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Forced oscillation of certain hyperbolic equations
with continuous distributed deviating arguments

by Satoshi Tanaka (Hachinohe) and Norio Yoshida (Toyama)

Abstract. Certain hyperbolic equations with continuous distributed deviating ar-
guments are studied, and sufficient conditions are obtained for every solution of some
boundary value problems to be oscillatory in a cylindrical domain. Our approach is to
reduce the multi-dimensional oscillation problems to one-dimensional oscillation problems
for functional differential inequalities by using some integral means of solutions.

1. Introduction. We are concerned with the oscillatory properties of
solutions of the hyperbolic equation with continuous distributed deviating
arguments

(1)
∂

∂t

[
p(t)

∂

∂t

(
u(x, t) +

β�

α

h(t, ξ)u(x, %(t, ξ))dη(ξ)
)]
− a(t)∆u(x, t)

−
k∑

i=1

bi(t)∆u(x, τi(t))− q0(x, t)u(x, t)−
k∑

i=1

qi(x, t)u(x, τi(t))

−
δ�

γ

q(x, t, ζ)ϕ(u(x, σ(t, ζ))) dω(ζ)

= f(x, t), (x, t) ∈ Ω ≡ G× (0,∞),

where G is a bounded domain in Rn with piecewise smooth boundary ∂G.
It is assumed that:

(A1) p(t) ∈ C([0,∞); (0,∞)), a(t) ∈ C([0,∞); [0,∞)),

bi(t) ∈ C([0,∞); [0,∞)) (i = 1, . . . , k),

h(t, ξ) ∈ C([0,∞)× [α, β]; [0,∞)), q(x, t, ζ) ∈ C(Ω × [γ, δ]; [0,∞)),

qi(x, t) ∈ C(Ω; [0,∞)) (i = 0, 1, . . . , k) and f(x, t) ∈ C(Ω;R);

2000 Mathematics Subject Classification: 35B05, 35R10.
Key words and phrases: forced oscillation, hyperbolic equations, continuous dis-

tributed deviating arguments.

[37]



38 S. Tanaka and N. Yoshida

(A2) τi(t) ∈ C([0,∞);R) (i = 1, . . . , k), %(t, ξ) ∈ C([0,∞) × [α, β];R),
σ(t, ζ) ∈ C([0,∞)× [γ, δ];R) such that lim

t→∞
τi(t) =∞,

lim
t→∞

min
ξ∈[α,β]

%(t, ξ) =∞ and lim
t→∞

min
ζ∈[γ,δ]

σ(t, ζ) =∞;

(A3) η(ξ) ∈ C([α, β];R) and ω(ζ) ∈ C([γ, δ];R) are increasing functions
on [α, β] and [γ, δ], respectively, and the integrals appearing in (1)
are Stieltjes integrals;

(A4) ϕ(s) ∈ C(R;R), ϕ(−s) = −ϕ(s), ϕ(s) > 0 for s > 0, and ϕ(s) is
nondecreasing and convex in (0,∞).

We consider the following two kinds of boundary conditions:

(B1) u = ψ on ∂G× (0,∞),

(B2)
∂u

∂ν
− µu = ψ̃ on ∂G× (0,∞),

where ψ, ψ̃ ∈ C(∂G× (0,∞);R), µ ∈ C(∂G× (0,∞); [0,∞)) and ν denotes
the unit exterior normal vector to ∂G.

Definition 1. By a solution of equation (1) we mean a function u(x, t) ∈
C2(G× [t−1,∞);R) ∩ C(G× [t̃−1,∞);R) which satisfies (1), where

t−1 = min{0, min
1≤i≤k

{inf
t≥0

τi(t)}, min
ξ∈[α,β]

{inf
t≥0

%(t, ξ)}},

t̃−1 = min{0, min
ζ∈[γ,δ]

{inf
t≥0

σ(t, ζ)}}.

Definition 2. A solution u(x, t) of equation (1) is said to be oscillatory
in Ω if u(x, t) has a zero in G× (t,∞) for any t > 0.

The oscillations of hyperbolic equations without functional arguments
were studied by Kreith, Kusano and Yoshida [5] and Yoshida [12] by using
the averaging techniques (cf. [13] dealing with parabolic equations). In 1984
Mishev and Bainov [7] first established oscillation results for hyperbolic
equations with delay. Recently there is much interest in studying oscilla-
tions of hyperbolic equations with continuous distributed deviating argu-
ments. We refer the reader to [3, 4, 9, 10] for linear hyperbolic equations
with continuous distributed deviating arguments, and to [2, 6, 11] for nonlin-
ear hyperbolic equations with continuous distributed deviating arguments.
However, all of them pertain to the hyperbolic equations of the form

∂

∂t

[
p(t)

∂

∂t

(
u(x, t) +

l∑

i=1

hi(t)u(x, %i(t))
)]
− a(t)∆u(x, t)

−
k∑

i=1

bi(t)∆u(x, τi(t)) +

δ�

γ

q(x, t, ζ)ϕ(u(x, σ(t, ζ))) dω(ζ) = f(x, t),
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where hi(t) ≥ 0 and q(x, t, ζ) ≥ 0. It seems that no work has been done on

the case where q(x, t, ζ) ≤ 0 and
∑l

i=1 hi(t)u(x, %i(t))) is extended to

β�

α

h(x, t, ξ)u(x, %(t, ξ)) dη(ξ)

(cf. Shoukaku [8] dealing with parabolic equations).
The purpose of this paper is to derive sufficient conditions for every

solution of certain boundary value problems for (1) to be oscillatory in a
cylindrical domain.

In Section 2 we reduce the multi-dimensional oscillation problems to the
nonexistence problems of eventually positive solutions of functional differen-
tial inequalities. In Section 3 we present sufficient conditions for functional
differential inequalities to have no eventually positive solutions. Oscillation
results for the boundary value problems (1), (Bi) (i = 1, 2) are derived in
Section 4.

2. Reduction to one-dimensional oscillation problems. In this
section we reduce the multi-dimensional oscillation problems for (1) to the
nonexistence problems of eventually positive solutions of functional differ-
ential inequalities.

It is known that the first eigenvalue λ1 of the eigenvalue problem

−∆v=λv in G,

v= 0 on ∂G

is positive and the corresponding eigenfunction Φ(x) may be chosen so that
Φ(x) > 0 in G (see Courant and Hilbert [1]).

We use the following notation:

F (t) =
( �

G

Φ(x) dx
)−1 �

G

f(x, t)Φ(x) dx,

Ψ(t) =
( �

G

Φ(x) dx
)−1 �

∂G

ψ
∂Φ

∂ν
(x) dS,

F̃ (t) =
1

|G|
�

G

f(x, t) dx,

Ψ̃(t) =
1

|G|
�

∂G

ψ̃ dS,

Q(t, ζ) = min
x∈G

q(x, t, ζ),

where |G| = � G dx.

Theorem 1. Assume that hypotheses (A1)–(A4) hold , as well as

(A5) q0(x, t) ≥ λ1a(t), qi(x, t) ≥ λ1bi(t) (i = 1, . . . , k).

If the functional differential inequalities
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(2)
d

dt

[
p(t)

d

dt

(
y(t) +

β�

α

h(t, ξ)y(%(t, ξ)) dη(ξ)
)]

−
δ�

γ

Q(t, ζ)ϕ(y(σ(t, ζ)))dω(ζ) ≥ ±G(t)

have no eventually positive solutions, where

G(t) = F (t)− a(t)Ψ(t)−
k∑

i=1

bi(t)Ψ(τi(t)),

then every solution u of the boundary value problem (1), (B1) is oscillatory
in Ω.

Proof. Assume on the contrary that there is a nonoscillatory solution
u of the problem (1), (B1). First we assume that u > 0 in G × [t0,∞) for
some t0 > 0. Then there exists a number t1 ≥ t0 such that u(x, τi(t)) > 0
in G × [t1,∞) (i = 1, . . . , k) and u(x, σ(t, ζ)) > 0 in G × [t1,∞) × [γ, δ].
Multiplying (1) by ( � G Φ(x) dx)−1Φ(x) and then integrating over G yields

(3)
d

dt

[
p(t)

d

dt

(
U(t) +

β�

α

h(t, ξ)U(%(t, ξ)) dη(ξ)
)]

− a(t)KΦ

�

G

∆u(x, t)Φ(x) dx−
k∑

i=1

bi(t)KΦ

�

G

∆u(x, τi(t))Φ(x) dx

−KΦ

�

G

q0(x, t)u(x, t)Φ(x) dx−
k∑

i=1

KΦ

�

G

qi(x, t)u(x, τi(t))Φ(x) dx

−
δ�

γ

Q(t, ζ)KΦ

�

G

ϕ(u(x, σ(t, ζ)))Φ(x) dx dω(ζ) ≥ F (t), t ≥ t1,

where KΦ = ( � G Φ(x) dx)−1 and U(t) = KΦ � G u(x, t)Φ(x) dx. We see from
Green’s formula that

KΦ

�

G

∆u(x, t)Φ(x) dx = −Ψ(t)− λ1U(t), t ≥ t1,(4)

KΦ

�

G

∆u(x, τi(t))Φ(x) dx = −Ψ(τi(t))− λ1U(τi(t)), t ≥ t1(5)

(see, e.g., [14, p. 79]). Applying Jensen’s inequality, we obtain

(6) KΦ

�

G

ϕ(u(x, σ(t, ζ)))Φ(x) dx ≥ ϕ(U(σ(t, ζ))), t ≥ t1.

Combining (3)–(6) yields
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d

dt

[
p(t)

d

dt

(
U(t) +

β�

α

h(t, ξ)U(%(t, ξ)) dη(ξ)
)]

−KΦ

�

G

(q0(x, t)− λ1a(t))u(x, t)Φ(x) dx

−
k∑

i=1

KΦ

�

G

(qi(x, t)− λ1bi(t))u(x, τi(t))Φ(x) dx

−
δ�

γ

Q(t, ζ)ϕ(U(σ(t, ζ))) dω(ζ) ≥ G(t), t ≥ t1,

and hence

d

dt

[
p(t)

d

dt

(
U(t) +

β�

α

h(t, ξ)U(%(t, ξ)) dη(ξ)
)]

−
δ�

γ

Q(t, ζ)ϕ(U(σ(t, ζ))) dω(ζ) ≥ G(t), t ≥ t1.

It is obvious that U(t) > 0 on [t1,∞). Hence, U(t) is an eventually positive
solution of (2) with +G(t). This contradicts the hypothesis. If u < 0 in
G× [t0,∞) for some t0 > 0, we conclude that V (t) = −U(t) is an eventually
positive solution of (2) with −G(t). This also contradicts the hypothesis.
The proof is complete.

Theorem 2. Assume that hypotheses (A1)–(A4) hold. If the functional
differential inequalities

(7)
d

dt

[
p(t)

d

dt

(
y(t) +

β�

α

h(t, ξ)y(%(t, ξ)) dη(ξ)
)]

−
δ�

γ

Q(t, ζ)ϕ(y(σ(t, ζ))) dω(ζ) ≥ ±G̃(t),

where

G̃(t) = F̃ (t) + a(t)Ψ̃(t) +

k∑

i=1

bi(t)Ψ̃(τi(t)),

have no eventually positive solutions, then every solution u of the boundary
value problem (1), (B2) is oscillatory in Ω.

Proof. Suppose to the contrary that there exists a nonoscillatory solution
u of the problem (1), (B2). First we assume that u > 0 in G×[t0,∞) for some
t0 > 0. Then there is a number t1 ≥ t0 such that u(x, τi(t)) > 0 in G×(0,∞)
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(i = 1, . . . , k) and u(x, σ(t, ζ)) > 0 in G× (0,∞)× [γ, δ]. Dividing (1) by |G|
and then integrating over G yields

(8)
d

dt

[
p(t)

d

dt

(
Ũ(t) +

β�

α

h(t, ξ)Ũ(%(t, ξ)) dη(ξ)
)]

− a(t)
1

|G|
�

G

∆u(x, t) dx−
k∑

i=1

bi(t)
1

|G|
�

G

∆u(x, τi(t)) dx

− 1

|G|
�

G

q0(x, t)u(x, t) dx−
k∑

i=1

1

|G|
�

G

qi(x, t)u(x, τi(t)) dx

−
δ�

γ

Q(t, ζ)
1

|G|
�

G

ϕ(u(x, σ(t, ζ))) dx dω(ζ) ≥ F̃ (t), t ≥ t1,

where Ũ(t) = 1
|G| � G u(x, t) dx. It follows from the divergence theorem that

1

|G|
�

G

∆u(x, t) dx =
1

|G|
�

∂G

∂u

∂ν
(x, t) dS(9)

=
1

|G|
�

∂G

(µ · u(x, t) + ψ̃) dS ≥ Ψ̃(t), t ≥ t1.

Analogously we have

(10)
1

|G|
�

G

∆u(x, τi(t)) dx ≥ Ψ̃(τi(t)), t ≥ t1.

An application of Jensen’s inequality shows that

(11)
1

|G|
�

G

ϕ(u(x, σ(t, ζ))) dx ≥ ϕ(Ũ(σ(t, ζ))), t ≥ t1.

Combining (8)–(11) and taking account of hypothesis (A1), we obtain

(12)
d

dt

[
p(t)

d

dt

(
Ũ(t) +

β�

α

h(t, ξ)Ũ(%(t, ξ)) dη(ξ)
)]

−
δ�

γ

Q(t, ζ)ϕ(Ũ(σ(t, ζ))) dω(ζ) ≥ G̃(t), t ≥ t1.

Consequently, we find that Ũ(t) is an eventually positive solution of (7)

with +G̃(t). This contradicts the hypothesis. The case where u < 0 can
be treated similarly, and we are also led to a contradiction. The proof is
complete.
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3. Functional differential inequalities. In this section we derive suf-
ficient conditions for the functional differential inequality

(13)
d

dt

[
p(t)

d

dt

(
y(t) +

β�

α

h(t, ξ)y(%(t, ξ)) dη(ξ)
)]

−
δ�

γ

Q(t, ζ)ϕ(y(σ(t, ζ))) dω(ζ) ≥ H(t)

to have no eventually positive solution, where H(t) is a continuous function.
It is assumed that:

(A6) p(t) is bounded from above, that is, there exists a positive constant
p1 such that 0 < p(t) ≤ p1;

(A7) there exists a positive constant h0 satisfying

β�

α

h(t, ξ) dη(ξ) ≤ h0 < 1;

(A8) %(t, ξ) ≤ t for (t, ξ) ∈ (0,∞)× [α, β];

(A9) σ̃(t) ≡ minζ∈[γ,δ] σ(t, ζ) is a nondecreasing C1-function such that

σ̃(t) ≥ t, σ̃′(t) ≥ 1

σ0
for some σ0 > 0;

(A10)

∞�

T

1

ϕ(v)
dv <∞ for some T > 0.

Theorem 3. Assume that hypotheses (A1)–(A4) and (A6)–(A10) hold ,
and also

(A11) there is a C2-function θ(t) such that θ(t) is bounded ,

lim inf
t→∞

θ(t) < 0 and (p(t)θ′(t))′ = H(t).

If the following conditions are satisfied :

∞�

t0

[ t�

t0

1

p(s)
ds ·

δ�

γ

Q(t, ζ)ϕ([c+Θ(σ(t, ζ))]+) dω(ζ)

]
dt =∞,(14)

∞�

t0

[ σ̃(t)�

t

[ δ�

γ

Q(s, ζ) dω(ζ)
]
ds
]
dt =∞(15)

for some t0 > 0 and any c > 0, where
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Θ(t) = θ(t)−
β�

α

h(t, ξ)θ(%(t, ξ)) dη(ξ),

[c+Θ(σ(t, ζ))]+ = max{c+Θ(σ(t, ζ)), 0},
then (13) has no eventually positive solution.

Proof. Suppose that (13) has an eventually positive solution y(t). Letting

(16) z(t) = y(t) +

β�

α

h(t, ξ)y(%(t, ξ)) dη(ξ)− θ(t)

and taking into account (A11), we find that

(17) (p(t)z′(t))′ ≥
δ�

γ

Q(t, ζ)ϕ(y(σ(t, ζ))) dω(ζ) ≥ 0.

Therefore, p(t)z′(t) ≥ 0 or p(t)z′(t) < 0 eventually. Since p(t) > 0, we
see that z′(t) ≥ 0 or z′(t) < 0. Hence, z(t) is a monotone function, and
z(t) > 0 or z(t) ≤ 0 eventually. We claim that z(t) > 0 eventually. Suppose
z(t) ≤ 0 (t ≥ t0) for some t0 > 0. Then we have

0 < y(t) +

β�

α

h(t, ξ)y(%(t, ξ)) dη(ξ) ≤ θ(t),

which contradicts the hypothesis lim inft→∞ θ(t) < 0. Hence, we conclude
that z(t) > 0 eventually. Since z(t) is a monotone function, the following
three cases are possible:

(i) limt→∞ z(t) = 0,
(ii) limt→∞ z(t) = z0 > 0,
(iii) limt→∞ z(t) =∞.

First we consider case (i). It is clear from (16) that θ(t) ≥ −z(t) and
therefore

lim inf
t→∞

θ(t) ≥ lim inf
t→∞

(−z(t)) = 0,

which contradicts the hypothesis lim inft→∞ θ(t) < 0.
Next we consider case (ii). In this case we can show that limt→∞ z′(t) = 0.

It follows from (16) that

(18) y(t) = z(t)−
β�

α

h(t, ξ)y(%(t, ξ)) dη(ξ) + θ(t)

and hence

(19) y(t) ≤ z(t) + θ(t).
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We see from (18) and (19) that

y(t) ≥ z(t)−
β�

α

h(t, ξ)[z(%(t, ξ)) + θ(%(t, ξ))] dη(ξ) + θ(t)(20)

= z(t)−
β�

α

h(t, ξ)z(%(t, ξ)) dη(ξ) +Θ(t)

≥ z(t)− h0 max
ξ∈[α,β]

z(%(t, ξ)) +Θ(t).

Since

lim
t→∞

(z(t)− h0 max
ξ∈[α,β]

z(%(t, ξ))) = z0 − h0z0 = (1− h0)z0 > 0,

it can be shown that

y(t) ≥ C +Θ(t),

where C = (1− h0)z0/2. In view of the positivity of y(t), we observe that

(21) y(t) ≥ [C +Θ(t)]+.

Combining (17) with (21) yields

(22) (p(t)z′(t))′ ≥ Q̂(t),

where

Q̂(t) =

δ�

γ

Q(t, ζ)ϕ([C +Θ(σ(t, ζ))]+) dω(ζ).

Integrating (22) over [t, t̃] yields

p(t̃)z′(t̃)− p(t)z′(t) ≥
t̃�

t

Q̂(s) ds.

Letting t̃ → ∞ and taking account of (A6), we see that Q̂(t) is integrable
on [t0,∞) and that

−p(t)z′(t) ≥
∞�

t

Q̂(s) ds

and therefore

(23) −z′(t) ≥ 1

p(t)

∞�

t

Q̂(s) ds.

Integrating (23) over [T, t] yields
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−z(t) + z(T ) ≥
t�

T

[
1

p(s)

∞�

s

Q̂(r) dr

]
ds

=

t�

T

[ r�

T

1

p(s)
ds · Q̂(r)

]
dr +

∞�

t

[ t�

T

1

p(s)
ds · Q̂(r)

]
dr

=

t�

T

(p̂(r)− p̂(T ))Q̂(r) dr +

∞�

t

(p̂(t)− p̂(T ))Q̂(r) dr

=

t�

T

p̂(r)Q̂(r) dr − p̂(T )

∞�

T

Q̂(r) dr + p̂(t)

∞�

t

Q̂(r) dr

≥
t�

T

p̂(r)Q̂(r) dr − p̂(T )

∞�

T

Q̂(r) dr,

where

p̂(t) =

t�

t0

1

p(s)
ds.

Hence, we obtain

t�

T

p̂(r)Q̂(r) dr ≤ −z(t) + z(T ) + p̂(T )

∞�

T

Q̂(r) dr ≤ z(T ) + p̂(T )

∞�

T

Q̂(r) dr.

Since Q̂(t) is integrable on [t0,∞), we see that � tT p̂(r)Q̂(r) dr is bounded
from above. This contradicts hypothesis (14).

Finally, we treat case (iii). In this case it is easily seen that z ′(t) ≥ 0.
Hypothesis (A8) implies

z(%(t, ξ)) ≤ z(t).

From (20) we find that

y(t) ≥ z(t)− z(t)

β�

α

h(t, ξ) dη(ξ) +Θ(t) ≥ (1− h0)z(t) +Θ(t).

Since θ(t) is bounded, we observe that so is Θ(t). Since Θ(t) is bounded and
limt→∞ z(t) =∞, for any sufficiently small ε > 0 there is a sufficiently large
number T such that Θ(t) ≥ −εz(t) (t ≥ T ). Hence

y(t) ≥ (1− h0 − ε)z(t)

and therefore

y(σ(t, ζ)) ≥ (1− h0 − ε)z(σ(t, ζ)).
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Inequality (17) implies that

(p(t)z′(t))′ ≥
δ�

γ

Q(t, ζ)ϕ((1− h0 − ε)z(σ(t, ζ))) dω(ζ)(24)

≥ ϕ((1− h0 − ε)z(σ̃(t)))

δ�

γ

Q(t, ζ) dω(ζ).

Integrating (24) over [t, σ̃(t)], we obtain

p(σ̃(t))z′(σ̃(t))− p(t)z′(t)

≥
σ̃(t)�

t

[
ϕ((1− h0 − ε)z(σ̃(s)))

δ�

γ

Q(s, ζ) dω(ζ)
]
ds

≥ ϕ((1− h0 − ε)z(σ̃(t)))

σ̃(t)�

t

[ δ�

γ

Q(s, ζ) dω(ζ)
]
ds,

which yields

σ̃(t)�

t

[ δ�

γ

Q(s, ζ) dω(ζ)
]
ds ≤ p1z

′(σ̃(t))

ϕ((1− h0 − ε)z(σ̃(t)))
.

Taking into account (A9), we observe that

σ̃(t)�

t

[ δ�

γ

Q(s, ζ) dω(ζ)
]
ds ≤ p1σ0

1− h0 − ε
(1− h0 − ε)z′(σ̃(t))σ̃′(t)
ϕ((1− h0 − ε)z(σ̃(t)))

.

Integrating the above inequality over [T, t], we obtain

t�

T

[ σ̃(s)�

s

[ δ�

γ

Q(r, ζ) dω(ζ)
]
dr
]
ds ≤ p1σ0

1− h0 − ε

t�

T

(1− h0 − ε)z′(σ̃(s))σ̃′(s)
ϕ((1− h0 − ε)z(σ̃(s)))

ds

=
p1σ0

1− h0 − ε

(1−h0−ε)z(σ̃(t))�

(1−h0−ε)z(σ̃(T ))

1

ϕ(v)
dv

≤ p1σ0

1− h0 − ε

∞�

(1−h0−ε)z(σ̃(T ))

1

ϕ(v)
dv <∞,

which contradicts hypothesis (15). The proof of Theorem 3 is complete.

An important special case of (13) is the second order neutral differential
equation

(25)
(
y(t) +

l∑

i=1

hi(t)y(t− %i)
)′′
− q(t)ϕ(y(t+ σ)) = H(t),
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where q(t) ∈ C([0,∞); [0,∞)) and H(t) ∈ C([0,∞);R), 0 ≤ ∑l
i=1 hi(t) ≤

h0 < 1 for some positive constant h0, and %i and σ are positive constants.
As a corollary of Theorem 3 we derive the following theorem.

Theorem 4. Assume that hypotheses (A4) and (A10) hold , and that
there is a C2-function θ(t) such that θ(t) is bounded , lim inft→∞ θ(t) < 0,
lim supt→∞ θ(t) > 0 and θ′′(t) = H(t). If

∞�

t0

tq(t)ϕ([c±Θ(t+ σ)]+) dt =∞,
∞�

t0

[ t+σ�

t

q(s) ds
]
dt =∞

for some t0 > 0 and any c > 0, where

Θ(t) = θ(t)−
l∑

i=1

hi(t)θ(t− %i),

then every solution of (25) is oscillatory at t =∞.

We note that Theorem 3 does not apply to the linear equation because
of hypothesis (A10). Instead of (A10) we assume that

(A12) there is a constant K0 such that ϕ(v)/v ≥ K0 > 0 for v 6= 0.

Theorem 5. Assume that hypotheses (A1)–(A3), (A6)–(A9), (A11), and
(A12) hold. If

∞�

t0

[ t�

t0

1

p(s)
ds ·

δ�

γ

Q(t, ζ)[c+Θ(σ(t, ζ))]+ dω(ζ)

]
dt =∞

and

(26) lim sup
t→∞

σ̃(t)�

t

[ σ̃(t)�

s

1

p(r)
dr ·

δ�

γ

Q(s, ζ) dω(ζ)

]
ds >

1

K0(1− h0)

for some t0 > 0 and any c > 0, then (13) has no eventually positive solution.

Proof. Let y(t) be an eventually positive solution of (13). Proceeding as
in the proof of Theorem 3, we see that (17) holds, and therefore

(p(t)z′(t))′ ≥ K0

δ�

γ

Q(t, ζ)y(σ(t, ζ)) dω(ζ).

Hence, in cases (i) and (ii) of the proof of Theorem 3 we are led to a con-
tradiction by the same arguments as in Theorem 3. We consider case (iii),
i.e. limt→∞ z(t) =∞. Then (24) can be reduced to

(p(t)z′(t))′ ≥ K0(1− h0 − ε)z(σ̃(t))

δ�

γ

Q(t, ζ) dω(ζ).
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Integrating the above inequality over [t, s] yields

p(s)z′(s)− p(t)z′(t) ≥ K0(1− h0 − ε)
s�

t

z(σ̃(r))

δ�

γ

Q(r, ζ) dω(ζ) dr

and hence

z′(s) ≥ K0(1− h0 − ε)
1

p(s)

s�

t

z(σ̃(r))

δ�

γ

Q(r, ζ) dω(ζ) dr.

Integrating the above inequality over [t, σ̃(t)], we have

z(σ̃(t))− z(t)≥K0(1−h0− ε)
σ̃(t)�

t

[
1

p(s)

s�

t

z(σ̃(r))

δ�

γ

Q(r,ζ)dω(ζ)dr

]
ds

=K0(1−h0− ε)
σ̃(t)�

t

[ σ̃(t)�

r

1

p(s)
ds · z(σ̃(r))

δ�

γ

Q(r,ζ)dω(ζ)

]
dr

and hence

z(σ̃(t)) ≥ z(t) +K0(1− h0 − ε)z(σ̃(t))

×
σ̃(t)�

t

[ σ̃(t)�

r

1

p(s)
ds ·

δ�

γ

Q(r, ζ) dω(ζ)

]
dr.

Consequently, we obtain

1−K0(1− h0 − ε)
σ̃(t)�

t

[ σ̃(t)�

r

1

p(s)
ds ·

δ�

γ

Q(r, ζ) dω(ζ)

]
dr ≥ z(t)

z(σ̃(t))
> 0

and therefore

lim sup
t→∞

σ̃(t)�

t

[ σ̃(t)�

r

1

p(s)
ds ·

δ�

γ

Q(r, ζ) dω(ζ)

]
dr ≤ 1

K0(1− h0 − ε)
.

Letting ε→ 0, we find that

lim sup
t→∞

σ̃(t)�

t

[ σ̃(t)�

r

1

p(s)
ds ·

δ�

γ

Q(r, ζ) dω(ζ)

]
dr ≤ 1

K0(1− h0)
,

which contradicts the hypothesis (26). The proof is complete.

We consider the linear differential equation of neutral type

(27)
(
y(t) +

l∑

i=1

hi(t)y(t− %i)
)′′
− q(t)y(t+ σ) = H(t),

which is a special case of (25).
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Theorem 6. Assume that there is a C2-function θ(t) such that θ(t) is
bounded , lim inft→∞ θ(t) < 0, lim supt→∞ θ(t) > 0 and θ′′(t) = H(t). If

∞�

t0

tq(t)[c±Θ(t+ σ)]+ dt =∞, lim sup
t→∞

t+σ�

t

(t+ σ − s)q(s) ds > 1

1− h0

for some t0 > 0 and any c > 0, then every solution of (27) is oscillatory at
t =∞.

4. Oscillation results for boundary value problems. In this section
we present oscillation results for the boundary value problems for (1), (Bi)
(i = 1, 2) by combining the results of Sections 2 and 3.

Theorem 7. Assume that hypotheses (A1)–(A10) hold , and that there
exists a C2-function θ(t) such that θ(t) is bounded , lim inft→∞ θ(t) < 0,
lim supt→∞ θ(t) > 0 and

(p(t)θ′(t))′ = G(t).

If

∞�

t0

[ t�

t0

1

p(s)
ds ·

δ�

γ

Q(t, ζ)ϕ([c±Θ(σ(t, ζ))]+) dω(ζ)

]
dt =∞,(28)

∞�

t0

[ σ̃(t)�

t

[ δ�

γ

Q(s, ζ) dω(ζ)
]
ds
]
dt =∞(29)

for some t0 > 0 and any c > 0, then every solution u of the boundary value
problem (1), (B1) is oscillatory in Ω.

Proof. The conclusion follows by combining Theorems 1 and 3.

Theorem 8. Assume that hypotheses (A1)–(A4), (A6)–(A10) hold , and
that there is a C2-function θ(t) such that θ(t) is bounded , lim inft→∞ θ(t)<0,
lim supt→∞ θ(t) > 0 and

(p(t)θ′(t))′ = G̃(t).

If (28) and (29) are satisfied , then every solution u of the boundary value
problem (1), (B2) is oscillatory in Ω.

Proof. A combination of Theorems 2 and 3 yields the conclusion.

Theorem 9. Assume that hypotheses (A1)–(A9) and (A12) hold , and
that there exists a C2-function θ(t) such that θ(t) is bounded , lim inft→∞ θ(t)
< 0, lim supt→∞ θ(t) > 0 and

(p(t)θ′(t))′ = G(t).
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If

∞�

t0

[ t�

t0

1

p(s)
ds ·

δ�

γ

Q(t, ζ)[c±Θ(σ(t, ζ))]+ dω(ζ)

]
dt =∞,(30)

lim sup
t→∞

σ̃(t)�

t

[ σ̃(t)�

s

1

p(r)
dr ·

δ�

γ

Q(s, ζ) dω(ζ)

]
ds >

1

K0(1− h0)
(31)

for some t0 > 0 and any c > 0, then every solution u of the boundary value
problem (1), (B1) is oscillatory in Ω.

Proof. The conclusion follows from Theorems 1 and 5.

Theorem 10. Assume that hypotheses (A1)–(A4), (A6)–(A9) and (A12)
hold , and that there exists a C2-function θ(t) such that θ(t) is bounded ,
lim inft→∞ θ(t) < 0, lim supt→∞ θ(t) > 0 and

(p(t)θ′(t))′ = G̃(t).

If (30) and (31) are satisfied , then every solution u of the boundary value
problem (1), (B2) is oscillatory in Ω.

Proof. The conclusion follows by combining Theorems 2 and 5.

A special case of (1) is

(32)
∂2

∂t2

(
u(x, t)−

l∑

i=1

hi(t)u(x, %i(t))
)
−∆u(x, t)

− q0(t)u(x, t)− q(t)ϕ(u(x, σ(t))) = f(x, t),

where hi(t) ∈ C([0,∞); [0,∞)) (i = 1, . . . , l), q0(t), q(t) ∈ C([0,∞); [0,∞)),
%i(t) ∈ C([0,∞);R) (i = 1, . . . , l), σ(t) ∈ C([0,∞);R), limt→∞ %i(t) = ∞,
limt→∞ σ(t) = ∞, %i(t) ≤ t, σ(t) ≥ t, σ′(t) ≥ 1/σ0 for some σ0 > 0,

0 ≤∑l
i=1 hi(t) ≤ h0 < 1 for some h0 > 0, q0(t) ≥ λ1 and f(x, t) ∈ C(Ω;R).

The following two corollaries are direct consequences of Theorems 7
and 9, and the proofs will be omitted.

Corollary 1. Assume that hypotheses (A4) and (A10) hold , and that
there exists a C2-function θ(t) such that θ(t) is bounded , lim inft→∞ θ(t) < 0,
lim supt→∞ θ(t) > 0 and

θ′′(t) = G(t).

If
∞�

t0

tq(t)ϕ([c±Θ(σ(t))]+) dt =∞,
∞�

t0

[ σ(t)�

t

q(s) ds
]
dt =∞
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for some t0 > 0 and any c > 0, where

Θ(t) = θ(t)−
l∑

i=1

hi(t)θ(%i(t)),

then every solution u of the boundary value problem (32), (B1) is oscillatory
in Ω.

Corollary 2. Assume that hypotheses (A4) and (A12) hold , and that
there exists a C2-function θ(t) such that θ(t) is bounded , lim inft→∞ θ(t) < 0,
lim supt→∞ θ(t) > 0 and

θ′′(t) = G(t).

If
∞�

t0

tq(t)[c±Θ(σ(t))]+ dt =∞,

lim sup
t→∞

σ(t)�

t

(σ(t)− s)q(s) ds > 1

K0(1− h0)

for some t0 > 0 and any c > 0, then every solution u of the boundary value
problem (32), (B1) is oscillatory in Ω.

Remark. We can establish the analogous oscillation results for the
problem (32), (B2) if we delete the hypothesis q0(t) ≥ λ1 and we only replace

G(t) by G̃(t) in Corollaries 1 and 2.

Example. We consider the problem

(33)
∂

∂t

[
1

t+ 1

∂

∂t

(
u(x, t) +

π�

0

1

4
· u
(
x, t− 5

2
π + ξ

)
dξ

)]

− ∂2u

∂x2
(x, t)− 3u(x, t)−

π�

0

u

(
x, t+

π

2
+ ζ

)
dζ = f(x, t),

(x, t) ∈ (0, π)× (0,∞),

(34) u(0, t) = u(π, t) = 0, t > 0,

where

f(x, t) = −3

2
sinx

[
cos t

(t+ 1)2
+

sin t

t+ 1

]
.

Here n = 1, G = (0, π), Ω = (0, π)× (0,∞), p(t) = 1/(t+ 1), [α, β] = [0, π],
h(t, ξ) = 1/4, %(t, ξ) = t − (5/2)π + ξ, η(ξ) = ξ, a(t) = 1, bi(t) ≡ 0,
q0(x, t) = 3, qi(x, t) ≡ 0, [γ, δ] = [0, π], q(x, t, ζ) = Q(t, ζ) = 1, ϕ(s) = s,
σ(t, ζ) = t + π/2 + ζ and ω(ζ) = ζ. It is easily seen that λ1 = 1 and
Φ(x) = sinx. We easily see that (A5), (A6) and (A12) hold for p1 = 1 and
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K0 = 1. Since
π�

0

h(t, ξ) dη(ξ) =

π�

0

1

4
dξ =

π

4
< 1,

we can choose h0 = π/4, and hence (A7) is satisfied. It is easy to check that

%(t, ξ) = t− 5

2
π + ξ ≤ t− 5

2
π + π = t− 3

2
π ≤ t, ξ ∈ [0, π],

and hence (A8) is satisfied. Since

σ̃(t) = min
ζ∈[0,π]

(
t+

π

2
+ ζ

)
= t+

π

2
≥ t

and σ̃′(t) = 1, we find that (A9) holds for σ0 = 1. An easy computation
shows that

G(t) = F (t) = −3π

8

[
cos t

(t+ 1)2
+

sin t

t+ 1

]
.

Choosing θ(t)=(3/8)π sin t, we find that θ(t) is bounded, lim inf t→∞ θ(t)<0,
lim supt→∞ θ(t) > 0, and (p(t)θ′(t))′ = G(t). Then we have

Θ(t) =
3π

16
sin t.

A simple calculation implies that (30) and (31) hold. Consequently, from
Theorem 9 it follows that every solution of the problem (33), (34) is oscil-
latory in (0, π)× (0,∞). In fact

u(x, t) = sinx · sin t
is such a solution.
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