), the (n — 2) X (n — 2) matriz A(() is in-

vertible and its determinant is > ¢ > 0 uniformly in ¢ (with some
unimportant ¢ > 0). The mapping h(¢, ) = (ha(C, ")y -+, hn—1(¢, )
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consists of holomorphic polynomials of degree < 2m. Also the func-
tions f1(¢,-), f2(C,-) are holomorphic polynomials of degree < 2m.
They all vanish at 0.

In the case that n = 2, we have
(2.3)  Fe(z) = (((WC% 2= Q)+ fil¢ 22— Q)L+ faC 22 — @)))
22 — (2 ’

where f1 and fo have a meaning analogous to the case n > 3.
(¢) With a suitable constant Lo > 0 we have

1
(2.4) folz — (| < [Fe(2)] < Lolz = |-

2.2. A pseudodistance and the main result. Let Uj be as in (2.1)).
According to the normal form p¢ of the local defining function at ¢ we define
the radii:

DEFINITION 2.2. Let ¢ € Uy and § > 0. Then we put

. 5 1/1
(C> ) = 2<[<2m <‘Pl(C7 )H) ,

where || P((,-)|| denotes the sum of the absolute values of the coefficients of

Bi(C, )

Note that this is well-defined, because if P»((, ) = -+ = Pan((,-) = 0,
then t(0D, () > 2m contrary to our choice of the number 2m. With some
constant vg > 0 we have the estimate

(2.5) (¢, 8) > ~70VE  for all ¢ € Uy and 6 > 0.
Next we define
Tl(<75) = 67 TZ(Ca 5) == Tn71(<)5) = \/gv

the polydiscs

Rs(C) i={w = (w1,...,wy) € C" | |wg| < 7%(¢,0) for k=1,...,n},
and finally the “pseudoballs”

Qs(C) = {2z € B((,2Ro) | F¢(2) € Rs(¢)}-

For A, B € D we define M(A,B) :={0 >0]| A€ Qs(B)} and let

(2.6) (A, B) ::{me(A,B) 1fB€goandM(A,B)#@,
400 otherwise.

Finally we introduce the “pseudodistance” function

(2.7) d(A, B) := min{d'(A, B),|A — B|}.

Then we can state our main result:
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MAIN THEOREM 2.1. Assume that D CC C™ is a smoothly bounded
pseudoconver domain such that all its boundary points are of reqular type
< 2m and the Levi form of 0D at each point { € 0D has at least n — 2
positive eigenvalues. Denote by d* any of the invariant distance functions of
Carathéodory, Bergman, or Kobayashi. Then, with some unimportant con-
stant Cy > 0,

(2.8) C.0o(A, B) < d"(A, B) < ~o(A, B)

*

for all A, B € D, where

QB(A) + QA(B) Zf AaB € UO}
QA(B) ifAGUo, B¢U0,
)

Q(AjB) = QB(A ifB S U(), A Qé U(),
log(l1+|A—BJ|) if A,B ¢ Uy,
and
_ d(A,z) | ([F(A))"] | [Fe(A)]n]
0ol ) = g 1+ ) + o) e ay) Jreet

It is well-known that d$® < dB, d§¥® < d¥°P) and from [Her-2al
we know that F B and F EOb have equivalent growth at dD. This implies
é_ld% < d%‘)b < éd% with some constant C.

Therefore, we have to estimate d$#(A, B) from below and d¥°"(A, B)
from above in terms of (A, B), for A, B € D.

3. Crucial properties of the pseudoballs and pseudodistance.
The definitions of the pseudoballs Qs(¢) resemble those from [Cho-1], but the
mapping F¢ is not the same, and some of the important properties of Q;(¢)
cannot be obtained by citing the corresponding lemmas there. In particular
a certain important property, which we call the “engulfing property” (see
Lemma below), is not discussed in [Cho-1].

We first want to clarify the following question: Assume that 6 > 0 is
small and (1, (3 € Uy are such that (; € Qs5((2). How does the radius 7, ({3, 0)
compare with 7,((2,d)? The answer is given in Lemma below. It looks
similar to |Cho-1l, Cor. 2.8], and its proof is based on ideas analogous to
those in [Cho-1| p. 808].

3.1. Special tangent vector fields. Let r be the defining function

we fixed at the beginning. For j = 1,...,n we denote by 7., the derivative
Ty = C%’"j; the derivatives 7z, are defined accordingly. For a vector field
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=5 a2 nop. 9 .
X = Zj:l 5 5z, + Zj:l bj az; Ve write

n

or(X) := Zrzjaj, or(X) = ngjbj.
J=1 J

—

The normal field N to the level sets of r is given by

- 0
1 N = . .
(3 ) ;rkazk

For vector fields X, Y on some open set U C C™ we denote by [X,Y] the
Lie bracket of X and Y.

After shrinking the neighborhood Uy D 9D we have |Vr| > ¢g > 0 with
some constant cg.

In particular, we can cover 0D by open sets Uy, ..., U, C Uy such that
72| > co/n on Uy

for k=1,...,n. The tangent fields

are defined over U.

LEMMA 3.1.1. For n = 2 define 'L, := 'L} and ?L. := 2L}. For
n > 3 there exists a constant c¢; > 0 with the following property: For any
ke {1,...,n} we can rearrange the *L}, ..., kL;_l, "’L?Hl, ooy BLD (which
corresponds to renumbering the coordinates {z;};xk) in such a way that for
the resulting list, which will be denoted by *Lo, ..., *L,, each eigenvalue of
the matrix (kﬁal;)z,;i2 is not smaller than c1 at each point of Uy. Put

kL= 00r([*La,*Ly)).

If we denote by L the entries of the inverse of(kLal—,)Zg;, and define

n—1
kg, = — E FLoaFLY, v=2,...,n—1,
a=2

then the vector field

n—1
"Loo=FL,+)  *s,"L,
v=2
satisfies Or([*Lj, ¥L.]) = 0 for j = 2,...,n — 1. In particular, (*Lo,...,
KLn_1, ®L,) are the special vector fields of a boundary system in the sense
of [Catl].
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Proof. The Levi form of 9D is semipositive at each boundary point, and
our assumption on eigenvalues implies that, with some positive constant c;,

mmZdet ((90r( (kL kL/]))aJ,#,,) > n2e.
ko vk
Therefore we can make an arrangement as claimed in the lemma. The prop-
erties of the vector field L, follow by direct computation. =

For each k € {1,...,n} we introduce on Uj a system of continuous
functions *Cy, 1 > 2, as follows: With the notations of Lemma we let
kev . Er va—1/%T \o—1\(aA.((kT KT
(3.2) C: a,bﬁﬁ%’ib:z‘( L) (FLy)" 1) (90r ([ Ly, L))

REMARK 3.1. (a) Let ¢ € Uy. By [BloGra] the smallest integer [ such
that *Cj(¢) > 0 is equal to the regular type t(M¢, ()

(b) Further, there exists (after possibly shrinking the Uy, ...,U,) a con-
stant co > 0 such that for any k= 1,...,n we have

max *C; > ¢
2<I<2m

throughout Uj. In particular, for any 6 > 0 and € U, the number

5 1/l
k o :
(3.3) n(¢,0) = min ("sz(<)>
is well-defined. Moreover, with some unimportant constant cg > 0,
1
(3.4) e3Vo < F(¢,8) < —ot/2m,
C3

REMARK 3.2. The radii #7(, §) certainly depend on the choice we made
for the local boundary system. But if we choose another one, then for the
resulting radii *7(¢, )" the ratio *n(¢,0)/*n(¢,0)" is bounded from above
and from below by uniform positive constants.

We want to compare the radius *1(¢, §) with 7,,(¢, 6) for ¢ € Uy. This is
done in several steps.

Let on Uy a boundary system (La,...,L,_1, L) be given as in Lemma
(we drop the superscript k). Then we define the Levi determinants

Ai=det (L) pmy and A" :=det (Lp)h 0y
By standard linear algebra we obtain
(3.5) A=A 0r([L,, L))
3.2. Comparison of the radii 7(¢,-) and Tn(C; -). We want to com-
pare the quantities L*a_lf*b_lar([L*,E]) and 3 o b o F¢. This is done in

the next two lemmas. Because of 1) it sufﬁces to work with L¢™ 1L* A
instead.
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LEMMA 3.2.1. There exists a constant Cy > 0 such that for small enough
0 >0, any ¢ € Uy, and any multi-index o # 0 the estimate

6“p< )

<
dwe | = C5aim(c.oym L m(C,8)n
holds in the polydisc Rs(().

(3.6)

Proof. This is obtained by a Taylor series argument in analogy to [Cho-1),
Prop. 2.3]. =

LEMMA 3.2.2. There exists a constant Cy > 0 such that the following

holds: Let ¢ € Uy and let Lo, ..., L, 1, L, denote a boundary system near
as in LemmaB.1.1l Then

o aa-i—bp )

. LA L R <Oy —
S gt * | = 40 5 oy
on Qps(C), for 0 <0 <1 and § > 0, and any positive integers a,b.

Proof.

STEP 1. We transform everything into the normal coordinates induced
by F¢. To do this we let

~ 1

ﬁVﬁ = (/)C)wuﬁ)u - ((pé)wu’in (pé)wl(l){)i)# + (Pc)wuﬂp (/)C)ﬁ)l (IOC)’LDV)

() 2
N (P wiw: (P w, (P¢)w,
(w2
Then, by the chain rule, for a,b = 2,...,n we have
~ O(F)y » IF)u
b — v F )
‘Cab V%::Z 82@ L p© L¢ azb

which gives
A= Ao Feldet A(Q)|?,
where we put A := det (Eyﬂ),’iuﬁ.

The vector field L, transforms under F; into a vector field E*, and

g ~ —b-1
LT A = det A(OLO 'L, A)o F.

Now note that for a,b =2,...,n — 1 we even have
n—1 Y2 nu
OF)w » O(Fy)
I _o F H
Eab Z aza vip O L'¢ 82{, ’

v, u=2

due to the special form of F;. In particular this implies

A’ = |det A(Q)|? A" o F
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and finally
a+b
Loty 0 F
Oweow?
R —b—1 N aa—l—bp
= |det A(Q))?|Z¢ 'L, A-A-—LS|oF
’ € (C)’ * aw%au—)g © C
L=l gathy
<YL, A-A-—LEoF
= T2 Awaowk °
with some universal constant C > 0.
o=l o gas
STEP 2. We have to estimate ‘Li_lL* A=A aapcb ’ on the polydisc

Ry s5(¢) and can do this by means of [Her-2b| Lemma 5. 2].

For p > 1 we let M, denote the set of all derivatives 9" p¢/dwy,dwn,
where v + p < p, and M) the set of all products

al//_i_ul_i_lpg OV//+M//+1I()C

7" 7
dwow’; dwy Owly  Owlow dwy Owl

wherea+8=~7+8=1,2<j,s<n—1,and v/ + 0"+ + " < p. Finally
we let M, := M, U M/+1 and denote by S, the set of all functions of the

form |(p<)w1|*2N times a polynomial in the derivatives of p; of order < p.
Then, by [Her-2b, Lemma 5.2],

=b-1 . 8a+bp

LT, A A L
* dwdwp

where the right-hand side is the set of all sums of products fg with f € Sq44
and g € M,,p_1. But there exists a constant C” aip > 0 such that for all
6 € (0,1) and § > 0,

€ Sa+bMa+b71 ;

06
sup |g| <CV ,——t
Ros(C) 4 ath (@ 5)a+b
for g € My14—1, and therefore
~ =b-1 . aa+bp 05
La—lL* A _ A/ . C < "
R0 Jugous | = “e T 5y |

LEMMA 3.2.3. There exist constants Ce>1, 80 >0 such that if (1, €Uy
and 1 € Q5(Ca), then

(3.8) 1(C1,6) < Cern(G,8) < C2n(C1, )
whenever 0 < § < dg.
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Proof. We know that F¢,(¢1) € Rs(¢2). From (3.7) (with {( = ¢2) and

from (3.6|) we see that

e 0%ty ) )
a1 Lb 1/1 < e (g ’ <"
| * * (Cl)‘ <C awgaw%( CQ(CI)) +C Tn(<2,6)a+b <C Tn(CQ,(S)aer

for any integers a,b > 1. Together with the Leibniz rule and (3.5)) this gives
_1=b-1 — T, 41501
L8 L or([Le, L) ()| = 187 L AG)] + B

< C” + Eab7

Tn((% 5)a+b
where F,;, is a sum of terms of the form

(positive continuous function) - L2~ fz_l A(C)|

where p,q > 1 are integers such that p + g < a + b. Therefore

Ep,<C'——M .
w<C Tn(§27 5)a+b

The functions Cj((1) defined in can now be estimated by
o
n(C2, )
hence 7,((2,0) < (C"5/Cy(¢1))Y!. This implies
n(C2,0) < C31(C1, ).

Next, in order to estimate 7((1, ) from above by means of 7,,((2,9), we
use (3.7) again. First we fix [ > 2 such that 7,,((2,0) = (8/||Pi(Ca, )|
Then we can find integers a,b > 1 such that a + b =1 and

o8 Péa (O) 9
Awedw?, Tn(C2, 0)!
with some unimportant constant -, > 0. We choose a small 8 > 0. If now

(1 € Qos(C2), then by (B7) we obtain

Cl (Cl) S C///

2 mllPi(G2, ) = m

a1 b—1 6a+bp 2 J
|LEYL) A(G)] > A,(Cl)‘W,(FCQ(Cl))‘ - C297_n(g2 5!
aa+bp anrbp anrbp )
» e | |00 _ 9" N g8
2 4a) H Qwgow}, (0)’ ‘310%3@2 (Fep(c) dwg 0wk, (O)H 0297%(@, d)!

The second term on the right is < C308/7,(C2,8)! and the first is >
YmA'(€1)8 /70 (C2,0)!. This gives

a—17b-1 ! __ ¢ °
LS L, ~ A(G)| = ymA'(G1) <1 ’Vm/l/(cl)9> Tn(Ca, 0)F
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On the left-hand side of this estimate we can replace L‘j_lfi_l/l(gl) with
A(G) - L‘j_lfifl Or([Ls, Ly])(¢1), which causes an error that can be con-
trolled by C8/7,(Ca, )1

For sufficiently small 6 and after shrinking dy we obtain

e _ )
LT ar((Ls, I, > 05—
| (1L T = O
with some unimportant C5 > 0. This proves
0
>0 -
)= GGy
and finally
s\ 1
0) < | 57 < —7n(C2,0
169 < (g ) < gmled)

provided that ¢; € Qps((2)-
Now we take ¢ = ¢/60 and choose (1 € Qs((2) = Qps(¢2). Then, by what
we proved so far, we get

1
n(¢1,8) < (¢, o) < 557,1(42, ') < Cetn(Ca,0) < C2(¢4,0)
with C, := L2072,

Now we are able to describe how, given ¢ € Uy, the radii 7,({’, §) behave
if ¢’ varies within Qs(().

COROLLARY 3.2.4.

(a) For any ¢ € Uy and 0 < § < dy we have

™n((,0) < Cen((,96),  n(¢,6) < Cen((, ),
SVB < 7l ) < C2gem),

C3

(3.9)

where c3 is as in (3.4)).
(b) If ¢1 € Qs(C2), then

(3.10) T0(C1,0) < C?1,(C2,0),  Tn(C2,6) < C?7,((1, 6).

Proof. (a) In the preceding lemma just take ¢ = (1 = (.
(b) We again use the above lemma and part (a) and find

70(C1,0) < Cen(Gr,6) < C270((2,6),  Tn((2,8) < Cen(Gr,8) < C27((r, ). m

3.3. Comparison of pseudoballs. We next prove a property of pseu-
doballs that we call the “engulfing property”.
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LEMMA 3.3.1. After enlarging the constant Ce from Lemma [3.2.3] we
can achieve the following: Suppose that (1,(a € Uy and (1 € Qs5(C2) for
0<d<dy. Then

(a) Qs(¢1) C Qc.s(C2),
(b) (2 € Qe.s(C1),
(c) Qs(¢2) C Qezs(Cr)-

We will show this by applying the Schwarz lemma. For positive numbers
T,6 we let

Gs:={s€C|Res <Té+ T|Ims|}.
LEMMA 3.3.2. Let ( € Uy and 0 < § < dg. Then for every mapping
h: Rs(() — G5 we have

2T

< =

(In(0)] +9)
whenever t € Rs/5(C).

Proof. We let hg := h — T4. This mapping has values in the slit plane
{re’® | 0 < a < 27}, where a branch ¢ of the square root exists that takes
—1 into 4. Next let hy := ¢ o hs. Then the function

B e h1 — h1(0)
3=
h1 — h1(0)
maps Rs({) into the unit disc with h3(0) = 0. The Schwarz lemma yields

o flal i
‘hg(t)’ < %(ta 6) - max {(57 %7 Tn(C75) }

This implies after some computation

hl(O) - hl (0)¢0(t, (5)2 Im hl(O)

S ) S S ST Or
and finally

[P (0)I(1 + vo(t, 8)*) + 240 (¢, 6) Im hr (0) _ 1+ 4o(t,d)

lol= = o1, 5 =T uot.0) O
But |h1(0)] = 1/]h2(0)] < /|R(0)] + T3, hence
1 2—2m
I(0)] < 1RO + 76
because of 7,(¢,d/2) < 2727, (¢, §). This implies
B(0)] < What)] + T6 = [ (0)? + T5 <~ (h(0)| + 5).
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Proof of Lemma|3.3.1. (a) We assume that (; € Qs(¢2) and (1, (2 € Uy.
Let F := Fg, o o 1 We want to show that, after enlarging C, if necessary,

we have F(Rs(¢1)) C Re,s(C2). This is equivalent to Q5(¢1) C Qc,s((2).

The key observation is p¢, o F' = p¢,. On R5(¢1) we have pe, < T16 with
some unimportant 77 > 0. This gives, for x € Rs(¢1) by means of Lemma
2.1.1c),

(311)  Tid > pe,(x) = pg, 0 F(2)
> Re(Fi(2)) + [P (@) + - - + [Fuoa ()

2m 2m
=Y 1P(G ) Fal@)l = tm Fi(@)] Y 1Qy (G ) | Fula)
= =

—2Z|F )9a(C2, Fu(2))] = [R(C2, F ()],

where the remamder is estimated by
R(G, F(@))] < Ty (|Tm Fi (2)| + | Fu(a)| Z By«

+ | Fu)Pm + er<x>r3 e |Fn_1<:c>13).

From [Her-2a, Lemma 3.2] we know that

19a(Cas Fu(@))] < To| (e (ZHP GANE@P) ", a=2..n-1.

But as (1 € Qs(¢2), or equivalently F,(¢1) € Rs((2), we have (observe that
we are assuming = € Rs((1), in particular |z| < §1/(2m)

|Fo(@)] = [ + (G = G)al < 70(C156) + 70(C2,0) < (14 C2)ma(Ca, 6).-

Further,

|Po(@)|* + -+ [Faca(@)P < 6YCM (| By(a)]* + -+ [Faca (@),
in particular
R(C2, F())]

< Ty([lm Fy ()] + 6V (|Fa(a)]* + - + [Fua ()]7) + 8 FH/EM),
Substituting this into we eventually find
(3.12) T18 > Re(Fi(x)) + (1 — C6YCm)(|By(x)]? + - - + | Fpoa (2)]?)
—C6 — T3|Im Fy ().
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So we can apply Lemma to Fy. Since F(0) = F,(¢1) € Rs(¢2),
hence |F1(0)] < 756, we obtain [Fi(z)| < Tsd on Rs/(C1). Then, using

(3-12) we get
|Po(z)]> + -+ [Foo1(2)? < Th6 for z € Rypo(Ca).
This gives claim (a) if we enlarge C..
(b) Now we define F' := F, o FC_Ql. We want to show that F(Rs(¢2)) C
Rc.5(¢1). Once we have proved this we see that

Q5(G2) © F (F(Rs(2))) € Fi M (Rews(G) = QealCa).
Welet y := Ft,(¢1). Then y € R5(¢2), and we choose a holomorphic automor-
phism ¢, of Rs((2) with ¢,(0) =y and ¢,(y) = 0. Now we use p¢, oF = Péys
in particular R
Pea © Gy = p¢ © F o dy.

We repeat the arguments from the proof of (a) for Fo ¢y in place of F
and p¢, o ¢, in place of p¢,. So we obtain, noting that Fo ¢y(0) = 0 (hence
Lemma applies to h := ﬁl),

F(R5(C2)) € Res(61),
provided we enlarge C, (which is possible uniformly in § and the (’s). So we
obtain (b) from F¢, (¢2) = F(0) € Re,5(¢1), which means that (o € Qcs(C1)-
(c) By (b) we have (3 € Q¢,5(C1), hence by (a), with the roles of ; and
(5 interchanged,

Qs5(C2) C Qc.5(C2) C Qe25(C1)- m

3.4. Properties of the pseudodistance. We next study suitable sub-
stitutes for the symmetry and the triangular inequality of the pseudodis-
tance.

Let dg denote the number that appeared in the preceding subsection. For
any t > 0 we denote by S; the strip

Sy :=A{|r| < t}.

We assume that dp is so small that for any z € Ss, its orthogonal projection
z* € 0D onto 0D is uniquely defined.

LEMMA 3.4.1. There exists a constant 50 > 0 such that (after shrinking
do):
(b) d'(2,2*) < Cy'dp(z) for each z € Ss,.

Proof. (a) For any z € S5, we have z = 2* — 5D(2)%(z*), and hence

r(2) + 6p(2)|Vr(z")|| < Crop(2)?



224 G. Herbort

with some constant C; > 0. After shrinking dy we get
Cadp(2) < Ir(2)| < Gy 'op(=)
on Ss,. This implies in conjunction with (2.4)) that

Fur ()] < Lobp(2) < g“ r(2)]

N Cy .
for z € S5,. Let Cp := 2Lo(1jfyo’1)' Then, using 1’ we find
L
HFZ*(Z)]V’<EOCO5<TV(Z 5), 1<v<n,
2

for z € 5506' This gives the claim.
(b) If C5 has the same meaning as in (a), then z € S5, belongs to Séus

if we choose & := (CoCy)*6p(z). Hence, by the arguments for (a) we sece
that z € Qs(2*). This implies

d’(z,z*) <6 = (6052)715D(2). =

LEMMA 3.4.2. There exists a constant 61 > 0, depending only on J, Ce,
and the diameter Rp of D, such that:

(a) For A,B € D,
d(B,A) < Cid(A,B).
(b) Whenever d' (A, B) < oo, then
d'(A, B) < Cid(A, B).
(¢) The triangular inequality holds in the form
d(A, B) < C1(d(A,C) +d(B,C)) for A,B,C € D.
(d) For A€ D and B € S;,,
d(A, B) < C1(d(A, B*) + dp(B)).
(e) Let Ry be as in Lemma 2.1.1. If A,Q € Uy and A € B(Q, Ry), then

1

2m
5 (IIFQ(AL] + [Fo() P + 2P [Fa(A)l')

< d'(4,Q) < 2(|[Fa(A)i|+|[Fo(A ”\2+ZHPz M Fa(A)l').

Proof. (a) We adapt the proof of [Her-3 Lemma 3.1]. If d(A,B) =
|A — B|, we simply have d(B,A) < |A — B| = d(A, B). Hence we assume
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that d(A, B) = d'(A, B) and consider two cases. If d'(A, B) > /2, then
2Rp
0
If d'(A, B) < 60/2, we choose 6§ € (d'(A,B),3d'(A,B)). Then A € Qs(B).
By Lemma we obtain B € Q¢,s(A), hence
d(B,A) < C.6 < 3C.d'(A,B) = 3C.d(A, B)
(b) Assume that d'(A,B) < oo. We must show that d'(4,B) <

C |A — B| with some constant C > 0. We start with the observation that
A & Quapy2(B). If now [[Fa(B))1] > 1d'(A, B), we get 2Lo|A — B| >
2[Fa(B)| > d(A, B).

If [[Fa(B))i| > +/3d'(A, B) for some I € {2,...,n — 1}, then

A(B,A) <14~ Bl < Rp < 224/(4, B) = 222a(4, B)
0

2L2Rp|A — B| > 2L2|A — B> > 2|Fa(B)|* > d'(A, B).
If finally |[Fa(B)ln| > 7 (B, 3d'(A, B)), we obtain (using (2.5))
LolA - B > |[Fa(B)la| = 70(5d'(4, B))'"*,
hence

2I2 2L
0RD|A Bl.
7

d(A,B) < =L2JA-BP <
’Y
This implies d'(A, B) < 2(c1Lo)?>R%)|A — BJ, and hence the assertion.
(¢) The triangular inequality is proved in analogy to [Her-3, Lemma 3.1].

(d) Follows from (c) and Lemma [3.4.1|(b).

(e) We write for short

2m
T i= (|[Fo(A)h] +[Fo(A)]" + Zj 1RSI F(A)l').

Certainly F(A) € Ror(Q). By definition of d'(A, @) this yields d’'(A, Q) <
2T'. On the other hand we can estimate from below each ¢ for which Fip(A) €

Rs(Q), namely |[Fo(A)]li| <6, |[Fo(A))"| < V6, and |[Fo(A)]a] < m(Q,0).
The latter is equivalent to

2m
S 1B Fo(A)]al! < 6.
=2

Summing these inequalities gives d'(A, Q) > %T. u

3.5. Covering a é-collar around the boundary by a special mesh
of pseudoballs ()5. We will need an important application of Lemma|3.3.1
namely, we have to be able to cover a thin collar around 9D of width J by a
finite number of Q5(¢)’s in such a way that any x in this layer is contained
in a finite number of Qs({)’s, and this number does not depend on ¢ (cf.



226 G. Herbort

[Cat2, Lemma 3.3]). This will be essential for the proof of Lemma [4.3]in the
next section.
More precisely:

LEMMA 3.5.1. There exists a number Ny with the following property:
Given 8y > 6 > 0 we can find a set {¢) | v € Ts} C OD, where Tj is a
finite index set, such that:

(2) Sg,5 € Uper, @5(¢™).
(b) For any x € Sg 5 the set

Agi={v e Ts | Qs(z) N Qs(¢™) £ 0}

has at most Ny elements. (Here 50 is the constant from Lemma
3.4.1].)

Proof. We start with a finite covering (Qs(y®)) rer; of 0D and select a
subcovering with the desired property. Let (V) =y If 9D < Qs5(¢™M) we
are done. Otherwise we have a point y(2) € 9D\ Qs(¢(V). Let ¢ = y(?2),
Again, if 0D C Qs5(¢™M) U Qs5(¢), we choose Ts = {1,2}. Inductively
assume that for v > 3 we have found ¢V, ..., ¢V e {y® | i ¢ Ty} such
that ¢(¥) ¢ Uf;ll Qs(¢™) forany k=2,...,v—1. Then D C UZ;ll Qs(C™)
or there exists an i, € Ty such that (W) = gyl) ¢ Ug;ll Qs(¢). This
defines a sequence (¢™)),er, with Ty finite such that

(3.13) d”%OQm@l
s=1

Our claim is that for any € 9D the cardinality of A, is bounded
uniformly in §. Let C, denote the constant from Lemma We claim
that

Qoz25(¢") N Qe24(¢Y) = 0
for v # [. To see this assume that v > [ and that there exists y € ch_zé(g@))

N ch_zé(g(”). Then by lm we obtain ¢ e Qc-15(y) C Q5(¢W), which
contradicts (3.13)).

We next estimate the volume of chz (¢ (v )) from below whenever v € A,
namely

(3.14) Vol(Q-25(¢™)) = esC 6" 1 (¢, 6)?,

¢5 > 0 being an unimportant constant. For any z € Qs5(¢™)) N Qs(z) we get
7a(2,6) < C2a(¢™), 6),
and, since x € Qc.s5(2), it follows that
Tu(2,8) < C21y(2,Ced) < C37(2,8) < C27, (¢, 6).
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In particular by means of (3.14) we obtain
(3.15) Vol(Qp-25(C™)) > e5C 10726 7 (2, 6)°.

At the same time, () € Q¢.5(2) C Qc25(), hence Qs(¢) c Qess()
for any v € A;. Thus

U Qe2¢™) ¢ | @5(¢™) € Qcss(a).

I/EAz VEAz
Let # denote cardinality. In conjunction with (3.15)) the above yields

(£ A2)es 10726 (1,62 < VoI (| Q2 (¢0) ) S0 CE 42, (,6)2
I/eAz

This implies § A, < cgC2"12/c5 independently of 6. m

4. Plurisubharmonic weight functions. In the next step we con-
struct for a pseudoball Q5(¢) (with small 6 > 0 and ¢ close to D) a nega-
tive smooth plurisubharmonic function ¢¢ s whose Levi form “fits well” the
geometric form of Q5(¢), and is bounded from below by a uniform constant.

For a precise statement of this we prepare some

NoTaTION. Let Uy and Uy, . ..,U, C Uy denote the open sets we have
fixed before the statement of Lemma We choose open sets Uy CC Uy,
for k=1,...,n, such that 0D C U; U---UU,. On each U we fix a set of
vector fields L1, ..., ¥L,_1, *L, of a boundary system. Let the normal field
N be defined as in . Over Uy, each X € C™ has a unique representation
in the form

n—1
X=buN+> b, +b,"L.
v=2
with smooth coefficients b1, ..., b, on Uy.

We may assume that Jy has been chosen so small that
(a) S5, CULU---UUy,
(b) Qs(¢) CC Uy for any ¢ € S ;N Uk, 6 <do, k=1,...,n.

LEMMA 4.1. There exists a constant Ko such that, after possibly shrink-
ing dg, for any 0 < d < §y and any ¢ € 5505 we can find a smooth plurisub-

harmonic function ¢ s on _54’5/1(0 = {pc < 6/Ko} with the following prop-
erties:

. —2/3 -~
(1) _%KO / S ¢C,5 < 0 on Dc,é/Ko'

(ii) On R(S/Kg’/6 (Q) N D¢ s/, the Levi form £y, s of ¢ s satisfies
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LX) XX
R >
Ko( 2 T 5 Trncer)
(41) ch é(w,X) > 9 9
’ 1 XE X form =2
Ky 62 72(¢,0)? ’

for X e C™.

Proof. For n = 2 this is contained in [Cat2], so assume n > 3. Let
0 < dp. We apply [Her-2al Theorem 4] for any ¢ € S@O 5. There exists a
universal radius Re > 0 (independent of ¢ and (), and on the disc A(0, 3R2)

a subharmonic function w, > ﬁ(( ,Wp) such that the plurisubharmonic
function

@c(w) = Re(w; + Muw?) + %\w"]Q + ]B(C,wn)
satisfies, with suitably chosen M, K > 0, the estimate

~ 1 1 1 ,
20¢(w) = Mluwn|* = KB(¢,w') < @elw) < 5pclw) = 1-lunf = B(Cw)

on the ball B(0,2Rz), where we write

2m
(4.2) B¢ w') = [w")?+ D IP(¢ ) wal .

=2

Let Ky > 1 be a constant, to be chosen later. From the pseudoconvexity
of D, and hence of {p; < 0}, it follows that also the function

(1+ Ky 18
(1+K5')o —pe

¢ 5,0 :=log + Alw/?
is plurisubharmonic on {p; < K 15}, once A is sufficiently large.
We define
1 ~
(4.3) pe(w)

Pes(w) == — e + 5

2m
1 ~ j - ’
+2 < 521 (—(=@c(w) +8)*7 + KPS, )17 |wnl?)
J:

with a constant K, to be chosen later. On {p; < §/Ko} N B(0,2R2) we have
ocs(w) < ~K7'67 28w forany j=2,...,2m,

and further the function

_ 1 ’w//‘Z ’wn‘Q
st - = (5 4 s

is plurisubharmonic on R35/(2K*)(C ).




Estimation of the Carathéodory distance 229

The Levi form of ¢ s satisfies

1 Opcdp¢ 8 dpcdpc
Ziocao 2 =gty - AR 2 3 (T T pf S KL 8

on R35/(2K*)(<) if K, > 1. But on this set

1 2 : 2
> — o — -
8p<8p< |dw1‘ Mlé,,i”w |2 M1< n(C,(S)) ‘dwn’

with an unimportant constant M;. Hence the function

N N N 1 |w1|2 |w//|2 |wn’2
Yes(w) = @cs0(w) + Ges(w) K< ZE A (G

is plurisubharmonic on Ry /15, )(C).
We have @?1\475(0) = 1;95(0) =0 and

~ 21 B\
log(1 + 2K:1) + Afwf? — 1= _ L
Fat) <loa(1+ 285 + Al = 5 - 23 (5
on INJQ(;/KO. This in~1plies that on 0 Rss/ 4k, ) (C)0547 §/Ko» With another unim-
portant constant A,
2 1 1

~ 2 ~
4.4 Ves < — + ASY™m — < — =— ,
(44) T Ko K~ 2K gp?P

if we choose Ky := K3 and &y < (4AK,) ™3™,

Furthermore, there exists a constant Lo > 0, independent of 6 and K,
such that ¢ s > —L2/T on Rs;p(C) for any T' > 1. This shows that 15 >
—1/(3K2) on Rs/(31,k2)(C). We enlarge K. (and hence Kp) so that K, >

QL%. Then RJ/KEM (C) C Ré/(SLgKf)(C)'

After a standard regularization procedure we can assume that {/;Q(g is
smooth. (Note that P(,) is only continuous!)

Next we choose a convex function » : R — R such that s(z)=—5/(12K?2)
for ¥ < —1/(2K2) and »(x) = = for z > —1/(3K2). Then the function
thes = 0 ’(ZC’(; is plurisubharmonic on {ps < 6/Kp} and has the desired
properties. =

We push the weight functions )¢ s forward to the original domain {r <
5/K0}2
LEMMA 4.2. There exists a constant C, > 0 such that for each ( €

5’505 and 0 < 6 < dg we can find a plurisubharmonic function ¢¢s < 0 on
{r < /Ko} such that:

. —2/3
() 3Ky ? < s <0,
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(ii) The Levi form of ¢¢ s satisfies

n—1
Ly s(z0IN + > Ly + byLs,)
k=2
n—1 2
b1]? Zj:Q |65 b |? ) .
C*( + + an > 3,
S &2 § n(¢,9)?
b1> | |bof? > :
Ci| =5+ if n =2
< 6% (¢, 9)?
on Q5/K5/6(C)7 where (La, ..., Ly_1,Ly) is a boundary system as at
0

the beginning of this section.

Proof. Again we argue only for n > 3. We put ¢¢ 5 := t¢s o F¢. This
functlon is plurlsubharmomc on {r < 6/Ko} N B((, Ro). But because of
in conjunction with we have ¢ 50 Fr < —L4o~ 1/2m 5o that for
sufﬁ(nently small § we can extend 1/;@ o I by setting

5o max{{c 50 Fe, —5/(12K/*)} on {r < §/Ko} N B((, Ro),
© —5/(12K2/%) on {r < §/Ko} \ B(C, Ro).
If s is chosen as in the proof of the preceding lemma, we choose ¢¢ s as a
regularization of s o 12;475.
This function is defined and plurisubharmonic on {r < 6/Ky}, and it

satifies (i). To see that the estimate (ii) on the Levi form of ¢ s holds on
Qé/Ks/es(C) we may assume that the boundary system Lo,..., L, 1, L, is
0

defined on B((,2Rp). If we write X = b1 N + 3~ Y byLy + by Ly, then

b1 <a7" X>

[Vr]|
by =X +b1-(rz,s6 —75) — Xn-sg, k=2,...,n—1,
by = X — by -7,

(4.5)

On Fc_l({wgg > —1/(3K§/3)}) we obtain

Lpes 2 # 0Ucs0 Fe - Ly 5 (Fel2), Fi(z
1 (|@pc(Fe(2), Fi()X)[* 1 2 Xl

> 5 ( ) + 5l X0P + )

1 (\(3P<(F<(Z)),F<’(2)X)!2 - X )

~—

X) 2 Ly, (Fe(2), FU(2)X)

i
L

= 2K, 52 s 21O, )P4 2,
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Now we have (9p¢(F¢(2), F{(2)X) = (Or(2), X). Next we observe that

@wmwmzzﬁ§<my
v=2 v
n—1
_Z (‘?z 2)b, — by znzagzdp(z)sy—i-apoFg-(bn—i-blrzn),
v =2 v

where the functlons o, are the coefficients in the representation

|
-

n
TR
p

[|
N

and Ek are the vector fields into which the Lj transform under F¢. The o,
are given by

OFep

n—1
(16) spoFe=y 2y, 1 Ol

v=

By computation one can check that

0p= -3 P'E,

where the £, ;7 and LP! are defined as in the first step in the proof of Lemma

Now by Lemma we get, on Rs((),
lop] < V5/70(C,0).
This implies (M > 1 being independent of K,.) that

1| &ROF] 2 Malbi[* (ool
F X 2 > ¢lp bl/ - - -
RO () X)P 2 12513, =5 8 ) Ko Ko
n—1
d My 1 |bf?
> b* — —=b|* — — — 5
- K*5 Z| | K*5| 1| K, Tn(C, 5)2
C?  |bul?
S 2 M2 _ e
- K,o Z| V| K, W(C75)2
with some constant ¢’ > 0, because the matrix A(z) := (fo (@)Z;iz is

invertible, and
(4.7) |A(z) - Y| = |Y]

on R;5(¢). Plugging all this into the lower estimate on the Levi form of ¢¢ 5 we
obtain the desired lower bound on % ¢.s- Note that, with some unimportant
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constant M > 0, one has
| X ? L Y T (P oul* O X
(C,0)* T m((0)? T Ta((0) T C2nn(C,0)? 5
In what follows we will need another two weight functions that can be
constructed in analogy to the corresponding ones in [Cat2l, [Cho-1 [Cho-2].

LEMMA 4.3. For a sufficiently large constant Ko > 0 and small enough
do > 0 we can find a family (Xs)o<s<s, of plurisubharmonic functions such
that 0 < A\s <1 and, on Uy,

n—1

L (50N + D bpLy + baL)
p=2
O ] e L N L1 .
— >3
> Ko< " 5 FrGep) Tt
- 1 |b1|2 |bg\2 .
el -9
Ky < T2(2,0)? i n ’
where (Lo, ..., Ly) denote the vector fields of a boundary system as in Lem-
ma BT

Proof. Let Ky and dg be as in the preceding lemma. We apply Lemma

3.5.1 and put
p
12K2/3

)
5N0 Z<¢g(u>,5 2/3>

vETs 12K,

This function has values between 0 and 1 and its Levi form satisfies the
desired estimates. =

A§ =

We define for small £,£9 > 0 the function
(@) =+ AL+ B, Z))?
with # as in (4.2]), and for a small radius 0 < R; < Ry the open set

Ue :={pc <eot} U{[Z] < R1 | pc(2) <eo0 fct(2)}-

The functions As serve as bricks in the construction of the following
family of plurisubharmonic functions:

LEMMA 4.4. Letn > 2. Then, for suitable Ry < Ro/(2L3) and to,e0 > 0,
we can find for 0 < t < tg a smooth plurisubharmonic function E¢; on the
domain U¢ s such that, with a universal constant Ly > 1:

() =Ly Zeu < EBep < =(1/ L) Zeu-
(ii) The Levi form of E¢ 4 satisfies
~ 1 ’YI‘Q |Y2‘2+"'+ |Yn—1’2 |Yn|2 )
% Yy > — .
(2 Y) (/g 1(2)? Hci(?) R Sci(2))?
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(iii) The domain
D§ :={Z € B0, R1) | pc(3) <t or pc(2) < —c0Fc4(3)}

1§ pseudoconver.

Proof. For n = 2 this is [Cat2l, Prop. 4.1], and for n > 3 we can copy the
proof of [Cho-2, Prop. 2.2]. m

REMARK 4.5. (a) After shrinking Jp once again we can achieve that for
each ¢ € (0,0p) we can stick together the domains F{I(Dg/KO) and {r < tp}

whenever ¢ € Ss. For details the reader may consult [Cat2l Sec. 5] and
[Cho-2| Prop. 2.7]. During this procedure the parameters to and ey must
possibly be shrunk. We will denote the resulting domain by D¢ s. By the
preceding lemma we obtain the following: There exists 6y > 0 such that for
any z € D¢ s and 0 < 6 < 6,

FoNPY) C Doy if7:= Fe(2) € D§
An(z,cotg) C D¢s  otherwise,
where for 6 € (0, 60y] we denote by Pg the polydisc

Pge = A(gl,efc,é(a) X Ap—2 (5'4/7 9/4,5(2)) X A(gann(Q@/Cﬁ(g))-

(b) Using Lemma [4.4[i) we see that we can choose s; € (0,1) indepen-
dently of 4, in such a way that the function

% ) { max{FE¢s/x, o F¢,—s1} on FC_I(DS/KO),
¢,6\%) = - 5/ K
—5 on D s\ F (DY),

becomes plurisubharmonic on D¢ s whenever 6 < .

5. Holomorphic auxiliary functions. We can proceed in a similar
manner to the construction of peak functions in [DieHer|. These were of
the form (1 —¢) Y 0, ¢™F,,, where the “bricks” F,,, had to satisfy certain
conditions. In the next lemma we want to construct the functions F,, that
are suitable for the problem at hand.

LEMMA 5.1. There exist constants 6, ko, M > 0 and for any ¢ € 0D
and A € D a family (Fa¢r)o<k<k, C O(D) with the following properties:
(i) For any k € (0,ko) we have Fa¢ € O(D¢y), Facr(C) =1.
(ii) Let 0 < k < ko and ¢ € OD. Then:
(a) If A¢ B(C, ), then Facr(A) =0.
(b) If A € B(C,Ry), then
1 Zf VC k(A

_ )
Prat =10 i viua)
¢

<1
>1
where Ve 1 (2) := |[Fc(2)1[*/k* + (1/k)B(C, [F,

()])
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(iii) For any k € (0, ko) we have || Fa ¢ kllge(p) < C.
(iv) For z € DN B(¢, Ro),

Facr(z)—1] < 5<HF<<Z>M FEE |[F<<z>1n|)'

k \/E Tn(C> k)
(v) Foranyz€ D, z ¢ Qux(C) and p <k,

|Facp(2)] < Cp/k.

We will prove this for n > 3. (The case n = 2 goes in a completely anal-
ogous way.) We will apply the 0-technique developed by [Hor] with suitable
plurisubharmonic weight functions on the pseudoconvex domain D¢ .

Before proceeding to the details we need some preparations.

Let Uy and &g be as before. For 0 < ¢t < §y we define

2
w
V() = 5 4 L), Ve = Vi o .
(5.1) 2 2 2
V7 () = !wl\ \w! |wn| TV o R
(,t(w) 12 + t +7—n(Cat)2’ ¢t - ¢t L¢
Then

(5.2) Voo < (2m+ Dmax{Ve,, V2, Voo < (2m+ 1) max{V,, V. 1/’”}.

We further define, for A € B((, Rp), the functions

Tagolu) 1= 1= (AP
(5.3) n w” — [Fe(A)]"]? n |wn — [Fe(A)]n|?
t Tn(C, )2 '
Vace == ‘N/A(,t o F¢.
We have
(5:4)  Vacu(z) = max {3Ve(2) — 2V o(A), 3Veu(A) — 2V ()}

The Od-equation. Let x : R — [0,1] denote a smooth function with
x(x) =1 for x <2 and x(z) = 0 for x > 3. With s > 1/(2+4(2m + 1))? to
be chosen later, we write

X(sVer(2)) i [z = (| < Ry,
x1(2) == ,
0 if |z —¢| > Ry.

Then there exists kg > 0 such that x; is smooth on D¢y for any &k < k. In
fact, if |z — (| = R1/2, then |F¢(z)| > R1/(2Lo) and using (3.4) and Lemma
we get Ver(z) > v - k~1/2m) with an unimportant constant -y, and
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~
(2+4(2m+1))2k1/(

5 = 3 if we choose

ks ko= <3(2+4(;/m+ 1))>4m'

This proves the smoothness of x1 on D¢ .
We intend to solve the equation

(5.5)

Ouy, = Ox1

by means of Hérmander’s theory of the d-equation with plurisubharmonic
weights. The desired functions will then be given by

Facr=x1 — ug-

To ensure that the Fy ¢ behave in the desired manner, we must choose
the plurisubharmonic weight functions carefully. We want them to exhibit
a logarithmic pole at ¢ and A. We proceed as follows.

5.1. Choosing plurisubharmonic weights. Let A € €*°(R) be an
increasing function such that A(z) = z for z < 1/2 and A(z) = 2/3 for

x> 3/4.

We can choose sop > 3(192m(2m + 1))™ such that for any ¢ € 9D and

k € (0,tp) we have

(56) (50Vek € 1) € Qo (€)1 {r < K/ Ko},
Furthermore, by Lemma [4.4]1),

(5.7)

E¢ g0 (w) = =Li Fe pyiey(w) = —Lgk

for w € Ry, (¢), with some unimportant Lg > 0.
Hence we can find a small kg < 1 such that

(5.8)

Ee /iy > —Lsko > —s1

on {SoVék < 1} whenever 0 < k < ko. (For the definition of s;, see Remark

4.5(b).)

LEMMA 5.1.1.

(i) Assume that |A — (| > Ro/(2L3). Define

|z — AP
R

wa(z) = log A(soVe k(2)) + log

and choose s = 3. Then
wac > A(2s9/3) —2log4d —6log Ly on supp(dx1).
(ii) Assume that |A —C| < Ro/(2L3) and V¢ x(A) <1 and let

wac(2) = log A(s0Ve k(2)) +log A(Vac k(2))-
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If s = (2+4(2m +1))72, then
92 _
wa,c > log A(2s0/5) + log 3 on supp(9dx1).

(iii) Assume that |A— (| < Ro/(2L3) and V¢ ,(A)>1. There is a constant
€(0,1), depending only on Ry, such that mingp ¢ 7R, /8) VA,ck = V-
Define wy, := _Z¢ k(F¢(A)) and choose

WA —log)\(soT/Ck)Jrlog)\( VAka>
(For the definition of Va ¢y see (5.3)).) Let s := 3-(192m(2m+1))™
Then
wa,c > log A(2s0/s) — log(128m)  on supp(dx1).

Proof. (i) We first note

2= AlZ[A=(l-|z=(¢] = — ¢l = 575 — LolFe(2)]

- 2L3 2L3
and, for z € supp(dx1), using Ver(z) <1,
(5.9)  NFchl <k, NEET< VR (F(2)al < (G k) < ek C,
Combining this with Lemma and we obtain

Lo|F¢(2)] < Loéi k™)

with an unimportant constant ¢; and hence Ro/(2L3) —|2—¢| > Ro/(2L3) —
Lo|Fe(2)| > Ro/(4LY) if k < ko < 1. This proves

wac > A(25/3) —2log4d —6log Ly on supp(dx1).

(ii) We have to estimate V4 ¢ from below on supp(dx1).
By (5.4) and the second estimate from (|5.2)), we see that

Vacnr(z) = 3Ver(2) = 2Ver(A) > 3V r(2) — 2(2m + 1).

For z € supp(dx1) we have, using the first estimate from (5.2),

~ 1 2 1
max{ V¢ x(2), V(2)} = ng,k(Z) > ﬁ 7

since s < (2m 4 1)72. This and the above estimate imply

1
V, >

by our choice of s. From this we get the desired estimate.
(iii) For z € 0B((,7Ro/8) we obtain

_ 3
|Fe(2) = Fe(A)l = Lotz = ¢| = Lol¢ — A] > s, o= Bs.

—202m+1) =1
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On the other hand w,% < k:g + E%Rg < L%Rg, with unimportant constants
Lg, L7. This leads to

' ’w1’2 ‘w//’2 |wn’2
V. > ’
Acw(2) 2 o> s <(L7Ro)2 + L7Ry * (¢, L7 Ro)?

which implies the existence of v,.

For any y # 0 we can show (by elementary estimates) that Ve, sentw) (y) >
1/(24m) provided that V{,(y) > 1. We exploit this for y := F¢(A). Since
V2 (Fe(A)) = Vei(A) > T we gt

= 1
Voo (4) = VL, (FL(A) 2 oy
so that for z € supp(9dx1),
3 3 34 3
3~ 3 > 1/m
> SVew (A) = 5 @m 4 1) max{Vew, (2), VL ()}

3 > m
> SVew (A) = 5@m + D max{Ve(=) V2" (2))
1 3 3\ /™ 1
> —20@m+1)(°2 =
= Gam ~22m )<s> 128m
by the choice of s. m

REMARK 5.1.2. The function w4 ¢ can be viewed as a function on Dy .

Proof. In case (i) of Lemma 5.1.1, we see that w4 ¢ is defined on B((, Ry),
but on 0B((, Ro) the function soV; 1, has values > soLsk=1/(2m) > 1 if k is
sufficiently small (here, L5 is an unimportant constant). Hence we can define
Ao Ve :=1og(2/3) outside B((, Ry).

In case (ii), we use

Vack(®) 2 5Ver(2) = 2Ven(4) 2 §Ven(z) = 2 = 3VE(Fe(2) - 2.

On 0B(¢, R) we have |F¢(z)| > Ro/Lo, and, as in case (i), we find that
Vacr(z) > 1 on 0B((, R) if k is small enough.
Case (iii) is similar to case (ii). m

The above functions wy4 ¢ are not yet plurisubharmonic, but we can over-
come this by

LEMMA 5.1.3. One can choose a constant My uniformly in ¢ and k < kg
so large that the function

Wac = MWy +wac + Mzl

is plurisubharmonic throughout D¢ .
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Proof. For a set M let £y denote the characteristic function of M.
In case (i) of Lemma 5.1.1,
|z — A]?
Rj
The function log A(soV¢ i) = log /\(SOVC’JC) o F¢ is not plurisubharmonic. We
consider the Levi form of log )\(SQVC’Jf). By computation we find

wa,c = log A(soVe x(2)) + log

Ziog A(sov, ) = S0(log )\)/(Sovg,k)gvc”k + sp(log A)"(soV{ ) V¢ OV,
> s5(log )" (soV{ 1) VWOV,

2 a1/ : o
> =K1 €1 2<s0vy ,<3/2y50 OV ROV with K = e [(log A

> —K; -5{1/2§30VC”,€§3/4}50 "%Vélk

But the Levi form of E¢ ./, satisfies

1 V72 Y Vi |V l? )
< w;Y) > < + + ’
100 (03 Y) L\ Ferro(w)?  Fersro(w) — malC Fen/r, (w))?

On {soV, < 3/4} we even have

. Ly = I s
(5.10) .ZECMKO(UJ,Y) > Lg( 12 + ? + (G RE)
with some unimportant constant Lg > 0. But if Vg’k(w) <1, we get
2m
1 _ |dwn|?
- P(C.. =2\ dwo |2 < 9 ———1
2 Il ol ldunf? < 2m s

and therefore
4mK150L§1E<’ k/Ko + 10g )\(So‘/ék)

becomes plurisubharmonic. From ([5.8) we infer
(5.11) {s0Ver <3/4} C{Wen = B¢ a/io )

and the claim follows in case (i).
In case (ii) we have

wa,c(z) == log A(soVe k(2)) +1og A(Vacx(2))

and we need to estimate the Levi form of log A(Va ¢ 1) = log )‘(VA,(,k) o Fr.
First we obtain (as in case (i))

%Og)\(vAycyk) Z _Klg{l/QSVA,C,k§3/4} ’ gvgl,/k
with K7 as above. But, after shrinking kg, we find, with some constant
Ly > 0,

ek (w) < Lioko < s1/11
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for all w such that V", (w) < 1. Moreover
gEC,k/KO = Lllgvclfk

on {1/2 < Vy ¢ < 3/4} with some constant Li; > 0. Plugging F¢ into the
function My F¢ 1k, + log )\(SOVC’ i) T1og Ao Vy ¢, we obtain the assertion,
after enlarging M if necessary.
In case (iii),
3 ~
WA = log )‘<30VZ,I€) o FC + log)\(%VA7<7wk o F<> .

The Levi form of the first member is treated as before. To estimate the Levi
form of the second term we start with

<z = > K- &5 - 4 .
IOg)‘(ﬁVA,C,wk) - 4’[)* 1 é‘{VA747uk§v*} VCI,IW]@

Now, on {‘7A7<,Wk < vy} we have
(5.12) Fe o <A™ (m+ Dwy.
Next we can choose a number ¢; (independently of k, ¢) such that
417 + 2ty + 27,(¢, 1) < (R1/10)%.
Two cases can occur:

(1) Suppose that wy < min {WM, t1}. Then

{Vagun < v} € DI O {EBppiy 2 —51/2),
hence .
{Vacuw Svi} C FEI(DIZ/KO) Wk = Ee i, © Fe}-
From Lemma 4.4(ii) and we see that for a large enough M; we can
achieve that M1W¢  + w4 ¢ becomes plurisubharmonic on D .

(2) Suppose that wy > min {Wg(), t1}. Then

m—+1
3

'zlogx(g* Vacwy) = —4T)*K1 'f{\N/A,C,wkgv*} L2
and
3
"%og)\(ﬁVA’c’wk) > o K '§{VA,C,wkgv*} '«ip\pdz > —L1oi’\2|2,

with some universal constant Lig, as follows from the definition of F. This
gives the claim, after another enlargement of M. u

With a view to (v) of Lemmawe introduce one more weight function.
LEMMA 5.1.4. For any 0 < k < kg let

= k
UC,k = log = -
k—Wek
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Then ﬁgﬁk is plurisubharmonic on D¢ y. If Ly is the constant from Lemma
then, given two numbers p < k < kg, we have
ﬁgp(x) <log L + log(ko/s1) + log(p/k)
whenever x € D¢, but ¢ Qp(Q).

Proof. Let x € D¢y \ Q(¢). Then we consider two cases:
(a) If /ng(az) = —s1, then

D P ko
<log = + lo
+ 81 gk gp+

(b) Assume that /W?Cvp(x) = E¢ /iy (Fe(x)). We use Z¢ o,k (Fe(x)) >
(p/Ko)? + k?, because F¢(z) ¢ Ri(¢), which implies

E¢ pyico (Fe(@)) < =Ly ' V/(p/Ko)? + K2,

. ko P
=1 log — + log —.
Ugp() ng 5 < log 5 + log 7

and hence

ﬁé,p(x) <lo <log L; + log(p/k). m

p
g <
p+ L7/ (p/Ko)? + k2

Now we define the desired plurisubharmonic weight function on D¢ j:

(5.13) By = 20w a ¢ + 20

5.2. Proof of Lemma Applying [Her-2al Theorem 4], we find a
smooth solution uy to

Oup = v = dx1

such that
(5.14) S lug|?e P+ d*"z < K3 S 10x1 ?},5%6_45’“ >z,

D,k D
where, for a (0,1)-form v = vdz; + --- + v,dZz,, we denote by |v (2954%
the square of the length of v measured in the hermitian metric ds® :=
D ab=1 %dza dzy. If (H aE)Z’bZI denotes the inverse of the coefficient ma-
trix (%)Z,bzl’ then |v gg@k =Y ab=1 H%y, ).

We estimate the right-hand side of ([5.14]) as follows.

LEMMA 5.2.1. With some unimportant constant K4 > 0 one has

(5.15) V10X 555, 6~ ™ d*"2 < K4 Vol(Qspys(C))-
DCJC

Proof. First of all,
= X' (sVeR)OVek = sx'(sV0) - FEOV(
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hence
|6X1|?)5¢k < s%(max y')* g{své,k§3/4}|F58V27k|c?)5¢k'
But
8VC k('“)V’ < VC k.,iﬂvf .ZV

on {sV{, < 3/4}. On the other hand, using , we get

Los . ) w5
gEC,k/KO = ngvf 2 maVC»ka‘/Z,k
and hence

87 > LS peoyr Frav
E¢ k/xyoFe = o T CTTGRECT R
which gives
— 2ms
(5.16) |8X1’§5¢k < KiLy (max x')? - (Ve n<3/4}

if we recall (see (5.8) and (5.11)) that supp(Ox1) C {sVexr < 3/4} C
{soVer <3/4y C{Wek = E¢ kK, }, and therefore,

KsLgs
Ly, > K5LB, ) ) 0F; = ; 2 FEOVE FEOVY

with some constant K5 > 0. _
We estimate @y, from below on supp(dx1) by
By = 2nac + Uep = 20(MyWe g, + wac + Mi|z?) + U
> —2n Mys1 +2nwa ¢ + ﬁg,k
> —Kg+ ﬁ(,k by Lemma [5.1.1

But on supp(dx1) we have Hek/Ko © Fo < LiKrk with some constant K7
> 0, and hence
k

ﬁgk =log—— > log — > log .
k— B¢ k/x k+ L' Zer/r, o Fe 1+ Ky

This altogether shows that e~®* < Ky on supp(dx1), and in particular

[ BrilZpg, e iz

D(,k = ]
2msK 2 ] VH (Q
< [ s (IIlaX X/) VO (Supp(axl)) <— K4 ( 3/S(C))

with an unimportant constant Ky, as desired. m

LEMMA 5.2.2. The function Fa ) satisfies (i) and (ii) of Lemma 5.1.

Proof. (i) Certainly, by our construction, F4 ¢ 1 is holomorphic on D¢ .
Since e~?* is not locally integrable at ¢ and A, the function u; must have



242 G. Herbort

zeros at ¢ and A. Hence

Facr(€) =x1(¢) = x(0) = 1.
(ii) By our construction of the d-data we have, with Ry as in Lemma
0 if |A—(|> Ry,
Facr(A) =x(sVer(A) = ¢ 1 it [A=( <Ry, Ver(A) <1,
0 if [A=(| <Ry, Vep(A)>1. m
LEMMA 5.2.3. The Fa ¢ satisfy (iii) of Lemma .
Proof. We fix z € D and consider two cases:
(1) Suppose that z ¢ F~ (Dg/K ). Since the polydisc P, := A, (z, coto)
is contained in D¢y, by the mean value inequality we get
517) |Faca) < o § IPagatal

z

<2+ (coto) " | fu(z)]? &z
P,

< 2+ (coto) 2" Vol({Ve < 3/s}) exp (max @) < €7,
with some constant C*, uniformly in z, A, (, k.
(2) Assume that z € Fgl(Di/KO). Now we set z := F¢(z) and denote by

P; the polydisc around z with polyradius (o,+/0,...,/0,7((,0)), where
0 :=0y_Z¢ k(). Then again P; C D,ﬁ, and by the mean value inequality,

(5.18)  [Facr(2)]® = [Facro F ()1
1

< P FL) 12 27
_7(7”7_”@70)2 1§~’ Ack L, (I d™y

c’ 2 12
< - - n
o UnTn(Cva)z 1S ’FA7<’]€(‘T)| e

Foo(Ps)

C//
< ——(Vol P up(2)|? d*z
S o o (VOUE () + Y w )

¢ (PE)
C///

S G Gop G K ) S €

where C does not depend on A, z,(, k, since o > fpk. Hence in each case
|Facr(z)] < C with some unimportant constant C.m

By means of the Schwarz lemma we prove (iv):

LEMMA 5.2.4. The functions Fa . satisfy (iv) of Lemma .



Estimation of the Carathéodory distance 243

Proof. We let 5 := min { 6:%, \/%, 1}. Then first of all we have

Q§C;1k(g) - Q(gcgl)l/@m)k(o - {VC,k < 2/s}.

Hence uy, is holomorphic on Q(gcj)l/@m)k(g), and in particular wuy, OFc_l
must be holomorphic on R(§C;1)1 Jem);(€)- Further, we find ¢ > 0, depending
only on 5 and Ce, such that for each 2 € Ry;-1,(() the polydisc about =
with polyradius (tk, tvk, t7,,(¢, k)) is contained in R(gcgl)l/@m)k(o'

Therefore we can apply the mean value inequality to find

_ 1 _ n
’UkOFg 1($)’2§m S ‘UkOFg l(y)|2d2 Y
R(gcﬁ—1)1/(2m)k(0
1 ~ N
< I:.= C/W S ’uk(x)|2d2 X,

Qs om1y1/2m) (©)

since the Jacobian determinant of I is bounded away from zero indepen-
dently of k, z, . From ([5.14) and (5.15|) and the fact that @, < 0 we obtain
I < C” uniformly in k, z,(. Thus

max(o |ug o Fc_l\ <V

R;cgl k

This, in conjunction with u; o F c 1(0) = 0 and the Schwarz lemma, implies,
for all w € R;-1,(),

(5.19) |up, o F7H (w)] <

O/ {1, 01, )
k- \/E7 Tn(Cak) '
Now let z € D be arbitrary. We consider two cases:
(1) Suppose that z € Qz-1,(¢). Then w := F¢(2) € 1,(¢), and hence

|[Fe](2)1] HFc( )]I H (Z)]n\}
B VE T m(GR) S

S

luk(z)| = |ug o Fc_l(w)\ < max{
from which (iv) of Lemma [5.1| follows.
(2) Suppose that z ¢ Qz-1,(¢). Then

EFr(2)]1]? E-(2)]"? E-(Dnl2
I 45{:2)]1! n I <(k)] | N [Tnc((q’)ll)i > 502

from which, in conjunction with (iii), the claim follows. m

Finally we establish the last property (v), which will later allow us to
construct a holomorphic “peaking function” at (.

LEMMA 5.2.5. For the family of functions Fa ¢, statement (v) of Lemma

1] holds.
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Proof. Assume that 0 < k < ko, and 4] := 1+ 3(2 + 4(2m + 1))%. Let
0 < p <k be given.

(A) We first handle z € B((, Ro)ND\Q 4, (C)- Let us estimate |F ¢ ,(2)|
from above. Put Z = F¢(z) and denote by ﬁg,k the polydisc around z with
polyradius (fo,V0o,. ..,V 00, 7,(C,00)), where o := ¢ k(Z) and the num-
ber 6 will be chosen later. Finally let P, := 133 1(]55’k). We want to show
that

(5.20) P, Nsupp x(sV¢ ) = 0.

Assume that there exists w € P, Nsupp x(sV¢p). Then V¢, (w) < 3/s
and F¢(w) € Ps, hence

[[Fe(w) = [Fe(2)h]| < 0 ¢ k(2)

and

(521) (F)h] < L)l +0,24(3) < = p+ 6o,
In a similar way we obtain

(5.22) (F ) < 2 Vo + Vo,

(5.2 Fe(@)al < 2ra(C,p) + 7(C. 00).

This yields
2m

o < k+|[F @) +IF @) P+ Y IPENF(2)]al' < k+Ti(p+6""0)
=2

with Ty := 4™2m(1 + 3/5)?™. So choose 6 := min{fy, (271) "™} to obtain
o < 2Typ. Plugging this into (5.21)) through (5.23)) we find

Fe(2) € Ri43/6k(C) C Rk(C),

contrary to our assumption on z.

In particular, Fig ¢, = ug on P, and Fy ¢ )0 FC_I = Up o FC_I on ﬁg

7p
for p < k. The mean value property gives

_ 1 _

[Facp(@))? = [Fagpo F (B = —=— | [FacpoFo ()PP d™y
Vol(Ps )
. P’z',p
, .
= ——=— | (o F'())Pd*y < —=— | |up(a)?d*x
Vol(Ps,,) g ¢ Vol(Ps,,) PSP
Z,p

< Cjexp (max ¢P) < Cyexp (2 max ﬁCm) :
P,y Pp
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But by Lemma we have 2maxp, ﬁgp < 210g(L1% . %), because for
p < kone has P, ,NQ 4 1/2(¢) = 0, which can be shown similarly to (5.20).
This implies Cy exp(2maxp, , ﬁcp) < 53(10/1{:)2 with some C~’3 > 0.

(B) It remains to estimate |Fa ¢ p(2)| for z € D\ B((, Rg). But then
the polydisc A, (2, coto) C D¢ ik, introduced in Remark [4.5]is contained in
D¢ 1k, and we apply the mean value inequality. Since x1 =0 on 4, (20, coto),
we have

1
F 2 _ 2 2 g2n
Facald) = 1l < G Ty (S @&
n{%Z,C0t0

§ngxp< max 62@’) by (5.14), (5.15
An(z,coto)

S KIO(p/k)27
with unimportant constants Ky, K19 > 0, because A, (z, coto) N Qr(¢) = 0.

This completes the proof of Lemma 5.2.5 and hence of Lemma [5.1] =

6. Estimation of the Carathéodory distance from below. We
recall that at the beginning of Sec. 3.4 we denoted, for a point z € Sj,, the
orthogonal projection of z by z*. For small enough &y this is well-defined.

We fix A, B € D with 6p(A),0p(B) < dg. Let ¢ := B*. Then we study
the properties of the function

o0
FA’B = (1 — C) Z CZFA7B*7d7171

=0
for
1 LoC m" 4 1 M
—<c<1l and d><nO e) +4m(1+3</1/1)+ (7”L+ +’71) 1
2 63(50 Y1
with cs
" -

e
where c3 and C, are the constants from (3.9)).
Our first step is now

LEMMA 6.1. The number ¢ can be chosen uniformly in A and B in such
a way that:

(a) The series that defines Fa p converges locally uniformly at each
20 € D, and in particular Fy p defines a holomorphic function on D.
(b) |FA,B| <1lonD.
Proof. Let zp € D. We consider the sets
Ul* =DnN B(B*, R0/2) N {VB*,d*l*1 S ].}
Certainly Uy | C U for any [ > 0. We proceed in two steps.
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STEP 1. Assume that zy € U. Since
Ve g-i-1(2) = |[Fpe ()1 [PV + dH1 B(B, [Fp-(2)])
for any z € D N B(B*, Ry/2), there exist only finitely many [ for which
Vs g-1-1(2) < 1. Hence the number

My, = max{pu | 20 € U;}

is well-defined. Since further zo ¢ U;ZO 1 there exists an open neighborhood
W 3 zg such that z € Uy, \ Uy, for any z € W. In particular,

My — 1 <my <my, +1

for all z € W. We next want to show that the series

o0

T(z):i=(1—-¢) > dFypegi(2)

l:m20+2
converges uniformly on W. For all z € W we have Vg, ;-m.,—2(2) > 1, in
particular z ¢ Q. j-mz,—2(B%).
We note that for p:=d~""! and k :=4"™ d_mZO_QJVl_1 we have

p/k=A4md" o2 d~ "t =4mod 7t < 1
whenever | > m, + 2, so we can apply Lemma (v) to obtain
(6.1) sup |Fg g g-1-1(2)| < p/k = 4 M Cdm =021

zeW

This proves the desired local uniform convergence of F'4 g on DNB(B*, Ry).

With a view to (b), for the points of D N B(B*, Ry) we plug (6.1)) into
the series T and find, for z € W,

[e.9]

TEI<(T=¢) > dFapeg1(2)]

l:mZOJrZ

ot g 4 K0
. <
d—c ™ d—-1
To prove (b) on D N B(B*, Ry/2) we have to consider the sum

(1—c¢)- M0t

sz+1

Ti(z):=(1—c) > Fyp-g1(2).

=0
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This can be done using Lemma [5.1](iv), namely

mzy+1 mzy+1
Ti(z)=(1-¢ Y d+(1-0) Y dFypgii(z)-1)
=0 mZOJrll:O
=1-c™0 4 (1—c) Y (Fypeg-1(2) = 1)
=0
and
m20+1
> g pegii(2) = 1
=0
my,+1
5N Fe()h| | [[Fe()]"] | [[Fe(z)ln]
> Cl( NN s *’nxc,d—bﬂ>)
= C(S1(c, d)|[Fc(2)1] + Sale, d)|[Fe(2))"| + Ss(e, d)[Fe(2)]nl)),
where
man+1
- cd)m=0t? — d
Si(e,d) = d(ed)! = d* )cd—l < g (ed)mot?,

~
[e=]

mZOJrl
Ss(c,d) = Vi (eVd) < vd (C\[)mzﬁz

1=0 evd —
mZOJrl cl
S3(c,d) = —I—1\"
1=0 Tn(C; d )

Now we note that

- d -1 1/k mzg—1 d_mzo_l 1/k
o(¢,d™"7") = min >d2m  min
(c ) 2<k<2m <|]Pk(C, )H> 2<k<2m (HPk:(C, )||)

mayn—1
> d 2 7y (G d Mo,
which implies that

m 1
d~™=0 /(2m) s+
Sa(ed) < 2 cd!/ )yl
3( ) Tn(C,d_mZO_l) ; ( )
dfmZO/(Qm) (cdl/(2m))m20+2 dl/m M=o +2

(G d M0 ) T edt/@m) — 1 T edl/@m) — 1 7,(C,d 0 1)
But by definition of m, we have

d? Mz +2 [Fe(2)1] < 2d? Mo t2,
cd—1 d—m=0—1 d—2

Si(e, d)|[Fe(2)li] <
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e IR 2V,

"
Sa(c, d)|[Fe(2)]"] < (:\/&7—1 d—(mz+1)/2 = n\/g_Qc ’
dl/m HFC(Z)]N‘ My +2 2d1/m M2y +2
53(0, d)HFC(Z)]'rL‘ < Cdl/(2m) 1 Tn(C,d_mZO_l)c 0 Smc o

Plugging this into the expression for 77 (z) we get, for z € W,
d2

_me+2 ~
|Ti(2)| < 1—cM=0 +2(n+2)07d1/(2m)_2

(1 —¢)cm=o+2,
and altogether

(6.2)  |Fap(2) — (1 —cm0t?)|

2(n+2)Cd | 4" MCYN v 1 g s
<(1—c)<d1/(2m)_2+ -1 )" Sic 0Te,

if we choose ¢ so close to 1 that

~

2n+2)Cd2 4™ MC\ 1

Thus we obtain properties (a) and (b) of F4 p- within D N B(B*, Ro/2).

STEP 2. Assume that z ¢ Uy. Then |29 — B*| > 3Ry or |20 — B*| < 3Ry
and simultaneously Vg« 4-2(20) > 1. In each case we have

1
d’

hence we can find an open neighborhood W of zy such that

|20 — B*| > 71 -

1
_ B* R
| | > 2d

on W. If we choose

7
6.4 k.= S =
(6.4) AM(n+14+~) d

we see that d=2 < k and W N Q_y;1(B*) = 0.

Again we apply Lemma v), where we put p = d="=! for I > 1 and k
is as in (6.4). This gives, for [ > 1,

46%(71 +1+4+v)
|F'g g g-1-1(2)] < T

on W. So we obtain the uniform convergence of the series )4, g on W, hence
its holomorphy, and
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o

[Fap(2)] < (1=0) Y ¢Fapeai1(2)]

=0
caofe oS (2)
=1
)C

(
<2(1—=c)C(1+8CH(n+1+)).

If ¢ is chosen close enough to 1 that (6.3)) is also satisfied, we obtain |F4 p|
<l =

Next we begin establishing the lower estimate for the Carathéodory dis-

tance stated in ([2.8]).

LEMMA 6.2. There exists a constant K > 0 such that
Cara 1
45" (4, B) > = o(4, B)
for any A, B € D with d(A, B) > Kép(B).

Proof. Let o(A, B), 0p(A), and p4(B) be defined as in Theorem [2.1]

(A) We may replace the open neighborhood Uy of 9D by U := DN Ss,,
where &g is as described before the statement of Lemma

If A, B € U} we will prove
4574, B) > —on(A).
By symmetry of d$(A, B) we will obtain
45A,B) 2 2 0(A,B).

If A ¢ U}, B € U}, we will likewise show that d$**(A4, B) > 20p(A).
The case B ¢ Uj, A € U is treated similarly. The case A, B ¢ U is

trivial, since we only need to apply the Schwarz lemma to D and a large
enough ball B that contains D.

(B) The hard part of the proof is where A or B (or both) are allowed to
lie arbitrarily close to dD.

(B.1) Assume that A, B € Uj. We define F4 p as in the preceding lemma
and put

Fap—Fap(A)
1-— FA7B(A)FA7B

fap:=

This function is holomorphic on D and has values in the unit disc. We get



250 G. Herbort

1 2|fa,5(B)|
6.5) d$(A,B)> =1lo <1~|—’
(65) Ay B) = g loe\ U Ty o))
1 2|fa,B(B)[? >
>—log(l+ —1———
=2 g( 1~ [fan(B)P
1 2|Fa p(A) — Fap(B)?
:log<1+ [Fa,B( )2 A.8(B)| 2)
2 (1= [FaB(A)))(1 = |Fa,p(B)]?)
Let ¢3 and C¢ be as in (3.9). We can assume that
6.6 5p(B) < 4~ Toutig <
og [e)
(6.6) p(B) < 6mLoC.’

otherwise the estimate of the lemma is obtained from the Schwarz lemma
for the Carathéodory distance, applied to D and the ball B(A, Rp).

As in the proof of the preceding lemma, we let
Ul* =DnN B(B*,RO/Q) N {VB*’d—l—l S ].}, l Z 0.

If B ¢ Uy, we have Vg« 4-1(B) > 1, which implies
1 1
op(B) > — ————
D( ) — Lod 1—}-6’6/637

so there is nothing to do, as explained before.
Assume that B € Ug. Then mp := max{u | B € U} is well-defined,
and from B ¢ U}, .| we obtain

2m
(@72 [Fp- (B)1)? + a2 (| [Fp- (B))'[2 + 3 IRl [Fa- (B)lal') = 1.
=2

In conjunction with (2.4)) and (3.9)) this implies

1 c 1
(6.7) mB+2210gd<210g 6nC§1Lo + log 5D(B)>7
which gives, combined with ,
2log(1/c)
o9 e (BR) T s
3

From we obtain
|Fap(B) — (1 - cmoF2)| < gemet?,
hence, after a little computation,
1 — |Fap(B)* <3cmet? < 3/4.
We plan to plug this into . For this we have to estimate 1 — |F4 g(A)|?.
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Two cases can occur: If A ¢ U we have F4 g(A) =0, and by (6.5),

\%

1 2|Fa g(B)|? )

6.9) d%*(A,B)> -lo <1+’

(6.9) dp™(4,B) = 7 log T [Fay(B)P
2log(1/c)

1 1 c3 log d log(1/c)
-1 = Sp(B)” s ).
2 og< + <6mC ) p(B) )

From this the desired estimate for d$*(A, B) follows.
The alternative case is that A € Ug. Now we define

v

map-:=max{u| Aec U}

and derive from
2m

(dmA’B*+1’[FB* (A)]1|)2+dmA,B*+1 (HFB* (A)]//’2+Z ||-Pl|| HFB* (A)]n|l) < 17
=2

combined with Lemma [3.4.2(e), that

log(1/c)
log(2/d'(A,B) . o (d(AB) T
logd ’ - 2 ’

(6.10) my g <

In order to apply we note that
Fyp(A)=(1-¢) Z d=1—¢raptl
I: AU}
which yields
(6.11) 1 — |Fap(A)? = 2cmamtl _ 2mape+2 < gemaptl,
and further
|Fap(A) — Fap(B)| > |—cmap+1 4 gnot?| _ Lomo+2

— ¢maprtl

This, combined with (6.5)), (6.8]), ( , and (| - yields

l mp+2
5C C

mAB*+1‘1 1 cMB~ mAB*+1{‘

0O (A, B) > ;log(l n ;(i)” e (1 _ ;mm+>>
>y (150 (32 ) ) (o))
> ;log<1 + <;K'> ” d;(;t’BB;))
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where

_log(lje) <3mCe>2V

logd ’ 3

Hence we choose
1
(6.12) K:=-K'Y
v

and obtain the estimate

ara 2 3 d(A )
d° (4,B) > - log <1+K 5 (B )).

(B.2) Suppose that A ¢ Uj. Then, by our choice of the number d we
even have A ¢ Ujj, and the arguments apply that led to

L d(A(g))) For this we

So it remains to compare pp(A) with log(1 +
observe that by Lemma [3.4.2]

[Fs(A)"* _ d'(A B)
p(B) = op(B)
and hence
d (A, B) < 3 d(A,B)
B)
and
(Fo(A)) _ ; |A=B| %¢—4A 3l

Vop(B) /4

which implies

[F5(A)])"| d(A, B
W < (3+ Lov/Rp) 5

Likewise we obtain
[Fp(A)lal _ (B, 2d'(A, B))
Tn(B,0p(B)) =  7(B,dp(B))
(B,2d'(A,B))  dp(B) 2d'(A, B) < 2d'(A, B)
2d'(A,B)  1.(B,0p(B)) ép(B) ~— ép(B) ’
since the function ¢ — t/7(B,t) is increasing in ¢.
As before, it is easy to see that
[Fol _, [A-B| _CiLy|A-B]
< Lo < .
Tn(B,(SD(B)) Tn(B,(SD(B)) C3 5D(B)
This, in conjunction with (3.8)), proves, after enlarging K,
1 1 d(A, B)
- — > .
log(l—l— K op(B) > > op(A).
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We come to the alternative case where A and B are close to each other.
LEMMA 6.3. If d(A,B) < Kép(B), then

A" (A, B) > op(A).
Proof. From li and Lemma (e) we deduce A, B € Qf(aD(B)(B*)

if we choose

~

K = (3 + L()Ce/03)K.

We may assume that
(6.13) op(B) < —
KLi(24+n+2m)

where L; and s; are as in Lemma [£.4] and Remark
Our plan is to compare the Carathéodory distances of the domains D
and Qs B)(B*) at A and B. In Lemma and Remark |4.5( we choose

51

§ :=2K,K 0p(B).
Then our key lemma is

LEMMA 6.4. With a universal constant L that does not deﬂend on A or B
the following holds: Given f € H*(Qs,/x,(B*)) one can find f € H*(Dp-+ 5)
such that

(a) F(A) = f(A), [(B) = f(B), and

() Ifllso < Ll flloo-

We postpone a sketch of proof of this for a moment.
With this lemma in hand we can give

Proof of Lemma 6.3 From the definition of Fp- it follows that, with a
uniform constant C,, > 0, for all z € D one has

[Fp(2) — Fp+(2)| < Cixdp(B).
We apply Lemma 6.4 to

_ . FBI
and find
[Fp]1| + Cexbp(B) _ |[F]a| + Cud/ (Ko K)
< < < e
”fl”oo_ 5/ Ko < 57K, <1+C
This yields, in conjunction with Lemma
2 L(1+ Cu) 2 LK(1+ C..)0p(B)
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Next, for 2 <[ <n — 1 we choose
[FBli

Vo Ko

f=rf=

A similar argument yields

Cara 1 o |fl(A)| _1 o |[FBil(A)’
d (A,B)221 g<1+2z(1+0**))—21 g<1+ff((1+0**) 5D(B))‘

Finally let

L [FB]n
Jui= (B, 5/ Kp)
Then
ol < HEEELORE) < Eey 1 )
and as before we deduce
Cara 1 e3 |[FB]TL(A)|
wm,8) 2 g (1+ et )
and so
ara 1 A EFBL(A)] | [FB]"(A) | |[FBln(4)]
A B) 2 5o g<1 e ( 0Bt JoE) m(B,éD(B))))

with

T WCLR(1+Ch)

Keeping in mind that we are assuming d(A, B) < Kdp(B), we can estimate
the right-hand side from below by pp(A) and see that the asserted lower
bound on d°¥?(A, B) is true. m

Proof of Lemmal[6.4. The proof proceeds very much along the lines of the
proof of Lemma (iii). Therefore we give a sketch here, omitting technical
details.

First, fix f € H*(Qs/k,(B*). We choose a smooth function x : C" —
[0, 1] such that x = 1 on R35/(4K0)( *) and x = 0 on C" \R75/(8K0)(B*)'
Then we want to solve the d-equation Ou = o on Dp- .5, Where

a:=0(xoFp:)- f.

The solution w is to vanish at A and B, so we need a suitable plurisubhar-
monic weight function ®4 g on Dp- 5.
We set t := 0/K( and try the function

Wap =loghoVypey+logho Vg ey,
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where A € C* is defined as earlier, namely A(z) = z for x < 1/2 and
A(z) =2/3 for x > 3/4. With K; := max|(log \)”| we obtain

Loaw 2 K&, o <amy €T e <) DVYL -

Now
{Vapet < 3/4} U{Vp gt < 3/4} C R, (B"),

where K := 4 + LyC./(Kcs). Because of our choice of § and the condition
(6.13) on dp(B) we find a constant M3z > 1 such that

DA B = 2711/1714,3 o Fg« + M3Wpg+ s
is plurisubharmonic on Dp«s. Further, ®4 5 < 0 everywhere, and since
supp(a) C Dpss5 \ Q35/(ak,)(B*), we have &4 5 > —4nlog2 — Mszs1 on
supp(a).
In analogy to the proof of Lemma [5.2.1] we find a smooth solution u on
Dp« s to Ou = «a such that

| JuPe®a5 a2 < O'| fI12 Vol(Qs/x, (B))

Dpx s
with an unimportant constant C’. The desired function is now
fiZXOFB* - f—u.
Since e~%4.2 is not locally integrable at A and at B, we have u(A) =

u(B) = 0, so the holomorphic function f satisfies (a).

The proof of estimate (b) is based upon the mean value inequality for | f].
It goes analogously to the proof of Lemma (iii).

Let z € D be fixed. Two cases are possible.

CASE (i). Let z ¢ F‘}(Df/}o). Then the polydisc P, := A, (z, cotp) (see

Remark |4.5)) is contained in Dp« 5, and we obtain

e < oy § 1o e

z

2 2 8n Ms3s 2 —d on ~9 2
< Gaipy (VIR I + 276 | futa) e~ a20) < L3 72

with some constant El.

CASE (ii). Assume that z € Fl;*l(Dg}(O). Again we put zZ := Fp«(2)

and choose P, := Fy!(Ps), where Ps denotes the polydisc around Z with
polyradius (0,/0,...,\/0,7n(B*,0)), where o := 0y _#p- 5/k,(%). (For 6y
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see Remark [4.5)). Then, as in the proof of Lemma we have

7 2 _ 17 —1 2 1
FEI =1Fo F! )P < g3

[ Fo EylP dm
Pz

F_*l 2 d2n
Vol(Px) A'uo ()" d™x

c"
VOI(P;) S

< 2||fII3% +

< 2|71 + u(y)|> "y < L3|| f1I2,
Fl(Pz)

as before. From this we obtain estimate (b). =

7. The upper bound for the Kobayashi distance. We will estimate
the Kobayashi distance from above as stated in the main theorem. This
will complete the proof of the theorem, as already explained at the end of
Section 2.

We start with the following remark: If x,y belong to T := {(x,y) €
D x D |dp(z),dp(y) > do}, then

A5 (z,y) < log(1 + Clz — y|)
with some constant C.

Indeed, T' is compact. From the continuity of dIgOb on D x D it follows
that, with a uniform constant C' > 1, we have

dp* (z,y)
log(1+ Clx —y|)

whenever |z — y| > d9/2 and dp(z),dp(y) > do.
If |z — y| < do/2, we apply the Schwarz lemma to B(y,d) C D to obtain

2
A (,y) < digly s0)(@,y) < log<1 +5le - yl)-

<1

In each case (since |x — y| < d(x,y)) we obtain the desired upper bound for
A5 (x, y).

Next we establish the upper bound claimed for d%Ob(A, B) in the main
theorem for A, B € D with 6p(A),dp(B) < dy.

As usual, for P € S;5, we denote by P* the orthogonal projection of P
to the boundary 9D and by v(P*) the inner unit normal to 9D at P*.

From [Her-3, Lemma 7.1] (which carries over to general n > 2) we obtain

LEMMA 7.1. Let P DNSs, and 0 <t < s < dg. Then

1 2t —
dED(P* — 41(P*), P* — su(P*)) < 210g<1 + |tt 5').
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The construction of the polyhedra Qs(x) for x € D NS5, and § < &g
allows one to choose My > 1 such that

Qa25p(x)/Mo(T) C D for any x € DN Ss,.
LEMMA 7.2. Suppose that A', B' € D with
(7.1) S0 > min{dp(A"),dp(B")} > Myd(A', B).
Then
di*P(A', B') < 2Moo(A', B').

Proof. Assume first that d(A’, B") = d'(A’, B'). Further let p(A’) >
op(B') and dp(B') < do. From A" € Qg (a,p(B’) and |D we obtain
A€ Qsp(m) /Mo (B’). Now, by the invariance property of the Kobayashi
distance,

d5P(A, B) < diS? (AL B) = dS> o (Fi (4),0)

= Qa5 (B /My (B) = TRas(B7y/Mp

1 2u' (A, B’

2 1— /(A B
where
a5 Lo IE (O] VIGIE (0] [[Fp (A
KA, B) = {M“ o(B) " Jon (D) ’T<B',26D<B'>/Mo>}'

But u/(A’, B') < 271/(™) hence
d%Ob(A/, Bl)

5 [Fp (A1] |[Fe (A [P (A)]a]
S1_21/<2m>1°g<”mx{ op(B") " \/op(B) ’T(B',6D<B'>>}>'

But (using again Lemma [3.4.2(e)) we see that the right-hand side is <
9My o(A', B').
Assume now that d(A’, B') = |A’ — B’|. Then we use
D > B(B',ép(B")) > B(B',6p(B")/My) > A'.
As above we get

dKob(A/ B/) < dKob (Al B/) < 11 1+2|A/_B,‘
D ) = Ap(B6p(B')/Mo)\“r s =5708 S pn

op(B")

1 d(A’, B')

= — 1 _—
2log< +2 (B

We have to make two more steps in order to remove the condition ((7.1)).

) <o(A',B)+o(B,4). u

LEMMA 7.3. There exist constants C*,é > 0 such that for any T > 0
the point z — 4C*T'ép(B)v(B*) belongs to D whenever z € Qrs,,(py(B) and

B is a point in D N S5, with 6p(B) < C/T.
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Proof. Let B € D be close to dD. Then (recall that r was chosen as a
defining function for D) we have

r(z — 4C*Tép(B)v(B*)) = pp(Fi(z — 4C*T5D(B)V(B*))).

Now analysis of the Taylor expansions of pp (see Lemma [2 and of Fp
at z gives the claim. m

Now let T := 3612, where C} is the constant from Lemma
LEMMA 7.4. Suppose that A, B' € D N Sy, with
(7.2) ]\zomin{éD(A’),éD(B’)} <d(A,B') < 3612 min{dp(A"),dp(B’)}.
Then
AP (A, B") < 2Myo(A', B').

Proof. We assume that dp(B’) < dp(A’) and introduce the auxiliary
points

A" = A" —Tép(B v
We use that A" € Qps, () (B’

B'*), B":=B —Tép(B)w(B").

~—

and obtain, by means of the Schwarz lemma,
d%Ob(A/ ) < dKOb(A ,A”) + d%Ob(A/,7B//) + d%Ob(BI,B”)
< 2log(1 + 2T) + d¥°P(A”, B")
<2log(1+27) +dy?> (A", B")
og(

TS5 (B’)

Kob I !
1+27T) + AQry, o (8)(A5 B,
where Qs g (B') == {z = 4C*"Tép(B)v(B'") | z € Qrsp(5)(B')} C D.
But now we can repeat the estimation made in the first part of the
proof of Lemma to bound dg"b (A’, B') from above. The lower

Ts (B (B)
bound (1/Mp) min{dp(A’),dp(B")} < d(A’, B') allows us also to estimate
the quantity 2log(1 4+ 27) in terms of p(A’, B'). m

In a final step we prove the desired upper bound on the Kobayashi dis-
tance.

THEOREM 7.5. For any A, B € DN Ss, /2,
d¥°P(A, B) < C*o(A, B).

Proof. We assume that d(A, B) < dp/2. The claim will follow from the
triangular inequality: We put

A = A—d(A,Bw(AY), B =B—d(A B)(B).
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Then
d(A',B") < C}d(A, A") + d(B, B') + d(A, B))
< C}(|A—A'|+|B— B'|+d(A,B))
< 3C%d(A, B) < 3C? min{6p(A"),6p(B)}
and

d%Ob(A, B) < dIl%Ob(A,AI)_i_dIBOb(A/’B/)_’_dgob(B’B/)
1 d(A, B) 1 d(A, B) Kob/ A/ 1
< -1 1+2——= -1 1+42———= °P(A" B
< glos(1r2 G ) (12 ) vl )

from which, in conjunction with Lemmas 7.2 and applied to A, B’, and
with the estimate d(A’, B') < 3C%d(A, B), the claim follows. m
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