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Decay estimates of solutions of a nonlinearly
damped semilinear wave equation

by Aissa Guesmia (Metz) and Salim A. Messaoudi (Dhahran)

Abstract. We consider an initial boundary value problem for the equation utt−∆u−
∇φ ·∇u+f(u)+g(ut) = 0. We first prove local and global existence results under suitable
conditions on f and g. Then we show that weak solutions decay either algebraically or
exponentially depending on the rate of growth of g. This result improves and includes
earlier decay results established by the authors.

1. Introduction. In [11] Nakao considered the following initial bound-
ary value problem:

utt −∆u+ %(ut) + f(u) = 0 = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
(1.1)

where %(v) = |v|βv, β > −1, f(u) = bu|u|α, α, b > 0, and Ω is a bounded
domain in Rn (n ≥ 1), with a smooth boundary ∂Ω. He showed that (1.1)
has a unique global weak solution if 0 ≤ α ≤ 2/(n− 2), n ≥ 3, and a unique
global strong solution if α > 2/(n − 2), n ≥ 3 (of course for n = 1 or 2
there is no restriction on α). In addition to global existence the issue of the
decay rate was addressed. In both cases, it has been shown that the energy
of the solution decays algebraically if β > 0 and exponentially if β = 0.
This improves an earlier result by the same author [12], where he studied
the problem in an abstract setting and established a theorem concerning the
decay of the solution energy only for the case α ≤ 2/(n − 2), n ≥ 3. Later
on, in a joint work with Ono [13], this result was extended to the Cauchy
problem for the equation

utt −∆u+ λ2(x)u+ %(ut) + f(u) = 0, x ∈ Rn, t > 0,
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where %(ut) behaves like |ut|βut and f(u) behaves like −bu|u|α. In this case
the authors required that the initial data be small enough in the H1(Ω) ×
L2(Ω) norm and of compact support.

Pucci and Serrin [14] discussed the stability of the following problem:

utt −∆u+Q(x, t, u, ut) + f(x, u) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
(1.2)

and proved that the energy of the solution is a Lyapunov function. Al-
though they did not discuss the decay rate, they did show that in gen-
eral the energy goes to zero as t approaches infinity. They also consid-
ered an important special case of (1.2) when Q(x, t, u, ut) = a(t)tαut and
f(x, u) = V (x)u, and showed that the behavior of the solutions depends
crucially on the parameter α. If |α| ≤ 1 then the rest field is asymptot-
ically stable. On the other hand, when α < −1 or α > 1 there are so-
lutions that do not approach zero or approach nonzero functions φ(x) as
t→∞.

Messaoudi [10] discussed an initial boundary value problem for the equa-
tion

utt −∆u+ a(1 + |ut|m−2)ut + bu|u|p−2 = 0, x ∈ Ω, t > 0,(1.3)

where a, b > 0, m ≥ 2, p > 2, and proved that the energy of the solution
decays exponentially. The proof of this result is based on a direct method
used in [5] and [6].

In this paper we are concerned with the problem

utt −∆u−∇φ · ∇u+ f(u) + g(ut) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
(1.4)

where φ is a function in W 1,∞(Ω), Ω is a bounded open domain in Rn with
a smooth boundary ∂Ω and f, g : R → R are two continuous functions
satisfying f(0) = g(0) = 0 and

(H1) ‖f(u) − f(v)‖2 ≤ a(u, v)‖∇(u − v)‖2, where a(u, v) is a function
depending on the norms of u, v in H1

0 (Ω),
(H2) g is an increasing function such that

c1{|s1−s2|r+ |s1−s2|p} ≤ |g(s1)−g(s2)| ≤ c2{|s1−s2|+ |s1−s2|p}(1.5)

for some constants c1, c2 > 0, 1 ≤ r ≤ p with

(n− 2)p ≤ n+ 2.(1.6)
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2. Local existence. In this section, we establish local and global exis-
tence results for (1.4). First we consider, for v given, the linear problem

utt −∆u−∇φ · ∇u+ f(v) + g(ut) = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
(2.1)

where u is the sought solution.

Lemma 2.1. Assume that (H1) and (H2) hold. Then given any v in
C([0, T ];C∞0 (Ω)) and u0, u1 in C∞0 (Ω), the problem (2.1) has a unique
solution u satisfying

u ∈ L∞((0, T );H2(Ω) ∩H1
0 (Ω)),

ut ∈ L∞((0, T );H1
0 (Ω)),

utt ∈ L∞((0, T );L2(Ω)).

(2.2)

This lemma is a direct consequence of [7, Chapter 1, Theorem 3.1] (see
also [1]).

Lemma 2.2. Assume that (H1) and (H2) hold. Then given any v in
C([0, T ];H1

0 (Ω)), u0 in H1
0 (Ω), and u1 in L2(Ω), the problem (2.1) has

a unique weak solution

u ∈ C([0, T ];H1
0 (Ω)),

ut ∈ C([0, T ];L2(Ω)) ∩ Lp+1(Ω × (0, T )).
(2.3)

Moreover,

(2.4)
1
2

�

Ω

eφ(x)[u2
t + |∇u|2](x, t) dx+

t�

0

�

Ω

eφ(x)g(ut)ut(x, s) dx ds

=
1
2

�

Ω

eφ(x)[u2
1 + |∇u0|2](x) dx−

t�

0

�

Ω

eφ(x)f(v)ut(x, s) dx ds, ∀t ∈ [0, T ].

Proof. We approximate u0, u1 by sequences (uµ0 ), (uµ1 ) in C∞0 (Ω), and v
by a sequence (vµ) in C([0, T ];C∞0 (Ω)). We then consider the set of linear
problems

uµtt −∆uµ −∇φ · ∇uµ + g(uµt ) + f(vµ) = 0, x ∈ Ω, t > 0,

uµ(x, t) = 0, x ∈ ∂Ω, t > 0,

uµ(x, 0) = uµ0 (x), uµt (x, 0) = uµ1 (x), x ∈ Ω.
(2.5)

Lemma 2.1 guarantees the existence of a sequence of unique solutions (uµ)
satisfying (2.3). Now we proceed to show that (uµ, uµt ) is a Cauchy se-
quence in

Y := {w : w ∈ C([0, T ];H1
0(Ω)), wt ∈ C([0, T ];L2(Ω)) ∩ Lp(Ω × (0, T ))}.
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For this purpose we set

U := uµ − uν , V := vµ − vν .
It is straightforward to see that U satisfies

Utt −∆U −∇φ · ∇U + g(uµt )− g(uνt ) + f(vµ)− f(vν) = 0,

U(x, t) = 0, x ∈ ∂Ω, t > 0,

U(x, 0) = U0(x) = uµ0 (x)− uν0(x),

Ut(x, 0) = U1(x) = uµ1 (x)− uν1(x).

(2.6)

We multiply the first equation of (2.6) by eφ(x)Ut and integrate over Ω×(0, t)
to get

(2.7)
1
2

�

Ω

eφ(x)[U2
t + |∇U |2](x, t) dx+

t�

0

�

Ω

eφ(x)(g(uµt )− g(uνt ))Ut(x, s) dx ds

=
1
2

�

Ω

eφ(x)[U2
1 + |∇U0|2](x) dx+

t�

0

�

Ω

eφ(x)[f(vµ)− f(vν)]Ut(x, s) dx ds.

By using (H1) and the fact that g is increasing, (2.7) yields
1
2

�

Ω

[U2
t + |∇U |2](x, t) dx

≤
�

Ω

[U2
1 + |∇U0|2](x) dx+ Γ

t�

0

‖Ut(·, s)‖2‖∇V (·, s)‖2 ds,

where Γ is a generic positive constant depending on C, the supremum and
the infimum of eφ(x), and the radius of the ball in C([0, T ];H1

0(Ω)) containing
vµ and vν . Young’s inequality then gives

max
0≤t≤T

�

Ω

[U2
t + |∇U |2](x, t) dx ≤ Γ

�

Ω

[U2
1 + |∇U0|2](x) dx

+ ΓT max
0≤t≤T

�

Ω

[V 2
t + |∇V |2](x, t) dx.

Since (φµ) is Cauchy in H1
0 (Ω) and in L2(Ω), and (vµ) is Cauchy in

C([0, T ];H1
0 (Ω)) we conclude that (uµ, uµt ) is Cauchy in C([0, T ];H1

0(Ω)) ∩
C([0, T ];L2(Ω)). To show that ut is Cauchy in Lp+1(Ω× (0, T )) we use (H2)
to obtain

‖Ut‖p+1
Lp+1(Ω×(0,T )) ≤ C

t�

0

�

Ω

eφ(x)(g(uµt )− g(uνt ))Ut(x, s) dx ds,(2.8)

which yields, by virtue of (2.7),

‖Ut‖p+1
Lp+1(Ω×(0,T )) ≤ Γ

�

Ω

[U2
1 + |∇U0|2](x) dx+ Γ

T�

0

‖Ut(·, s)‖2‖∇V (·, s)‖2 ds.
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Therefore (uµt ) is Cauchy in Lp+1(Ω×(0, T )), hence (uµ, uµt ) is Cauchy in Y.
We now show that the limit (u, ut) is a weak solution of (2.1) in the sense
of [6]. That is, for each θ in H1

0 (Ω) we must show that

(2.9)
d

dt

�

Ω

ut(x, t)θ(x) dx+
�

Ω

∇u(x, t) · ∇θ(x) dx

−
�

Ω

(∇φ · ∇u)θ(x) dx+
�

Ω

[f(u) + g(ut)]θ(x) dx = 0,

for almost all t in (0, T ). To establish this we multiply equation (2.5) by θ
and integrate over Ω to obtain

(2.10)
d

dt

�

Ω

uµt (x, t)θ(x) dx+
�

Ω

∇uµ(x, t) · ∇θ(x) dx

−
�

Ω

(∇φ · ∇uµ)θ(x) dx+
�

Ω

[f(uµ) + g(uµt )]θ(x) dx = 0.

As µ→∞, we see that
�

Ω

∇uµ(x, t) · ∇θ(x) dx→
�

Ω

∇u(x, t) · ∇θ(x) dx,

�

Ω

f(uµ)θ(x) dx→
�

Ω

f(u)θ(x) dx in C([0, T ])

and � Ω g(uµt )θ(x) dx→ � Ω g(ut)θ(x) dx in L1((0, T )). Thus � Ω ut(x, t)θ(x) dx
[= lim � Ω uµt (x, t)θ(x) dx] is an absolutely continuous function on [0, T ],
so (2.9) holds for almost all t in [0, T ]. For the energy equality (2.4), we
start from the energy equality for uµ and proceed in the same way to estab-
lish it for u. To prove uniqueness we take vµ and vν and let uµ and uν be
the corresponding solutions of (2.1). It is clear that U = uµ − uν satisfies

(2.11)
1
2

�

Ω

eφ(x)[U2
t + |∇U |2](x, t) dx+

t�

0

�

Ω

eφ(x)(g(uµt )−g(uνt ))Ut(x, s) dx ds

+
t�

0

�

Ω

eφ(x)[f(vµ)− f(vν)]Ut(x, s) dx ds = 0.

If vµ = vν then (2.11) shows that U = 0, which implies uniqueness. This
completes the proof.

Remark 2.1. Note that condition (1.6) on p is needed for � Ω g(uµt )θ(x) dx
to make sense.

Theorem 2.3. Assume that (H1) and (H2) hold. Then given any u0 in
H1

0 (Ω) and any u1 in L2(Ω), the problem (1.4) has a unique weak solution
u satisfying (2.3) for T small enough.
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Proof. For M > 0 large and T > 0, we define Z(M,T ) to be the class of
all functions w in Y satisfying the initial conditions of (1.4) and

max
0≤t≤T

�

Ω

[w2
t + |∇w|2](x, t) dx+

T�

0

�

Ω

|wt(x, s)|p+1 dx ds ≤M2.(2.12)

Z(M,T ) is nonempty if M is large enough. This follows from the trace
theorem (see [8]). We also define the map h from Z(M,T ) into Y by u :=
h(v), where u is the unique solution of the linear problem (2.1). We would
like to show, for M sufficiently large and T sufficiently small, that h is a
contraction from Z(M,T ) into itself.

By using the energy equality (2.4), (H1) and (H2) we get

(2.13)
�

Ω

[u2
t + |∇u|2](x, t) dx+

t�

0

�

Ω

|ut(x, s)|p+1 dx ds

≤ C
�

Ω

[u2
1 + |∇u0|2](x) dx+ C

t�

0

�

Ω

|f(v)| |ut|(x, s) dx ds

≤ C
�

Ω

[u2
1 + |∇u0|2](x) dx+ C

t�

0

a(u, 0)‖∇v‖2‖ut‖2, ∀t ∈ [0, T ],

and consequently

‖u‖2Y ≤ C
�

Ω

[u2
1 + |∇u0|2](x) dx+ CKT‖u‖Y,

where K is a constant depending on M . By choosing M large enough and
T sufficiently small, (2.12) is satisfied; hence u ∈ Z(M,T ). This shows that
h maps Z(M,T ) into itself.

Next we verify that h is a contraction. Set U = u − u and V = v − v,
where u = h(v) and u = h(v). It is straightforward to see that U satisfies

Utt −∆U −∇φ · ∇U + g(ut)ut − g(ut)ut + f(v)− f(v) = 0,

U(x, t) = 0, x ∈ ∂Ω, t > 0,

U(x, 0) = Ut(x, 0) = 0, x ∈ Ω.
(2.14)

By multiplying the first equation of (2.14) by eφ(x)Ut and integrating over
Ω × (0, t), we arrive at

(2.15)
�

Ω

[U2
t + |∇U |2](x, t) dx+

t�

0

�

Ω

[g(ut)ut − g(ut)ut]Ut(x, s) dx ds

≤ C
t�

0

�

Ω

|f(v)− f(v)| |Ut|(x, s) dx ds.

By using (H1) and (H2) we obtain
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�

Ω

[U2
t + |∇U |2](x, t) dx+

t�

0

�

Ω

|Ut(x, s)|p+1 dx ds

≤ C
t�

0

a(v, v)‖Ut‖2‖∇V ‖2(·, s) ds.
Thus we have

‖U‖2Y ≤ CTK‖V ‖2Y.(2.16)

By choosing T so small that CTK < 1, (2.16) shows that h is a contraction.
The contraction mapping theorem then guarantees the existence of a unique
u satisfying u = h(u). Obviously it is a solution of (1.4). The uniqueness of
this solution follows from inequality (2.15). The proof is complete.

3. Global existence and decay. In this section, we are interested in
the precise decay rate of an equivalent energy of the solution of (1.4). We
define the equivalent energy of the solution by the formula

E(t) =
�

Ω

eφ(x)[u2
t + |∇u|2 + 2F (u)] dx, t ∈ R+,(3.1)

where

F (s) =
s�

0

f(σ) dσ, ∀s ∈ R.(3.2)

We suppose that

F (s) ≥ −a|s|2, ∀s ∈ R,(3.3)

for some

0 ≤ a < 1
2c0

,(3.4)

where c0 is the positive constant satisfying (Sobolev embedding)
�

Ω

|u|2 dx ≤ c0

�

Ω

|∇u|2 dx, ∀u ∈ H1
0 (Ω).(3.5)

Remark 3.1. Conditions (3.3) and (3.4) ensure the following inequality:

‖(u, ut)‖2H1
0 (Ω)×L2(Ω) ≤ kE(t), ∀t ∈ R+,(3.6)

where k = 1/(m(1− 2ac0)) > 0 and m = infΩ eφ(x). Indeed, (3.3) and (3.5)
imply that

E(t) ≥
�

Ω

eφ(x)[u2
t + |∇u|2 − 2a|u|2] dx ≥

�

Ω

eφ(x)[u2
t + (1− 2ac0)|∇u|2] dx

≥ m(1− 2ac0)
�

Ω

[u2
t + |∇u|2] dx = m(1− 2ac0)‖(u, ut)‖2H1

0 (Ω)×L2(Ω),

which gives (3.6).
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Using the first equation of (1.4) and the boundary condition, we can
easily prove that the energy E satisfies

E′(t) = −2
�

Ω

eφ(x)utg(ut) dx ≤ 0, t ∈ R+,(3.7)

since g is increasing; hence the energy is nonincreasing. We take 0 ≤ S <
T <∞ and integrate (3.7) over [S, T ] to get

T�

S

�

Ω

eφ(x)utg(ut) dx =
1
2

[E(S)− E(T )].(3.8)

Theorem 3.1. Assume that (H1), (H2), (3.2)–(3.4) hold. Then given any
u0 in H1

0 (Ω) and any u1 in L2(Ω), the solution of problem (1.4) is global.

Proof. It suffices to show that
�

Ω

(u2
t + |∇u|2)(x, t) dx

remains bounded independently of t. To achieve this, we multiply (1.4) by
eφut, integrate over Ω × (0, t) and use the boundary conditions to obtain

1
2

�

Ω

eφ(x)[u2
t + |∇u|2 + 2F (u)](x, t) dx+

t�

0

�

Ω

eφ(x)g(ut)ut(x, s) dx ds

=
1
2

�

Ω

eφ(x)[u2
1 + |∇u0|2 + 2F (u0)](x) dx, ∀t ∈ [0, T ].

By using (3.6), we arrive at
�

Ω

(u2
t + |∇u|2)(x, t) dx

≤ kE(t) ≤ k
�

Ω

eφ(x)[u2
1 + |∇u0|2 + 2F (u0)](x) dx, ∀t ≥ 0.

This completes the proof.

We now establish some decay estimates of the energy under hypotheses
(H1), (H2), (3.2)–(3.4), and

(H3) There exists a constant 0 < b < 1 such that

2bF (s) ≤ sf(s), ∀s ∈ R+.(3.9)

Remark 3.2. If f is increasing then (3.2) and (3.9) are satisfied with
a = 0 and b = 1/2.

We also note that (H2) and the fact that g(0) = 0 yield

c1{|s|r + |s|p} ≤ |g(s)| ≤ c2{|s|+ |s|p}.(3.10)
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Theorem 3.2. Under hypotheses (H1)–(H3) and (3.2)–(3.4) there exist
constants ω, c > 0 such that

E(t) ≤ E(0)e1−ωt, ∀t ∈ R+,(3.11)

if r = 1, and

E(t) ≤ c(1 + t)−2/(r−1), ∀t ∈ R+,(3.12)

if r > 1.

Remark 3.3. If φ ≡ 0 and g(s) = αs for all s ∈ R with α > 0 (that is,
r = p = 1), then we find the results obtained in [9]. On the other hand, if
g(s) = α(1 + |s|m−2)s for all s ∈ R+ with m > 2 (that is, p = m − 1 and
r = 1) then we obtain the results of [10].

Remark 3.4. It is possible to weaken the growth assumption (3.10) as
was done for elasticity systems in [2], and for the Petrovsky system in [3].
In any case, the proof of our estimates (3.11) and (3.12) is similar to those
in the two papers.

Proof of Theorem 3.2. We are going to prove that the energy E satisfies,
for any 0 ≤ S < T <∞,

T�

S

E(r+1)/2(t) dt ≤ cE(S).(3.13)

Here and in what follows we shall denote by c various positive constants,
by ε various positive constants small enough, and by cε various positive
constants depending on ε. The inequality (3.13) gives (3.11) and (3.12) (see
[2, Proposition 3.7]).

We multiply the first equation of (1.4) by E(r−1)/2(t)eφ(x)u and integrate
over Ω × [S, T ] to get

(3.14)
T�

S

�

Ω

E(r−1)/2(t)eφ(x)[u2
t + |∇u|2 + uf(u)] dx dt

=
T�

S

�

Ω

E(r−1)/2(t)eφ(x)[2u2
t − ug(ut)] dx dt

+
r − 1

2

T�

S

�

Ω

E(r−3)/2(t)E′(t)eφ(x)uut dx dt−
[ �

Ω

E(r−1)/2(t)eφ(x)uut dx dt
]T
S
.

The last two terms of (3.14) can be easily majorized by cE(r+1)/2(S) (see [2]
and [3]). We now follow the proof given in [4]. We set 1/q = 1− p/(p + 1),
Ω+ = {x ∈ Ω : |ut| > 1} and Ω− = Ω \ Ω+. We apply the Schwarz and
Young inequalities and the embedding H1

0 (Ω) ⊂ Lq(Ω) to get
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−
T�

S

�

Ω+

E(r−1)/2(t)eφ(x)ug(ut) dx

≤ c
T�

S

E(r−1)/2(t)
( �

Ω+

|u|q dx
)1/q( �

Ω+

|g(ut)|1+1/p dx
)p/(p+1)

dt

≤ c
T�

S

E(r−1)/2(t)
[
ε

�

Ω+

|u|q dx+ cε
�

Ω+

|g(ut)|1+1/p dx
]
dt

≤ εc
T�

S

E(r+q−1)/2(t) dt+ cεE
(r−1)/2(S)

T�

S

�

Ω+

eφ(x)utg(ut) dx dt

≤ εc
T�

S

E(r+1)/2(t) dt+ cε[E(r+1)/2(S)− E(r+1)/2(T )].

On the other hand, using the growth assumption (3.10), we have

−
T�

S

�

Ω−

E(r−1)/2(t)eφ(x)ug(ut) dx

≤ c
T�

S

E(r−1)/2(t)
[
ε

�

Ω−
u2 dx+ cε

�

Ω−
g2(ut) dx

]
dt

≤ εc
T�

S

E(r−1)/2(t)
�

Ω−
eφ(x)|∇u|2 dx dt+ cεE

(r−1)/2(S)
T�

S

�

Ω−
eφ(x)utg(ut) dx dt

≤ εc
T�

S

E(r+1)/2(t) dt+ cε[E(r+1)/2(S)− E(r+1)/2(T )].

Adding the last two inequalities and substituting the result into the right-
hand side of (3.14) and using (3.9), we obtain

(3.15) (b− εc)
T�

S

E(r+1)/2(t) dt

≤ cE(r+1)/2(S) + 2
T�

S

�

Ω

E(r−1)/2(t)eφ(x)u2
t dx dt.

Using Young’s inequality once again we have, by (3.8) and (3.10),

2
T�

S

�

Ω+

E(r−1)/2(t)eφ(x)u2
t dx dt ≤ cE(r−1)/2(S)

T�

S

�

Ω+

eφ(x)utg(ut) dx dt

≤ c[E(r+1)/2(S)−E(r+1)/2(T )].
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In the same way, we get

2
T�

S

�

Ω−

E(r−1)/2(t)eφ(x)u2
t dx dt ≤ c

T�

S

�

Ω−

E(r−1)/2(t)(eφ(x)utg(ut))2/(r+1) dx dt

≤ ε
T�

S

�

Ω−
E(r+1)/2(t) dt+ cε

T�

S

�

Ω−
eφ(x)utg(ut) dx dt

≤ ε
T�

S

�

Ω

E(r+1)/2(t) dt+ cε[E(S)− E(T )].

Substituting the sum of these two estimates into the right-hand side of (3.15)
and choosing ε small enough we obtain

T�

S

�

Ω

E(r+1)/2(t) dt ≤ c[1 +E(r−1)/2(0)]E(S) ≤ cE(S),

and (3.13) follows.
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