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Invariant scrambled sets and
maximal distributional chaos

by Xinxing Wu and Peiyong Zhu (Chengdu)

Abstract. For the full shift (Σ2, σ) on two symbols, we construct an invariant dis-
tributionally ε-scrambled set for all 0 < ε < diamΣ2 in which each point is transitive, but
not weakly almost periodic.

1. Introduction. Throughout this paper, write N = {1, 2, 3, . . .} and
Z+ = {0, 1, 2, . . .}. For a dynamical system (X, f), the sets of recurrent
points, almost periodic points and weakly almost periodic points [Z] of f are
denoted by R(f), A(f) and W(f), respectively.

Probably the first paper which defines ‘chaos’ in a mathematically rig-
orous way is that of Li and Yorke [LY]. Since then many other rigorous
definitions of ‘chaos’ have been proposed. Each of these definitions tries to
describe some kind of unpredictability in the evolution of the system. This
was also the idea of Li and Yorke. Their fundamental observation was that
in the case of the logistic equation on [0, 1] it is possible to find two points
with the property that during some iterations they are very close and during
some other iterations the resulting values differ by almost 1 (the trajectories
of these points approach two different endpoints of the interval). In [LY] it
is proved that similar behavior is a common property in some class of inter-
val maps (in particular with period 3) and since 1975 the complexity of a
dynamical system has been a central topic of research.

A very important generalization of Li–Yorke chaos is that proposed by
Schweizer and Smítal [SS], mainly because it is equivalent to positive topo-
logical entropy and some other concepts of chaos when restricted to the
compact interval case [SS] or hyperbolic symbolic spaces [OW]. It is also
remarkable that this equivalence does not transfer to higher dimensions, e.g.
positive topological entropy does not imply distributional chaos in the case
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of triangular maps of the unit square [SŠ] (the same happens when the di-
mension is zero [P]).

In [WLY, WLCD, WCL], Wang et al. proved that there exists an un-
countable distributionally scrambled set T satisfying T ⊂ R(σ) −W(σ) ⊂
R(σ) − A(σ) for the full shift σ on two symbols. In 2005, it was proved by
Du [D] that an interval map f is turbulent if and only if there is an invariant
scrambled set for f . Recently, Oprocha [O] constructed an invariant distri-
butionally ε-scrambled set with ε = 1/8 for the full shift σ and proved that
exactly the same characterization is valid for distributional chaos. Motivated
by the above results, in this paper we extend the approaches in [O, WLY,
WLCD, WCL] and obtain an invariant distributionally ε-scrambled set with
any 0 < ε < diamΣ2 which consists of transitive points for the full shift.

2. Preliminaries. Let (X, f) be a dynamical system with metric d.
According to Li and Yorke [LY], a subset D ⊂ X is a scrambled set (for f)
if any different points x and y of D are proximal and not asymptotic, i.e.,

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0.

We say f is Li–Yorke chaotic if there exists an uncountable scrambled set.
A dynamical system is transitive if for any pair of non-empty open subsets

A, B of X, there exists n ∈ N such that fn(A)∩B 6= ∅. It is clear that the set
of transitive points of f , i.e., points with dense orbits, is a dense Gδ subset,
which will be denoted by Transf .

For any pair (x, y) ∈ X×X and for any n ∈ N, the distributional function
Fnxy : R→ [0, 1] is defined by

Fnx,y(t) =
1

n
|{i : d(f i(x), f i(y)) < t, 1 ≤ i ≤ n}|,

where |A| denotes the cardinality of the set A. Define the lower and upper
distributional functions generated by f , x and y as

Fx,y(t) = lim inf
n→∞

Fnx,y(t) and F ∗x,y(t) = lim sup
n→∞

Fnx,y(t).

respectively. Both Fx,y and F ∗x,y are non-decreasing and Fx,y ≤ F ∗x,y.
A dynamical system (X, f) is distributionally ε-chaotic if there exists an

uncountable subset S ⊂ X such that for any distinct x, y ∈ S, we have
F ∗x,y(t) = 1 for all t > 0 and Fx,y(ε) = 0. The set S is then a distributionally
ε-scrambled set and the pair (x, y) a distributionally ε-chaotic pair. If (X, f) is
distributionally ε-chaotic for all 0 < ε < diamX, we say that (X, f) exhibits
maximal distributional chaos.

Let A be a finite set (an alphabet). An infinite word over A is a map
x : N→ A. The set of all infinite words over A is denoted by AN. The set A
is given the discrete topology and AN is endowed with the product topology.
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This topology is metrizable and may be equivalently defined by the following
metric. For any pair x = x1x2 · · · , y = y1y2 · · · ∈ AN, put

ρ(x, y) =
∞∑
n=1

δ(xn, yn)

2n
, where δ(xn, yn) =

{
1, xn 6= yn,
0, xn = yn.

The two-letter alphabet will be denoted as Σ = {0, 1}. The set ΣN with
the above-defined metric ρ will be denoted as Σ2.

Now let us define the shift map σ : Σ2 → Σ2 by the formula
(σ(x))j = xj+1.

The pair (Σ2, σ) is said to be the full shift over Σ. Every closed set X ⊂ Σ2

such that σ(X) ⊂ X is called a shift. Let A = a1 · · · an ∈ Σn. Denote
A = a1 · · · an and call it the inverse of A, where

ai =

{
0, ai = 1,
1, ai = 0.

Lemma 2.1 ([LF, Lemma 5]). Σ2 has an uncountable subset E such that
for any different points x = x1x2 · · · , y = y1y2 · · · in E, xn = yn for infinitely
many n and xm 6= ym for infinitely many m.

3. Invariant distributionally ε-scrambled set in the full shift.
In this section, we will construct an invariant set for the full shift on two
symbols, which is distributionally ε-scrambled for all 0 < ε < 1. This shows
that the full shift can exhibit maximal distributional chaos on an invariant
subset which consists of transitive points (see Theorem 3.1).

Theorem 3.1. There exists an uncountable invariant subset D ⊂ Σ2

such that:
(i) D ⊂ Transσ −W(σ).
(ii) D is a distributional ε-scrambled set for σ with any 0 < ε < diamΣ2.

Proof. Let L1 = L1 = 2, Li = 2L1+...+Li−1 and Li =
∑i

j=1 Lj for i > 1.
Let p1, p2, . . . be all odd prime numbers arranged in the natural order. For
any n,m ∈ N, set

An = {j ∈ N : L4n−1 ≤ j < L4n},
Bn = {j ∈ N : L4n−3 ≤ j < L4n−2},

Cn,m = {j ∈ N : Lpmn −1 + (2k + 1)m ≤ j < Lpmn −1 + 2(k + 1)m,

1 ≤ 2k + 1 ≤ [Lpmn /m]− 1},
Dn,m = {j ∈ N : Lpmn −1 + (2k)m ≤ j < Lpmn −1 + (2k + 1)m,

0 ≤ 2k ≤ [Lpmn /m]− 1},
where [t] denotes the integral part of t. Take an uncountable subset E ⊂ Σ2

such that for any different points x = x1x2 · · · , y = y1y2 · · · ∈ E, xn = yn for
infinitely many n, and xm 6= ym for infinitely many m. By Lemma 2.1, such
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a subset exists. Given any fixed z = z1z2 · · · ∈ Transσ, define g : E → Σ2 by
g(x) = y1y2 · · · for all x = x1x2 · · · ∈ E, where

yj =



xn, j ∈ An, n ∈ N,
zj−L4n−3+1, j ∈ Bn, n ∈ N,
1, j ∈ Cn,m, n,m ∈ N,
0, j ∈ Dn,m, n,m ∈ N,
0, otherwise.

Set
D =

⋃
n∈Z+

σn(g(E)).

Clearly, σ(D) ⊂ D and D is uncountable, since E is uncountable and g is
injective. Moreover, it is not difficult to check that D ⊂ Transσ −W(σ).

Given any distinct a, b ∈ D, from the construction it is easy to see that
there exist c = c1c2 · · · , d = d1d2 · · · ∈ E and p, q ∈ Z+ such that a =
σp(g(c)) and b = σq(g(d)). Let Q = max{p, q}. To prove that (a, b) is a
distributionally ε-chaotic pair for any 0 < ε < 1, we consider two cases:

Case 1: c 6= d. Observe that there exist sequences {mi}∞i=1, {ni}∞i=1 ⊂ N
such that cmi = dmi and cni = dni for all i ≥ 1. It follows that for any
j ∈ Ami , cmi = g(c)j = g(d)j = dmi , while for any j ∈ Ani , cni = g(c)j 6=
g(d)j = dni .

First, it is easy to see that the first L4mi − (j+Q+1) letters of σj(a) =
σj+p(g(c)) coincide with the correspondings letters of σj(b) = σj+q(g(d)) for
L4mi−1 ≤ j ≤ L4mi−1 + L4mi/2, so

ρ(σj(a), σj(b)) ≤
∞∑

n=L4mi
−(j+Q)

1

2n
≤

∞∑
n=L4mi

/2−Q

1

2n

= 2−(L4mi
/2−(Q+1)) → 0 (i→∞).

Thus for given t > 0, there exists N ∈ N such that for any i ≥ N and
L4mi−1 ≤ j ≤ L4mi−1 + L4mi/2,

ρ(σj(a), σj(b)) < t.

Consequently,

F ∗a,b(t) = lim sup
n→∞

1

n
|{k : ρ(σk(a), σk(b)) < t, 1 ≤ k ≤ n}|

≥ lim sup
i→∞

1

L4mi−1 + L4mi/2
|Ei| ≥ lim sup

i→∞

L4mi/2

L4mi−1 + L4mi/2

= lim sup
i→∞

2L4mi−1−1

L4mi−1 + 2L4mi−1−1
= 1,
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where

Ei = {k : ρ(σk(a), σk(b)) < t, 1 ≤ k ≤ L4mi−1 + L4mi/2}.

Second, it is easy to see that the first L4ni − (j + Q + 1) letters of
σj(a) = σj+p(g(c)) are each different from the corresponding letters of
σj(b) = σj+q(g(d)) for L4ni−1 ≤ j ≤ L4ni−1 + L4ni/2, so

ρ(σj(a), σj(b)) ≥
L4ni

−(j+Q+1)∑
n=1

1

2n
≥

L4ni
/2−(Q+1)∑
n=1

1

2n

= 1− 2−(L4ni
/2−(Q+1)) → 1 (i→∞).

For any 0 < ε < 1, there exists M ∈ N such that for any i ≥ M and any
L4ni−1 ≤ j ≤ L4ni−1 + L4ni/2,

ρ(σj(a), σj(b)) ≥ ε.

Thus

Fa,b(ε) = lim inf
n→∞

1

n
|{k : ρ(σk(a), σk(b)) < ε, 1 ≤ k ≤ n}|

≤ lim inf
i→∞

1

L4ni−1 + L4ni/2
|Fi| ≤ lim inf

i→∞

L4ni−1
L4ni−1 + L4ni/2

= lim inf
i→∞

L4ni−1

L4ni−1 + 2L4ni−1−1
= 0,

where

Fi = {k : ρ(σk(a), σk(b)) < ε, 1 ≤ k ≤ L4ni−1 + L4ni/2}.

Case 2: c = d. Then p 6= q. Without loss of generality, we may assume
that p < q. It is easy to see that the first L4m−(j+Q+1) letters of σj(a) =
σj+p(g(c)) coincide with the corresponding letters of σj(b) = σj+q(g(d)) for
L4m−1 ≤ j ≤ L4m−1 + L4m/2, so

ρ(σj(a), σj(b)) ≤
∞∑

n=L4m−(j+Q)

1

2n
≤

∞∑
n=L4m/2−Q

1

2n

= 2−(L4m/2−(Q+1)) → 0 (m→∞).

Thus given any t > 0, there exists N ′ ∈ N such that for any m ≥ N ′ and
L4m−1 ≤ j ≤ L4m−1 + L4m/2,

ρ(σj(a), σj(b)) < t.



276 X. X. Wu and P. Y. Zhu

Therefore,

F ∗a,b(t) = lim sup
n→∞

1

n
|{k : ρ(σk(a), σk(b)) < t, 1 ≤ k ≤ n}|

≥ lim sup
m→∞

1

L4m−1 + L4m/2
|Gm| ≥ lim sup

m→∞

L4m/2

L4m−1 + L4m/2

= lim sup
m→∞

2L4m−1−1

L4m−1 + 2L4m−1−1
= 1,

where

Gm = {k : ρ(σk(a), σk(b)) < t, 1 ≤ k ≤ L4m−1 + L4m/2}.
According to the construction of c, it is not difficult to check that for

any n,m ∈ N and any Lpmn −1 ≤ j < Lpmn −1 + Lpmn /2 − m, the first
Lpmn −1 + [Lpmn /m]m− (j +m+1) letters of σj(g(c)) are each different from
the corresponding letters of σj+m(g(c)). In particular, for any Lpq−p

n −1 ≤
j + p < Lpq−p

n −1 + Lpq−p
n

/2− (q − p),

ρ(σj(a), σj(b)) = ρ
(
σj+p(g(c)), σj+p+(q−p)(g(c))

)
≥

L
p
q−p
n −1

+
[L

p
q−p
n

q−p

]
(q−p)−(j+q−p+1)∑

n=1

1

2n

≥

[L
p
q−p
n

q−p

]
(q−p)−L

p
q−p
n

/2−1+p∑
n=1

1

2n
≥

L
p
q−p
n

/2+2p−q−1∑
n=1

1

2n

= 1− 2
−(L

p
q−p
n

/2+2p−q−1) → 1 (n→∞).

Then for any 0 < ε < 1, there exists M ′ ∈ N such that for any n ≥ M ′ and
Lpq−p

n −1 ≤ j + p < Lpq−p
n −1 + Lpq−p

n
/2− (q − p),

ρ(σj(a), σj(b)) ≥ ε.
Thus

Fa,b(ε) = lim inf
n→∞

1

n
|{k : ρ(σk(a), σk(b)) < ε, 1 ≤ k ≤ n}|

≤ lim inf
n→∞

1

Lpq−p
n −1 + Lpq−p

n
/2− q

|Hn|

≤ lim inf
n→∞

Lpq−p
n −1

Lpq−p
n −1 + Lpq−p

n
/2− q

= lim inf
n→∞

Lpq−p
n −1

Lpq−p
n −1 + 2

L
p
q−p
n −1

−1− q
= 0,
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where

Hn = {k : ρ(σk(a), σk(b)) < ε, 1 ≤ k ≤ Lpq−p
n −1 + Lpq−p

n
/2− q}.

Summing up, by the arbitrariness of a, b, we find that D is a distribu-
tionally ε-scrambled set for any 0 < ε < diamΣ2. The proof of Theorem 3.1
is complete.

Remark 3.2. Noting that Transσ−W(σ) ⊂ R(σ)−W(σ) ⊂ R(σ)−A(σ),
it follows that [O, Theorem 1], [WLCD, Theorem] and [WCL, Theorem A]
are direct corollaries of Theorem 3.1.
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