A pair of linear functional inequalities and a characterization of L^p-norm

by Dorota Krassowska and Janusz Matkowski (Zielona Góra)

Abstract. It is shown that, under some general algebraic conditions on fixed real numbers a, b, α, β, every solution $f : \mathbb{R} \to \mathbb{R}$ of the system of functional inequalities $f(x + a) \leq f(x) + \alpha$, $f(x + b) \leq f(x) + \beta$ that is continuous at some point must be a linear function (up to an additive constant). Analogous results for three other similar simultaneous systems are presented. An application to a characterization of L^p-norm is given.

1. Introduction. Every subadditive function $f : \mathbb{R} \to \mathbb{R}$, that is, such that

$$f(x + y) \leq f(x) + f(y), \quad x, y \in \mathbb{R},$$

where \mathbb{R} stands for the set of reals, satisfies the simultaneous system of functional inequalities of additive type:

$$f(a + x) \leq \alpha + f(x), \quad f(b + x) \leq \beta + f(x), \quad x \in \mathbb{R},$$

where $a, b \in \mathbb{R}$ are arbitrarily fixed and $\alpha = f(a)$, $\beta = f(b)$. In Section 2 we present some algebraic conditions on a, b, α, β under which the only function satisfying this pair of functional inequalities and continuous at some point is $f(x) = \frac{\alpha}{a} x + f(0)$.

In Sections 3, 4 and 5, respectively, we also present analogous conditions for pairs of functional inequalities

$$f(a + x) \leq \alpha f(x), \quad f(b + x) \leq \beta f(x);$$

$$f(ax) \leq \alpha + f(x), \quad f(bx) \leq \beta + f(x);$$

$$f(ax) \leq \alpha f(x), \quad f(bx) \leq \beta f(x).$$

The theorems of Sections 2–5 generalize the results of [4], where the corresponding pairs of functional equations were considered (Remark 1). They allow us, in particular, to derive some classical theorems on the Cauchy type functional equation (cf. J. Aczél [1] and M. Kuczma [3]).

2000 Mathematics Subject Classification: Primary 39B72, 26D15; Secondary 46E30.

Key words and phrases: functional inequality, functional equation, theorem of Kronecker, L^p-norm-like functional, subhomogeneity, characterization of L^p-norm.

[1]
For a measure space \((\Omega, \Sigma, \mu)\) denote by \(S = S(\Omega, \Sigma, \mu)\) the linear space of all \(\mu\)-integrable simple functions \(x : \Omega \rightarrow \mathbb{R}\). Let \(\phi : (0, \infty) \rightarrow (0, \infty)\) be an arbitrary bijection. As an application, in Section 6, we give a new characterization of the \(L^p\)-norm with the aid of a rather weak subhomogeneity condition on the \(L^p\)-norm-like functional \(p_\phi\),

\[
p_\phi(x) := \begin{cases}
\phi^{-1}\left(\int_{\Omega_x} \phi \circ |x| \, d\mu\right), & \mu(\Omega_x) > 0, \\
0, & \mu(\Omega_x) = 0,
\end{cases}
\]

where \(\Omega_x := \{\omega \in \Omega : x(\omega) \neq 0\}\). Let us mention that in A. C. Zaanen [8], W. Wnuk [7], and J. Matkowski [5], the functional \(p_\phi\) is assumed to be positively homogeneous.

By \(\mathbb{N}, \mathbb{Z},\) and \(\mathbb{Q}\) we denote, respectively, the sets of natural, integer, and rational numbers.

2. Inequalities of additive type

Theorem 1. Let \(a, b, \alpha, \beta \in \mathbb{R}\) be fixed numbers. Suppose that

\[a < 0 < b, \quad \frac{b}{a} \notin \mathbb{Q}, \quad \frac{\alpha}{a} \geq \frac{\beta}{b},\]

and a function \(f : \mathbb{R} \rightarrow \mathbb{R}\) is continuous at least at one point.

If \(f\) satisfies the pair of functional inequalities

\[f(a + x) \leq \alpha + f(x), \quad f(b + x) \leq \beta + f(x), \quad x \in \mathbb{R},\]

then

\[f(x) = \frac{\alpha}{a} x + f(0), \quad x \in \mathbb{R}.\]

Proof. From (1), by induction, we obtain

\[f(ma + x) \leq m\alpha + f(x), \quad f(nb + x) \leq n\beta + f(x), \quad m, n \in \mathbb{N}, \quad x \in \mathbb{R}.
\]

Replacing \(x\) by \(nb + x\) in the first of these inequalities we hence get

\[f(ma + nb + x) \leq m\alpha + n\beta + f(x), \quad m, n \in \mathbb{N}, \quad x \in \mathbb{R}.
\]

Since \(b/a \notin \mathbb{Q}\), and \(ab < 0\), the Kronecker theorem (cf. [6]) implies that the set

\[A = \{ma + nb : m, n \in \mathbb{N}\}
\]

is dense in \(\mathbb{R}\). Thus there exist two sequences \((m_k), (n_k)\) of positive integers such that

\[
\lim_{k \to \infty} (m_k a + n_k b) = 0.
\]

Note that

\[\lim_{k \to \infty} m_k = \lim_{k \to \infty} n_k = \infty\]
(otherwise b/a would be rational). Obviously,
\[
\lim_{k \to \infty} \frac{m_k a + n_k b}{m_k} = 0,
\]
and, consequently,
\[
(4) \quad \lim_{k \to \infty} \frac{n_k}{m_k} = -\frac{a}{b}.
\]
Let $x_0 \in \mathbb{R}$ be a point of continuity of f. From (2) we get
\[
f(m_k a + n_k b + x_0) \leq m_k \alpha + n_k \beta + f(x_0), \quad k \in \mathbb{N},
\]
or, equivalently,
\[
\frac{f(m_k a + n_k b + x_0)}{m_k} \leq \alpha + \frac{n_k}{m_k} \beta + \frac{f(x_0)}{m_k}, \quad k \in \mathbb{N}.
\]
Letting $k \to \infty$, and making use of (3), (4), and the continuity of f at x_0, we hence get $0 \leq \alpha - \frac{a}{b} \beta$, i.e.
\[
\frac{\beta}{b} \geq \frac{\alpha}{a}.
\]
As, by the assumption, the reverse inequality holds true, we have shown that
\[
\frac{\alpha}{a} = \frac{\beta}{b}.
\]
Now, setting
\[
p := \frac{\alpha}{a} = \frac{\beta}{b},
\]
we can write inequality (2) in the form
\[
(5) \quad f(t + x) \leq pt + f(x), \quad t \in A, \ x \in \mathbb{R}.
\]
Take an arbitrary $x \in \mathbb{R}$. By the density of A there is a sequence (t_n) such that
\[
t_n \in A \ (n \in \mathbb{N}), \quad \lim_{n \to \infty} t_n = x_0 - x.
\]
From (5) we have
\[
f(t_n + x) \leq pt_n + f(x), \quad n \in \mathbb{N}.
\]
Letting $n \to \infty$, and making use of the continuity of f at x_0, we obtain
\[
f(x_0) \leq p(x_0 - x) + f(x), \quad x \in \mathbb{R}.
\]
To prove the opposite inequality note that replacing x by $x - t$ in (5) we get
\[
f(x) \leq pt + f(x - t), \quad t \in A, \ x \in \mathbb{R}.
\]
Taking an $x \in \mathbb{R}$, and, by the density of A, a sequence (t_n) such that
\[
t_n \in A \ (n \in \mathbb{N}), \quad \lim_{n \to \infty} t_n = x - x_0,
\]
we hence get
\[f(x) \leq pt_n + f(x - t_n), \quad n \in \mathbb{N}. \]
Letting \(n \to \infty \), and again making use of the continuity of \(f \) at \(x_0 \), we obtain
\[f(x) \leq p(x - x_0) + f(x_0), \quad x \in \mathbb{R}. \]
Thus
\[f(x) = px + (f(x_0) - px_0), \quad x \in \mathbb{R}, \]
which was to be shown.

Remark 1. Let \(a, b, \alpha, \beta \in \mathbb{R}, ab \neq 0 \), be such that \(\beta/b = \alpha/a \).

If \(b/a \notin \mathbb{Q} \) and a function \(f : \mathbb{R} \to \mathbb{R} \) is continuous at least at one point and satisfies the simultaneous system of functional equations
\[
\begin{align*}
f(a + x) &= \alpha + f(x), \quad x \in \mathbb{R}, \\
f(b + x) &= \beta + f(x), \quad x \in \mathbb{R},
\end{align*}
\]
then \(f(x) = px + q \) for some \(p, q \in \mathbb{R}, x \in \mathbb{R} \) (cf. [4]).

If \(b/a \in \mathbb{Q} \) then this system of functional equations reduces to the single functional equation
\[
f(d + x) = \frac{\alpha}{a} + f(x), \quad x \in \mathbb{R},
\]
where \(d := \min\{ma + nb > 0 : m, n \in \mathbb{N}\} \).

Since the continuous and monotonic solution of this equation depends on an arbitrary function (cf. M. Kuczma [2]), the assumption that \(b/a \notin \mathbb{Q} \) in Theorem 1 is essential.

Remark 2. The assumption \(\alpha/a \geq \beta/b \) is essential for the uniqueness of the solution of system (1) in Theorem 1. Indeed, if \(\alpha/a < \beta/b \) the set of solutions of (1) is large; for instance the function \(f := \sin \) satisfies (1) for all \(a, b \in \mathbb{R} \) and \(\alpha, \beta \geq 2 \). Moreover every affine function of the form \(f(x) = Ax + B \) where \(B \in \mathbb{R} \) is arbitrary and \(\alpha/a \leq A \leq \beta/b \) is a solution of (1).

3. Inequalities of additive-multiplicative type

Lemma 1. Let \(a, b, \alpha, \beta \) be fixed real numbers such that
\[
a < 0 < b, \quad \frac{b}{a} \notin \mathbb{Q}, \quad \alpha, \beta > 0.
\]
Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is continuous at least at one point and satisfies the system of functional inequalities
\[
\begin{align*}
f(a + x) &\leq \alpha f(x), \quad f(b + x) \leq \beta f(x), \quad x \in \mathbb{R},
\end{align*}
\]
or
\[
\begin{align*}
f(a + x) &\geq \alpha f(x), \quad f(b + x) \geq \beta f(x), \quad x \in \mathbb{R}.
\end{align*}
\]
Then \(f \) is either positive in \(\mathbb{R} \), negative in \(\mathbb{R} \), or identically zero.
Proof. Assume that $f : \mathbb{R} \to \mathbb{R}$ satisfies (6), x_0 is a point of continuity of f and $f(x_0) > 0$. From (6), by induction, we get
\[(8) f(ma + nb + x) \leq \alpha^m \beta^n f(x), \quad m, n \in \mathbb{N}, \ x \in \mathbb{R}.
\]
Take an arbitrary $x \in \mathbb{R}$. By the density of the set $A = \{ma + nb : m, n \in \mathbb{N}\}$ in \mathbb{R} there exists a sequence $(m_k a + n_k b : k, m_k, n_k \in \mathbb{N})$ such that
\[
\lim_{k \to \infty} (m_k a + n_k b) = x_0 - x.
\]
From (8) we have
\[f(m_k a + n_k b + x) \leq \alpha^{m_k} \beta^{n_k} f(x), \quad m_k, n_k \in \mathbb{N}, \ x \in \mathbb{R}.
\]
For k large enough, by the continuity of f at x_0, the left-hand side of this inequality is positive. It follows that f is positive.

Suppose now that $f(x_0) < 0$. Replacing x by $x - (ma + nb)$ in (8) we get
\[(9) f(x) \leq \alpha^m b^n f(x - (ma + nb)), \quad m, n \in \mathbb{N}, \ x \in \mathbb{R}.
\]
Now, similarly to the previous case, fix $x \in \mathbb{R}$ and take a sequence $(m_k a + n_k b : k, m_k, n_k \in \mathbb{N})$ such that
\[
\lim_{k \to \infty} (m_k a + n_k b) = x - x_0.
\]
Again by the continuity of f at x_0, for k large enough, the right-hand side of inequality (9) is negative and hence so is $f(x)$.

If $f(x_0) = 0$ an argument analogous to the first step shows that $f(x) \geq 0$ for all $x \in \mathbb{R}$, and a slight modification of the argument of the second step gives the inequality $f(x) \leq 0$ for all $x \in \mathbb{R}$, and, consequently, $f = 0$ in \mathbb{R}.

To complete the proof it is enough to repeat the same reasoning for system (7).

Theorem 2. Let $a, b \in \mathbb{R}$ and $\alpha, \beta > 0$ be fixed numbers such that
\[a < 0 < b, \quad \frac{b}{a} \notin \mathbb{Q}, \quad \frac{\log \alpha}{a} \geq \frac{\log \beta}{b}.
\]
Suppose that a function $f : \mathbb{R} \to \mathbb{R}$ is continuous at least at one point and such that $f(\mathbb{R}) \not\subset (-\infty, 0)$. If f satisfies the pair of functional inequalities (6), i.e.
\[f(a + x) \leq \alpha f(x), \quad f(b + x) \leq \beta f(x), \quad x \in \mathbb{R},
\]
then either f is identically zero in \mathbb{R}, or
\[f(x) = f(0) e^{\log \frac{\alpha}{a} x}, \quad x \in \mathbb{R}.
\]

Proof. Assume that f satisfies (6). By the assumptions and Lemma 1 the function f is either identically zero in \mathbb{R} or positive in \mathbb{R}. In the first case there is nothing to prove. In the second case f is positive and the function $g := \log f$ satisfies the inequalities
\[g(a + x) \leq \log \alpha + g f(x), \quad g(b + x) \leq \log \beta + g f(x), \quad x \in \mathbb{R},
\]
and our theorem results from Theorem 1.
Obviously, for inequalities (7) an analogous result holds true.

Remark 3. The assumption \(f(\mathbb{R}) \notin (\infty, 0) \) in Theorem 2 is essential. To see this, take arbitrary \(a, b \in \mathbb{R} \) such that \(a < 0 < b, \) \(b/a \notin \mathbb{Q}, \) \(\alpha, \beta \in (0, 1/2), \) and an arbitrary function \(f : \mathbb{R} \to [-2, -1]. \) Then for all \(x \in \mathbb{R}, \)
\[
f(a + x) \leq -1 = \frac{1}{2} \cdot (-2) \leq \frac{1}{2} f(x) \leq \alpha f(x)
\]
and similarly, for all \(x \in \mathbb{R}, \)
\[
f(b + x) \leq \beta f(x),
\]
which proves that \(f \) satisfies (6). Since \(\log \alpha < 0 \) and \(\log \beta < 0 \) and \(a < 0 < b, \) we have
\[
\frac{\log \alpha}{a} < 0 < \frac{\log \beta}{b}.
\]
Thus all assumptions of Theorem 2 except the condition \(f(\mathbb{R}) \notin (\infty, 0) \) are satisfied.

4. Inequalities of multiplicative-additive type. As an easy consequence of Theorem 1 we have

Theorem 3. Let \(a, b, \alpha, \beta \) be fixed real numbers such that
\[
0 < a < 1 < b, \quad \frac{\log b}{\log a} \notin \mathbb{Q}, \quad \frac{\alpha}{\log a} \geq \frac{\beta}{\log b}.
\]
Suppose that a function \(f : I \to \mathbb{R} \) is continuous at least at one point and satisfies the pair of functional inequalities
\[
(10) \quad f(ax) \leq \alpha + f(x), \quad f(bx) \leq \beta + f(x), \quad x \in I,
\]
where either \(I = (0, \infty) \) or \(I = (-\infty, 0). \)

(i) If \(I = (0, \infty), \) then
\[
f(x) = \frac{\alpha}{\log a} \log x + f(1), \quad x > 0.
\]

(ii) If \(I = (-\infty, 0), \) then
\[
f(x) = \frac{\alpha}{\log a} \log(-x) + f(-1), \quad x < 0.
\]

Corollary 1. Let \(a, b, \alpha, \beta \) satisfy the assumptions of Theorem 3. If a function \(f : (-\infty, 0) \cup (0, \infty) \to \mathbb{R} \) satisfies the pair of inequalities (10), and in each of the intervals \((-\infty, 0) \) and \((0, \infty) \) there is at least one point of continuity of \(f, \) then
\[
f(x) = \begin{cases}
\frac{\alpha}{\log a} \log x + f(1) & \text{for } x \in (0, \infty), \\
\frac{\alpha}{\log a} \log(-x) + f(-1) & \text{for } x \in (-\infty, 0).
\end{cases}
\]
Remark 4. Suppose that a, b, α, β are fixed real numbers such that $0 < a < 1 < b$ and $\alpha / \log a = \beta / \log b$. Note that if $0 \in I$ then there is no function satisfying (10). Indeed, putting $x = 0$ into (10) we get $0 \leq \alpha$, $0 \leq \beta$, which contradicts the assumptions.

5. Inequalities of multiplicative type. The following counterpart of Lemma 1 is easy to verify.

Lemma 2. Let a, b, α, β be fixed positive real numbers such that

$$a < 1 < b, \quad \frac{\log b}{\log a} \notin \mathbb{Q},$$

and $I = (0, \infty)$ or $I = (-\infty, 0)$. Suppose that $f : I \to \mathbb{R}$ is continuous at least at one point and satisfies the system of functional inequalities

(11) \quad $f(ax) \leq \alpha f(x), \quad f(bx) \leq \beta f(x), \quad x \in I,$

or

(12) \quad $f(ax) \geq \alpha f(x), \quad f(bx) \geq \beta f(x), \quad x \in I.$

Then f is either positive in I, negative in I, or identically zero.

Applying Lemma 2 and Theorem 1 we obtain

Theorem 4. Let a, b, α, β be fixed positive real numbers such that

$$a < 1 < b, \quad \frac{\log b}{\log a} \notin \mathbb{Q}, \quad \frac{\log \alpha}{\log a} \geq \frac{\log \beta}{\log b},$$

and $I = (0, \infty)$ or $I = (-\infty, 0)$. Suppose that $f : I \to \mathbb{R}$ is continuous at least at one point, satisfies the pair of functional inequalities

(13) \quad $f(ax) \leq \alpha f(x), \quad f(bx) \leq \beta f(x), \quad x \in I,$

and $f(I) \notin (-\infty, 0)$. Then either f is identically zero in I or

(i) in the case $I = (0, \infty)$,

$$f(x) = f(1)x^{\frac{\log \alpha}{\log a}}, \quad x > 0,$$

(ii) in the case $I = (-\infty, 0)$,

$$f(x) = f(-1)(-x)^{\frac{\log \alpha}{\log a}}, \quad x < 0.$$

We omit the formulation of the corresponding result for inequalities (12).

Remark 5. Suppose that a, b, α, β are fixed positive real numbers such that $a < 1 < b$ and $\frac{\log \alpha}{\log a} = \frac{\log \beta}{\log b}$. Note that if $I = \mathbb{R}$ or $I = [0, \infty)$ or $I = (-\infty, 0]$ and $f : I \to \mathbb{R}$ satisfies (13), then $f(0) = 0$. Indeed, by assumptions either $\alpha < 1 < \beta$ or $\beta < 1 < \alpha$ and, moreover, $f(0)(1 - \alpha) \leq 0$ and $f(0)(1 - \beta) \leq 0$. Thus $f(0) = 0$.
Hence we get

Remark 6. (i) Suppose that \(f : [0, \infty) \to \mathbb{R} \) satisfies (13). If \(f|_{(0, \infty)} \) and \(a, b, \alpha, \beta \) satisfy the assumptions of Theorem 4, then

\[
f(x) = \begin{cases}
 f(1)x^{\frac{\log \alpha}{\log a}} & \text{for } x \in (0, \infty), \\
 0 & \text{for } x = 0.
\end{cases}
\]

(ii) Suppose that \(f : (-\infty, 0] \to \mathbb{R} \) satisfies (13). If \(f|_{(-\infty, 0)} \) and \(a, b, \alpha, \beta \) satisfy the assumptions of Theorem 4, then

\[
f(x) = \begin{cases}
 f(-1)(-x)^{\frac{\log \alpha}{\log a}} & \text{for } x \in (-\infty, 0), \\
 0 & \text{for } x = 0.
\end{cases}
\]

Finally, let us record the following

Remark 7. For obvious reasons the counterparts of Theorems 1–4 for the reverse inequalities remain true.

6. A characterization of \(L^p \)-norm. Recall that A. C. Zaanen [8], for the counting measure space, W. Wnuk [7], assuming the continuity of the function \(\phi \), and J. Matkowski [5], assuming much weaker regularity conditions, characterized the \(L^p \)-norm with the aid of the homogeneity of the functional \(p_\phi \) (cf. the definition in the Introduction).

As an application of Theorem 4 we present a far-reaching generalization of these results. It turns out that the homogeneity condition can be replaced by an inequality assumed to be satisfied only for two characteristic functions \(\chi_A, \chi_B \) of suitably chosen measurable sets \(A \) and \(B \).

Theorem 5. Let \((\Omega, \Sigma, \mu)\) be a measure space with two sets \(A, B \in \Sigma \) such that

\[
0 < \mu(A) < 1 < \mu(B) < \infty, \quad \frac{\log \mu(B)}{\log \mu(A)} \notin \mathbb{Q}.
\]

Suppose that \(\phi : (0, \infty) \to (0, \infty) \) is a bijection such that \(\phi^{-1} \) is continuous at least at one point and

\[
\frac{\log \phi^{-1}(\mu(A)\phi(1))}{\log \mu(A)} \geq \frac{\log \phi^{-1}(\mu(B)\phi(1))}{\log \mu(B)}.
\] \((14)\)

If \(p_\phi \) satisfies the condition

\[
p_\phi(tx) \leq tp_\phi(x), \quad t > 0, \quad x \in \{\chi_A, \chi_B\},
\] \((15)\)

then

\[
\phi(t) = \phi(1)t^p, \quad t > 0,
\]

where

\[
p := \frac{\log \phi^{-1}(\mu(A)\phi(1))}{\log \mu(A)}.
\]

Moreover, if \(p \geq 1 \) then \(p_\phi \) coincides with the \(L^p \)-norm.
Proof. Let $a = \mu(A)$ and $b = \mu(B)$. From (15) we obtain
\[
\phi^{-1}(a\phi(t)) \leq t\phi^{-1}(a\phi(1)), \quad \phi^{-1}(b\phi(t)) \leq t\phi^{-1}(b\phi(1)), \quad t > 0,
\]
which with $\alpha := \phi^{-1}(a\phi(1))$ and $\beta := \phi^{-1}(b\phi(1))$ reduces to the pair of functional inequalities
\[
\phi^{-1}(a\phi(t)) \leq \alpha t, \quad \phi^{-1}(b\phi(t)) \leq \beta t, \quad t > 0.
\]
From the bijectivity of ϕ, replacing here t by $\phi^{-1}(t)$, we get the equivalent system of inequalities
\[
\phi^{-1}(at) \leq \alpha\phi^{-1}(t), \quad \phi^{-1}(bt) \leq \beta\phi^{-1}(t), \quad t > 0,
\]
which, with $f := \phi^{-1}$ and $I = (0, \infty)$, takes the form (13). Now our result follows from Theorem 4.

Remark 8. Note that (15) is a very weak substitute of the homogeneity of the functional p_ϕ.

Discussing the assumptions in Theorem 5, note that the condition: $\frac{\log b}{\log a} \notin \mathbb{Q}$ or $\frac{\log(a+b)}{\log a} \notin \mathbb{Q}$ is not too demanding.

To show that the assumption of the existence of sets A and B with $0 < \mu(A) < 1 < \mu(B) < \infty$ is essential, we indicate some wide classes of non-power functions ϕ for which the functional p_ϕ satisfies the condition (15), in each of the cases
\[
\mu(A) \leq 1 \text{ or } \mu(A) = \infty \quad \text{for every } A \in \Sigma;
\]
\[
\mu(A) \geq 1 \text{ or } \mu(A) = 0 \quad \text{for every } A \in \Sigma.
\]

Example 1. Let (Ω, Σ, μ) be a measure space such that $\mu(\Omega) \leq 1$. Put $\delta := \inf\{\mu(A) : A \in \Sigma \land \mu(A) > 0\}$. Let $\phi : (0, \infty) \to (0, \infty)$ be an increasing bijection such that the function $(0, \infty) \ni t \mapsto \phi(t)/t$ is non-increasing and $\phi(\delta) = \delta, \phi(1) = 1$. Then $\phi(t) = t$ for all $t \in [\delta, 1]$, the function $(0, \infty) \ni t \mapsto \phi^{-1}(t)/t$ is non-decreasing and, therefore, for each $A \in \Sigma$ with $a := \mu(A) > 0$, we have
\[
p_\phi(t\chi_A) = \phi^{-1}(a\phi(t)) = \frac{\phi^{-1}(a\phi(t))}{a\phi(t)} a\phi(t)
\]
\[
\leq \frac{\phi^{-1}(\phi(t))}{\phi(t)} a\phi(t) = ta = t\phi^{-1}(a\phi(1))
\]
\[
= tp_\phi(\chi_A), \quad t > 0.
\]
Thus p_ϕ satisfies (15) and ϕ is not a power function.

Example 2. Let (Ω, Σ, μ) be a measure space for which $\mu(A) \geq 1$ for every set $A \in \Sigma$ such that $\mu(A) > 0$, and there exists $B \in \Sigma$ such that $1 < \mu(B) < \infty$. Then $\delta := \inf\{\mu(A) : A \in \Sigma \land \mu(A) > 0\} \geq 1$. Let $\phi : (0, \infty) \to (0, \infty)$ be a bijection such that the function $(0, \infty) \ni t \mapsto \phi(t)/t$
is non-decreasing and $\phi(1) = 1$, $\phi(\delta) = \delta$. Then ϕ is strictly increasing, $\phi(t) = t$ for all $t \in [1, \delta]$, the function $(0, \infty) \ni t \mapsto \phi^{-1}(t)/t$ is non-
increasing, and therefore, in the same way as in the previous example, for all $B \in \Sigma$ such that $0 < \mu(B) < \infty$, we have

$$p_\phi(t\chi_B) \leq tp_\phi(\chi_B), \quad t > 0.$$

We end our discussion with an example showing that the assumption

(14) is indispensable.

Example 3. Let (Ω, Σ, μ) be an arbitrary measure space, and $f : \mathbb{R} \to \mathbb{R}$ a bijection such that $f(0) = 0$ and f^{-1} is subadditive (for instance, for f one can take the inverse function to $x \mapsto x + |\sin x|$). Define $\phi : (0, \infty) \to (0, \infty)$ by $\phi(t) = e^{f(\log t)}$. Then, making use of the definition of p_ϕ, the subadditivity

of f^{-1}, and the monotonicity of the exponential function, for all $A \in \Sigma$ with $a := \mu(A) > 0$, we have

$$p_\phi(t\chi_A) = e^{f^{-1}(a\phi(t))} = e^{f^{-1}(\log a + f(\log t))}$$

$$\leq e^{f^{-1}(\log a)}e^{f^{-1}(f(\log t))}$$

$$= t\phi^{-1}(a) = tp_\phi(\chi_A), \quad t > 0.$$

Thus p_ϕ satisfies the subhomogeneity condition (15) for all functions χ_A (here $\mu(A)$ can be smaller or greater than 1). This shows that in Theorem 5

condition (14) cannot be omitted.

Acknowledgements. The authors would like to thank the reviewer for his valuable suggestions.

References

Dorota Krassowska
Faculty of Mathematics, Informatics and Econometry
University of Zielona Góra
PL-65-246 Zielona Góra, Poland
E-mail: D.Krassowska@wmie.uz.zgora.pl

Janusz Matkowski
Faculty of Mathematics, Informatics and Econometry
University of Zielona Góra
PL-65-246 Zielona Góra, Poland
E-mail: J.Matkowski@im.uz.zgora.pl

and
Institute of Mathematics
Silesian University
PL-40-007 Katowice, Poland

Reçu par la Rédaction le 24.7.2003
Révisé le 24.1.2005 (1457)