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Boundary blow-up solutions for a cooperative system
involving the p-Laplacian

by Li Chen (Nantong), Yujuan Chen (Nantong) and
Dang Luo (Zhengzhou)

Abstract. We study necessary and sufficient conditions for the existence of nonneg-
ative boundary blow-up solutions to the cooperative system ∆pu = g(u − αv), ∆pv =
f(v − βu) in a smooth bounded domain of RN , where ∆p is the p-Laplacian operator de-
fined by ∆pu = div(|∇u|p−2∇u) with p > 1, f and g are nondecreasing, nonnegative C1

functions, and α and β are two positive parameters. The asymptotic behavior of solutions
near the boundary is obtained and we get a uniqueness result for p = 2.

1. Introduction. Let Ω ⊂ RN be a smooth bounded domain and 1 <
p < ∞. We shall consider boundary blow-up solutions to the quasilinear
system of the form 

∆pu = g(u− αv), x ∈ Ω,
∆pv = f(v − βu), x ∈ Ω,
u = v =∞, x ∈ ∂Ω,

(1.1)

where ∆p is the p-Laplacian operator defined by ∆pu = div(|∇u|p−2∇u),
f, g are nondecreasing functions and α, β > 0.

By a (local weak) boundary blow-up solution or large solution to (1.1),

we mean that (u, v) ∈ [W 1,p
loc (Ω) ∩ C1

loc(Ω)]2 and
�

Ω

|∇u|p−2∇u · ∇ϕdx = −
�

Ω

g(u− αv)ϕdx, ∀ϕ ∈ C∞0 (Ω),

�

Ω

|∇v|p−2∇v · ∇φdx = −
�

Ω

f(v − βu)φdx, ∀φ ∈ C∞0 (Ω),

and the boundary explosion should be interpreted as follows: For every
positive integer k we have k − u, k − v < 0 on ∂Ω in the weak sense,
(max(k − u, 0),max(k − v, 0)) ∈ (W 1,p

0 (Ω))2.
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Boundary blow-up quasilinear elliptic problems of the form{
∆pu = f(u), x ∈ Ω,
u =∞, x ∈ ∂Ω,

(1.2)

have been the focus of a great number of works, regarding existence and
uniqueness of positive solutions together with estimates of their rate of diver-
gence to infinity at ∂Ω; see for example [BM, CCEG, CD, L05, L06, V, Z] for
semilinear problems (p = 2) and [DL, DG02, DG03, FLS, G09, GW, GW05]
for problems with the p-Laplacian. It is known that when

either f ∈ C1(R), f ′(s) ≥ 0 and f(s) > 0 for s ∈ R, or

f ∈ C1[0,∞), f ′(s) ≥ 0 for s ≥ 0, f(0) = 0 and f(s) > 0 for s > 0,
(1.3)

the existence of solutions to (1.2) is equivalent to a growth condition on f
known as the Keller–Osserman condition (see [M]):

∞�
(F (t))−1/pdt <∞, where F (t) =

t�

0

f(s) ds.(1.4)

However, the corresponding problem for quasilinear elliptic systems such
as (1.1) has been barely touched on in the literature. It is often studied for
more selective classes of nonlinearities f, g and the Laplacian-operator case
(i.e. p = 2). In [GS], the authors studied boundary blow-up solutions of the
system −∆u = λu − u2 + ruv,−∆v = µv − v2 + suv with r, s > 0 (it falls
into the cooperative regime). In [G07, G08, GLS, GR], the authors studied
the problem 

∆pu = uavb, x ∈ Ω,
∆pv = ucve, x ∈ Ω,
u = v =∞, x ∈ ∂Ω,

(1.5)

where a, e > p−1, and b, c > 0; now (1.5) is of competitive type (the former
two references studied the case of p = 2). Under the condition (a − p + 1)
(e − p + 1) > bc, the authors proved that the problem (1.5) has positive
solutions if and only if c < a− p+ 1, b < e− p+ 1, and the positive solution
is unique when it exists. In the critical case (a − p + 1)(e − p + 1) = bc,
infinitely many positive solutions were constructed. Recently, two authors
of the present paper studied (1.5) with b, c < 0 (see [CZ]; (1.5) is now of
cooperative type) and showed the existence and uniqueness of a positive
solution, and obtained the exact blow-up rate near the boundary of the
solution under the condition a > p−1, e > p−1 and (a−p+1)(e−p+1) > bc.

Dávila et al. [DD] studied (1.1) for α = 1, p = 2 and got necessary and
sufficient conditions for the existence of positive solutions.
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Moreover, we mention [AL, D02, LW, L03, LM], in which systems of
large solutions were analyzed.

In the present work, we extend some of the results in [DD], such as exis-
tence, asymptotic behavior near the boundary and uniqueness of solutions,
to the context of the p-Laplacian.

Here is a summary of our main results.

Theorem 1.1. Let f, g : R→ R be nondecreasing, nonnegative C1 func-
tions such that f = g = 0 on (−∞, 0] and α, β > 0. The problem (1.1) has
a nonnegative solution if and only if the following conditions hold:

• f and g satisfy the Keller–Osserman condition (1.4),

• αβ < 1.

The asymptotic of solutions to (1.1) is obtained at the price of a technical
assumption on the nonlinearities, commonly found in the literature (see e.g.
[DG02]). More precisely, let

φ(u) =

∞�

u

dt

(qF (t))1/p
,(1.6)

where F (t) =
	t
0 f(s) ds, q = p/(p− 1). We assume in what follows that

lim inf
t→∞

φ(at)

φ(t)
> 1, ∀a ∈ (0, 1).(1.7)

Examples are f(u) = eu or f(u) = um, m > p − 1. A counter-example is
f(u) = up−1(ln(1 + u))2r, r > 1. Moreover, if f satisfies (1.7), the Keller–
Osserman condition (1.4) follows.

For αβ < ϑ ≤ 1, we let wϑ > 0 denote the minimal solution to{
∆pwϑ = f

(ϑ−αβ
ϑ wϑ

)
, x ∈ Ω,

wϑ =∞, x ∈ ∂Ω
(1.8)

(see e.g. [D06, DG02]).

Theorem 1.2. Make the same assumptions as in Theorem 1.1.

(a) If f satisfies (1.7) and is smaller than g at infinity in the sense that

lim
t→∞

f(t)

g(εt)
= 0 for any given ε > 0,(1.9)

then any nonnegative solution (u, v) of (1.1) satisfies

lim
x→∂Ω

u

w1
= α, lim

x→∂Ω

v

w1
= 1,(1.10)

where w1 is the minimal positive solution to (1.8) with ϑ = 1.
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(b) If f satisfies (1.7) and is of the order of g at infinity in the sense
that for some ϑ0 ∈ (β, 1),

lim inf
t→∞

(
ϑ

α

)p−1 g((1− αϑ)t)

f((ϑ− β)t)
≥ 1, ∀ϑ ∈ (β, ϑ0),

lim inf
t→∞

(
ϑ

α

)p−1 g((1− αϑ)t)

f((ϑ− β)t)
≤ 1, ∀ϑ ∈ (ϑ0, 1),

(1.11)

then for any nonnegative solution (u, v) of (1.1),

lim
x→∂Ω

u

wϑ0
=

α

ϑ0
, lim

x→∂Ω

v

wϑ0
= 1,

where wϑ0 is the minimal positive solution to (1.8) with ϑ = ϑ0.

(c) If g satisfies (1.7) and f is larger than g at infinity in the sense that

lim
t→∞

f(εt)

g(t)
=∞ for any given ε > 0,

then any nonnegative solution (u, v) of (1.1) satisfies

lim
x→∂Ω

u

$
= 1, lim

x→∂Ω

v

$
= β,

where $ is the minimal positive solution to the problem{
∆p$ = g((1− αβ)$), x ∈ Ω,
$ =∞, x ∈ ∂Ω.

Finally, we mention that it is difficult to get uniqueness results for (1.1)
when p 6= 2 because of the nonlinearity of the operator. But when p = 2,
we use another method different from that of [DD, Collary 1.5] to prove the
uniqueness of solution without the condition of Ω being a ball.

Theorem 1.3. Make the same assumptions as in Theorem 1.2 and sup-
pose the problem (1.1) has positive solutions. Assume in addition that p = 2
and

f(t)/t, g(t)/t are strictly increasing on (0,∞).(1.12)

Then the positive solution is unique.

The paper is organized as follows. In Section 2 we give a comparison
principle and prove Theorems 1.1. In Section 3 the asymptotic behavior for
the solutions to (1.1) is proved. Uniqueness results for p = 2 are given in
Section 4.

2. Necessary and sufficient conditions for existence. The follow-
ing comparison lemma ([M09, Lemma 2.1]), proved in [DL, OT], will be
useful.
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Lemma 2.1. Let h = h(x, t) : Ω × R → R be measurable in x and
nondecreasing in t. Let u, v ∈W 1,p(Ω) satisfy

−∆pu+ h(x, u) ≤ −∆pv + h(x, v), x ∈ Ω.

If u ≤ v on ∂Ω, then u ≤ v in Ω.

The proof of the existence of solutions in Theorem 1.1 follows a standard
scheme where one first solves the system with a finite boundary condition
m and then lets m → ∞. The former step can be carried out for more
general f and g (see Lemma 2.2 below). The solution (u, v) obtained in this
way is called the minimal solution. Here minimality refers to the following
property: take any open set D ⊆ Ω and (ū, v̄) ∈W 1,p(D) satisfying

∆pū ≤ g(ū, v̄), x ∈ D,
∆pv̄ ≤ f(ū, v̄), x ∈ D,
ū ≥ 0, v̄ ≥ 0, x ∈ D,
ū ≥ u, v̄ ≥ v, x ∈ ∂D.

(2.1)

Then

u ≤ ū, v ≤ v̄ in D.

Lemma 2.2. Suppose that f, g are two nonnegative C1 functions such
that f(0, 0) = g(0, 0) = 0 and ∂g/∂v, ∂f/∂u ≤ 0. Given m > 0, the system

∆pu = g(u, v), x ∈ Ω,
∆pv = f(u, v), x ∈ Ω,
u = v = m, x ∈ ∂Ω,

(2.2)

admits a unique minimal nonnegative solution (u, v).

Proof. Choose a, b > 0 sufficiently large such that the functions

u 7→ g(u, v)− au, v 7→ f(u, v)− bv are decreasing for 0 ≤ u, v ≤ m.(2.3)

Define u0 = 0, v0 = 0 and for k ≥ 1,
∆puk − auk = g(uk−1, vk−1)− auk−1, x ∈ Ω,
∆pvk − bvk = f(uk−1, vk−1)− bvk−1, x ∈ Ω,
uk = vk = m, x ∈ ∂Ω.

(2.4)

We claim that

0 ≤ uk−1 ≤ uk ≤ m and 0 ≤ vk−1 ≤ vk ≤ m in Ω.

Indeed, this is straightforward if k = 1. Take k ≥ 2 and assume by induction
that uk−2 ≤ uk−1, vk−2 ≤ vk−1 in Ω. Then, from ∂g/∂v ≤ 0 and (2.3),



302 L. Chen et al.

we have

∆puk − auk − (∆puk−1 − auk−1)

= g(uk−1, vk−1)− g(uk−2, vk−2)− a(uk−1 − uk−2)

≤ g(uk−1, vk−2)− g(uk−2, vk−2)− a(uk−1 − uk−2)

≤ 0 in Ω.

By Lemma 2.1 it follows that uk−1 ≤ uk in Ω. The remaining inequalities
are obtained similarly. Thus we obtain uniform local bounds for uk, vk, and
hence uk, vk ∈ C1,η(Ω̄) (see [DB, G09, L, T]). So it is standard to deduce
that the limits

u = lim
k→∞

uk, v = lim
k→∞

vk

in C1
loc(Ω) give a weak solution to (2.2).

Minimality. Let D ⊂ Ω be open and suppose (ū, v̄) ∈ (C(D̄))2 satisfies
(2.1). Choose a, b large enough so that g(u, v) − au is decreasing in u and
f(u, v) − bv is decreasing in v for all u, v in the range 0 ≤ u, v ≤ M with
M ≥ max{m,maxD̄ ū,maxD̄ v̄}.

Consider uk, vk defined by (2.4). Now we show that ū ≥ uk, v̄ ≥ vk in D
for all k. By induction, if ū ≥ uk−1, v̄ ≥ vk−1 in D then it is easy to get

∆pū− aū− (∆puk − auk) ≤ g(ū, v̄)− aū− g(uk−1, vk−1) + auk−1 ≤ 0 in D

and hence ū ≥ uk in D by Lemma 2.1.

By [D06, Remark 6.7], we can get the following two propositions which
will be used in the proof of Theorem 1.1.

Proposition 2.3. If f : R → R is a continuous, positive and nonde-
creasing function and (1.2) has a solution in some bounded domain Ω ⊂ RN,
then (1.4) holds.

Proposition 2.4. Suppose that f : R → R is a continuous function
and there exist a constant s0 > 0 and a continuous, nondecreasing function
h : [s0,∞)→ R such that

f(u) ≥ h(u) > 0 for u ≥ s0,

∞�

s0

[ t�
s0

h(s) ds
]−1/p

dt <∞.

If there exists some v∗ ∈W 1,p(Ω) ∩ L∞(Ω) such that

∆pv∗ ≥ f(v∗), x ∈ Ω,
then the boundary blow-up problem (1.2) has at least one solution u ∈ C1(Ω)
satisfying u ≥ v∗ in Ω. Moreover, it has a minimal solution u∗ and a maxi-
mal solution u∗ among all such solutions.

Proof of Theorem 1.1. Necessity. Suppose that (u, v) is a nonnegative
solution to (1.1) and for given γ > 0, set w = min{γu, v}. Let χA denote the
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characteristic function of a set A. By Kato’s inequality ([H, Theorem 3.1]),

∆pw ≤ γp−1∆puχ[γu<v] +∆pvχ[γu>v]

= γp−1g(u− αv)χ[γu<v] + f(v − βu)χ[γu>v]

≤ γp−1g((1− αγ)u)χ[γu<v] + f((1− β/γ)v)χ[γu>v]

= γp−1g

(
1− αγ
γ

w

)
χ[γu<v] + f((1− β/γ)w)χ[γu>v]

≤ max

{
γg

(
1− αγ
γ

w

)
, f((1− β/γ)w)

}
=: h1(w).

Hence w is a supersolution to the problem{
∆pu = h1(u), x ∈ Ω,
u =∞, x ∈ ∂Ω.

(2.5)

Now we investigate the Dirichlet boundary problem{
∆pu = h1(u), x ∈ Ω,
u = m, x ∈ ∂Ω.

(2.6)

Since 0 and w are sub- and supersolutions to (2.6) and h1(u) is nondecreasing
in u, the problem (2.6) has a nonnegative solution by [W, Theorem 9.5.2].
Then let m→∞. It is standard to deduce that the problem (2.5) admits a
solution and hence h1 must satisfy the Keller–Osserman condition (1.4) by
Proposition 2.3. Choosing γ = 1/α implies that f satisfies (1.4) and αβ < 1.
Then, choosing γ = β implies that g satisfies (1.4) and αβ < 1 too.

Sufficiency. Consider the minimal solution (um, vm) to the truncated
problem 

∆pu = g(u− αv), x ∈ Ω,
∆pv = f(v − βu), x ∈ Ω,
u = v = m, x ∈ ∂Ω,

(2.7)

where m > 0. Such a solution can be easily constructed by the method of
upper and lower solutions (see Lemma 2.2). Let γ ∈ (β, 1/α) and set

wm = max{γum, vm}.
Then

∆pwm ≥ γp−1∆pumχ[γum>vm] +∆pvmχ[γum<vm]

= γp−1g(um − αvm)χ[γum>vm] + f((1− β/γ)vm)χ[γum<vm]

≥ γp−1g

(
1− αγ
γ

wm

)
χ[γum>vm] + f((1− β/γ)wm)χ[γum<vm]

≥ h2(wm),
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where h2(w) = min
{
γg
(1−αγ

γ w
)
, f((1 − β/γ)w)

}
. Since h2 satisfies (1.3)

and (1.4), by Proposition 2.4, the boundary blow-up problem ∆pw = h2(w)
in Ω, w = ∞ on ∂Ω has a maximal solution w. By comparison, wm ≤ w
in Ω for all m > 0. Hence {um}, {vm} remain bounded on compact sets
of Ω as m→∞, and by standard elliptic estimates they converge—up to a
subsequence—in C1

loc(Ω) to a solution of (1.1).

Remark 2.5. The proof of Theorem 1.1 implies that whenever solutions
exist, one of them is minimal in the class of nonnegative solutions. Moreover
this solution (u, v) satisfies

u ≥ αv and v ≥ βu in Ω.(2.8)

Indeed let us show that the minimal nonnegative solution (um, vm) to
(2.7) satisfies um≥αvm inΩ.To this end, let us recall that um= limk→∞um,k,
vm = limk→∞ vm,k, where um,k, vm,k are defined recursively by (2.4) starting
with the trivial solutions, with g(u, v) = g(u−αv) and f(u, v) = f(v−βu).
We choose a = b large so that (2.3) is satisfied. We claim that um,k ≥ αvm,k.
Proceeding inductively, assume um,k−1 ≥ αvm,k−1. Then

∆pum,k − aum,k = g(um,k−1 − αvm,k−1)− a(um,k−1 − αvm,k−1)− aαvm,k−1

≤ − aαvm,k−1,

while

∆pαvm,k − aαvm,k = αp−1f(vm,k−1 − βum,k−1)− aαvm,k−1 ≥ −aαvm,k−1.

By Lemma 2.1, um,k ≥ αvm,k in Ω. For the other inequality in (2.8) we
may proceed similarly, but this time it is convenient to work with ũm,k, ṽm,k
defined by (2.4) with the boundary conditions ũm,k = m and ṽm,k = βm on
∂Ω. The limit of ũm,k, ṽm,k as k → ∞ and then as m → ∞ is the minimal
nonnegative solution to the system, as can be seen by comparison.

3. Asymptotic behavior. In order to get the asymptotic behavior
near the boundary of the solution to the system (1.1), we need some results
in the scalar case. We know that when f satisfies (1.3) and the Keller–
Osserman condition (1.4), the problem (1.2) admits a minimal solution u∗
and a maximal solution u∗.

Lemma 3.1 ([DG02, Proposition 3.3] and [M, Corollary 4.5]). Assume
f satisfies (1.3) and (1.7). Then for any solution u of (1.2) we have

lim
x→∂Ω

u(x)

ψ(d(x))
= 1,

where ψ = φ−1 and φ is the function appearing in (1.7).

The following two lemmas are very similar to [DD, Lemmas 3.2 and
3.3], and the methods of proof are the same, so we omit the details. In the
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following, the notation m ∼ n means limt→t0 m(t)/n(t) = 1, and t0 may be
infinity.

Lemma 3.2. Suppose f1 ∼ f2 at infinity and that f1 satisfies (1.3) and
(1.7). Let u1 and u2 be any two solutions to (1.2) with nonlinearity being f1

and f2 respectively. Then

lim
x→∂Ω

u1(x)

u2(x)
= 1.

Lemma 3.3. Assume f satisfies (1.3) and (1.7). Given γ > 0, let uγ
denote any solution of

∆puγ = f(γuγ) in Ω, uγ =∞ on ∂Ω.

Then
lim sup
γ→1

lim sup
x→∂Ω

uγ
u1
≤ 1 ≤ lim inf

γ→1
lim inf
x→∂Ω

uγ
u1
.

Proof of Theorem 1.2(a). By Lemma 3.1, it is enough to prove (1.10) for
the minimal nonnegative solution (u, v) to (1.1). Now let w1 be the minimal
nonnegative solution to (1.8) with ϑ = 1. For simplicity we write w = w1.
First we note that

w ≤ v ≤ u/α.(3.1)

Indeed, for the minimal solution (u, v), we always have u ≥ αv by (2.8).
Consequently,

∆pv = f(v − βu) ≤ f((1− αβ)v).

On the other hand, the fact that

∆pw = f((1− αβ)w)

yields w ≤ v since w is the minimal nonnegative solution. Let

zϑ = max{ϑu/α, v},
where αβ < ϑ < 1. By Kato’s inequality we have

∆pzϑ ≥ hϑ(zϑ)

with

hϑ(w) = min

{(
ϑ

α

)p−1

g

(
α− αϑ
ϑ

w

)
, f

(
ϑ− αβ
ϑ

w

)}
.(3.2)

Let wϑ be the minimal solution to (1.8) and w̃ϑ be the maximal solution to

∆pw̃ϑ = hϑ(w̃ϑ) in Ω, w̃ϑ =∞ on ∂Ω.

Then zϑ ≤ w̃ϑ in Ω. Note that under condition (1.9), we have hϑ(w) =

f
(ϑ−αβ

ϑ w
)

for large w. It follows from Lemma 3.2 that

lim
x→∂Ω

wϑ
w̃ϑ

= 1 and lim sup
x→∂Ω

zϑ
wϑ
≤ 1
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for any ϑ ∈ (β, 1). It follows that

lim sup
x→∂Ω

zϑ
w
≤ lim sup

x→∂Ω

zϑ
wϑ

lim sup
x→∂Ω

wϑ
w
≤ lim sup

x→∂Ω

wϑ
w
.

Letting now ϑ→ 1 and using Lemma 3.3 we deduce that

lim sup
ϑ→1

lim sup
x→∂Ω

zϑ
w
≤ 1

This together with (3.1) yields the conclusion. The method of proof of (c)
is the same; we omit the details.

Proof of Theorem 1.2(b). First, it is easy to see that (1.1) has a non-
negative boundary blow-up solution (u, v). Now we use Kato’s inequality
with

zϑ = max{ϑu/α, v},
where αβ < ϑ < ϑ0, to get

∆pzϑ ≥ hϑ(zϑ)

with hϑ given by (3.2). By assumption (1.11), given ε > 0, we have hϑ(t) ≥
(1 − ε)f

(ϑ−αβ
ϑ t

)
for t large. In particular, there exists δ > 0 such that in

V := {x ∈ Ω | dist(x, ∂Ω) < δ},

∆pzϑ ≥ (1− ε)f
(
ϑ− αβ
ϑ

zϑ

)
.

Let wε,ϑ denote the maximal solution of{
∆pwε,ϑ = (1− ε)f

(ϑ−αβ
ϑ wε,ϑ

)
, x ∈ V,

wε,ϑ =∞, x ∈ ∂V.
Then zϑ ≤ wε,ϑ in V . By Lemma 3.3,

lim sup
ε→0, ϑ→ϑ0

lim sup
x→∂Ω

wε,ϑ
w
≤ 1,

where w is the minimal solution of (1.8) with ϑ = ϑ0. Thus,

lim sup
ϑ→ϑ0

lim sup
x→∂Ω

zϑ
w
≤ 1.(3.3)

Let ϑ ∈ (ϑ0, 1) and z̃ϑ = min{ϑu/α, v}. Then, as before, z̃ϑ ≥ w̃ε,ϑ, where
now w̃ε,ϑ is the minimal solution of

∆pw̃ε,ϑ = (1− ε)f
(ϑ−αβ

ϑ w̃ε,ϑ
)
, x ∈ V,

w̃ε,ϑ =∞, x ∈ ∂Ω,
w̃ε,ϑ = τ, x ∈ ∂V \ ∂Ω,

and τ > 0 is a fixed small constant. Using Lemma 3.3 one proves that

lim inf
ε→0, ϑ→ϑ0

lim inf
x→∂Ω

w̃ε,ϑ
w
≥ 1,
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hence

lim inf
ϑ→ϑ0

lim inf
x→∂Ω

z̃ϑ
w
≥ 1.(3.4)

Collecting (3.3) and (3.4) shows that the theorem is proved.

4. Uniqueness. Now we use a different method from [DD, Corollary
1.5] to prove the uniqueness of solution to (1.1) provided that p = 2 and
f, g satisfy the conditions in Theorem 1.2, and (1.12). Our first uniqueness
result is concerned with the problem (1.1) with finite boundary conditions.
To this end, Lemma 8 in [G08] will be used. For the readers’ convenience,
we state it below.

Lemma 4.1. Let f, g ∈ C(Ω) and u, v ∈ C1,η(Ω) be weak solutions to
∆pu = f , ∆pv = g in Ω with u ≤ v and u = v at some point of Ω.
Assume moreover that u < v on ∂Ω. Then there exists x0 ∈ Ω such that
u(x0) = v(x0) and f(x0) ≤ g(x0).

With the same method as in the proof of [DD, Lemma 4.1], we have

Lemma 4.2. Let (u, v) be the minimal boundary blow-up solution of (1.1)
with p = 2. Then

u > αv, v > βu in Ω

and

lim
x→∂Ω

(u(x)− αv(x)) = +∞, lim
x→∂Ω

(v(x)− βu(x)) = +∞.

Lemma 4.3. Assume that the condition (1.12) holds. Let (u1, v1) and
(u2, v2) be positive solutions to the problem

∆u = g(u− αv), x ∈ Ω,
∆v = f(v − βu), x ∈ Ω,
u = ϕ(x), v = ψ(x), x ∈ ∂Ω,

(4.1)

and (u2, v2) be the minimal solution. Then u1 = u2, v1 = v2 in Ω̄.

Proof. Since (u2, v2) is the minimal solution to (4.1) and is positive, we
can select a large k so that

u1 ≤ ku2, v1 ≤ kv2, x ∈ Ω.(4.2)

Choose the least k with this property, and assume k > 1. Then one of the
two inequalities in (4.2) is not strict. Assume it is the second one. We can
apply Lemma 4.1 to obtain a point x0 ∈ Ω with v1(x0) = kv2(x0) and

f(v1(x0)− βu1(x0)) ≤ kf(v2(x0)− βu2(x0)).

On the other hand, by Lemma 4.2, we have u2(x0) > αv2(x0), v2(x0) >
βu2(x0). As f(t)/t is increasing in t > 0, and u1(x0) ≤ ku2(x0), v1(x0) =
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kv2(x0), it follows that

f(v1(x0)− βu1(x0)) ≥ f(kv2(x0)− βku2(x0)) > kf(v2(x0)− βu2(x0)).

This contradiction shows k ≤ 1, that is, u1 ≤ u2, v1 ≤ v2. This concludes
the proof.

Proof of Theorem 1.3. Let (u1, v1) and (u2, v2) be two positive solutions
of the problem (1.1) and (u2, v2) be the minimal solution. By Lemma 4.2,
we have u2 > αv2, v2 > βu2 in Ω. Moreover, by Theorem 1.2,

lim
d(x)→0

u1(x)

u2(x)
= lim

d(x)→0

v1(x)

v2(x)
= 1.

Thus, for every 0 < ε < 1, there exists δ > 0 such that when d(x) ≤ δ,
(1− ε)u2 ≤ u1 ≤ (1 + ε)u2, (1− ε)v2 ≤ v1 ≤ (1 + ε)v2.(4.3)

Now we set Ωδ = {x ∈ Ω : d(x) > δ}, and consider the problem
∆w = g(w − αz), x ∈ Ωδ,
∆z = f(z − βw), x ∈ Ωδ,
w = u1, z = v1, x ∈ ∂Ωδ.

(4.4)

Since f(t)/t, g(t)/t are increasing functions, it is not difficult to see that the
pairs ((1+ε)u2, (1+ε)v2), ((1−ε)u2, (1−ε)v2) are upper and lower solutions
to (4.4). So, the problem (4.4) has at least one solution (u, v) and satisfies

(1− ε)u2 ≤ u ≤ (1 + ε)u2, (1− ε)v2 ≤ v ≤ (1 + ε)v2 in Ωδ.

On the other hand, thanks to Lemma 4.3, the problem (4.4) has a unique
positive solution, which is precisely (u1, v1). Thus, (4.3) is valid in Ωδ. There-
fore, (4.3) holds for all x ∈ Ω. Letting ε go to zero in (4.3) we arrive at
u1 = u2, v1 = v2, which proves uniqueness.
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[AL] P. Álvarez-Caudevilla and J. López-Gómez, Metasolutions in cooperative sys-
tems, Nonlinear Anal. Real World Appl. 9 (2008), 1119–1157.

[BM] C. Bandle and M. Marcus, ‘Large’ solutions of semilinear elliptic equations:
Existence, uniqueness and asymptotic behaviour, J. Anal. Math. 58 (1992), 9–24.

[CZ] Y. J. Chen and Y. P. Zhu, Large solutions for a cooperative elliptic system of
p-Laplacian equations, Nonlinear Anal. 73 (2010), 450–457.
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[GR] J. Garćıa-Melián and J. D. Rossi, Boundary blow-up solutions to elliptic systems
of competitive type, J. Differential Equations 206 (2004), 156–181.
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