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Enclosing solutions of second order equations

by GERD HERzOG and ROLAND LEMMERT (Karlsruhe)

Abstract. We apply Max Miiller’s Theorem to second order equations u” = f(t,u,u’)
to obtain solutions between given functions v, w.

1. Introduction. Let I C R be an interval, and let v,w € C?(I,R)

with v(t) < w(t) (t € I). Let
S:={(t,x):tel,v(t) <z <w(t)},

and let f:.5 xR — R be continuous. Consider the second order equation
(1) u'(t) = f(t u(t), u/(t)).
We are interested in the existence of a solution u : I — R of (1). Then in
particular graphu C S, that is, v(t) < u(t) < w(t) on I.

Let k,1: I — R be continuous and such that the equation
(2) R (t) + k@)|A (t)| 4+ 1(t)h(t) = 0
has a positive solution h : I — (0,00). Under these assumptions we prove

THEOREM 1. If

(1) |f(t,:L‘,p) - f(t7$7q)| < k(t)|p - q| ((t,.’L') € 87 D, q € R)a
(i) (1) + 1(O)o(t) < f(t, 2,0/ (1) + 1)z ((t,z) € S),
(i) w”(t) + [({Ow(t) > f(t,z,w' (1) + IOz ((t,2) € S),

then (1) has a solution u : I — R.
REMARKS. If f(t,z,p) = f(t,z) and k(t) = 0, conditions (i)—(iii) reduce
to V" (t) +1(t)o(t) < f(t,x) +1(t)x <w"(t) +1(Hw(t)  ((t,z) € S),
which are satisfied for example if f(¢, x)+1(t)x is increasing in z € [v(t), w(t)]
for each t € I and if
V) < f(to(), w'(t) = f(Ew(t) (e ).
This case is covered by the result in [2].
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Schrader [6] proved the existence of a solution u of (1) between v and w

under the assumptions that

V() < f(tu(),0'(1),  w(t) = fEw),w'(t) (e,
that f is continuous on I x R?, that all solutions of initial value problems
for equation (1) exist on I, and that Dirichlet boundary value problems for
(1) on compact subintervals of I have at most one solution.

Moreover, as described in [2] the differential inequalities above should not
be mixed up with upper and lower solutions of boundary value problems in
the sense of Nagumo [4], where the inequalities are in opposite direction. The
following trivial example (f = 0) shows most clearly the difference from the
method of upper and lower solutions for boundary value problems:

For I = [a,b] there is an affine function between v < w if v” < 0 and
w” > 0, but in general it is not possible to prescribe boundary values between
v(a) < w(a) and v(b) < w(b).

On the other hand, Rachunkova [5] proves the existence of solutions of (1)
satisfying various boundary conditions, which satisfy v(t,) < u(ty) < w(ty)
for some t,, € I.

2. Max Miiller’s Theorem. Let R? be ordered by the natural cone
K = {(z,y) : « > 0,y > 0}. To prove Theorem 1 we make use of the
following two-dimensional version of Max Miiller’s Theorem [3] (see also
)
Let § = (€17£2)777 = (771,772) € Cl([a’ b]ng) with é(t) < ’I’](t) on [avb]a
and let

D= {(t,z,y) € [a,b] x R? : £(t) < (z,y) < n(t)}.
Let F = (F1, F») : D — R? be continuous such that for (¢,z,y) € D,
Si(t) < F1(t,£1(t),y), gé(t) < Fg(t,ﬂj‘,§2(t)),
ni(t) ZFl(tvnl(t)vy)7 Ué(t) ZFQ(@%’?Q@)%
and let £(a) < (x0,y0) < n(a). Then the initial value problem
(z,y)(t) = F(t,2(t),y(t), (x(a),y(a)) = (z0,%0)

has a solution (z,%) : [a,b] — R?; in particular graph(z,y) C D, that is,
§(t) < (x(t),y(t)) < n(t) on [a,b].
3. Proof of Theorem 1. First, we prove the assertion for any compact
interval [a,b] C I. Let h : [a,b] — R be a positive solution of (2), and let
v:=wv/h, W:=w/h.
Fix tg € [a,b] such that
w(ty) — 0(tg) = min{w(t) —v(t) : t € [a,b]},
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and note that
to=a = 7 (ty) <W'(to),
to € (a,0) = '(to) =W (to),
to="b = v(to) > W (to).
We first consider the case tg € [a,b), and prove
v'(t) <w'(1) (¢ € [to, b]).
By using (2) we have

" !/ !/
—n_ v |h’—_%—/
U= +lv+k . ik
and by (ii) with = v(¢),
1 B 2n'
U"SEf(t,v,v)+lv+k|h|_—76’
1 B 20
Ef(tvh’ﬁth )+lv+k’h‘——75’.
Analogously, from
" / /
—n W — A ‘—_%—/
W= +lw+k . 5w
we get by (iii) and again for x = v(t),
1 n 20
w"ZEf(t,v,w)—i—lv—l—k"h‘_—TE'
1 n 20
f(tvh’w+hw)+lv+k’ |_——E’.

" h
Let G : [a,b] x R? — R? be defined by

h h

G(t,xz,y) =

Y
(ﬁf(t, o(t), B )z + h(t)y) + 1(B)0() + k() Gl - 2,’;(,$§>y>'
By (i), the functions

are increasing on R, so the second coordinate of G is increasing in x, and the
first coordinate is increasing in y. Hence G is quasimonotone increasing in
(x,y) with respect to the cone K = {(z,y) : x > 0,y > 0} (cf. [8]). Moreover
G is continuous and Lipschitz continuous in (z,y). From the estimates for

", w"” above we obtain

(Ey—ammmwmg(8>g<fy—0@mmm@>

v w
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for t € [tg, b]. Together with (v(to), 7' (t0)) < (W(to), W (to)), a classical result
on differential inequalities (see [8, Satz 2]|) implies
(@), 7'(t)) < (@), W'(t)) (t € [to, ])-
Next, consider equation (1). The transformation @ := u/h leads to

" h/l 2hl
—/ — —/
u =

P\ 20
"+ <l+k " U

/ /
f(t, hu, h'u+ ha') + <l+k|2|) _%ﬂ,‘

We fix ¢o € [0(to), w(to)] and ¢1 € [V (to), W (ty)], and consider the initial
value problem

(3) (@'(t),y'(t)) = F(t, x(t),y(t), (z(to),y(to)) = (co,c1),
with

D :={(t,z,y) : t € [to,b], (V(t),V'(#)) < (2,y) < (W(),W'(t))},
and F = (Fy, Fy) : D — R? defined by

|

| =
|

|
S

|

|
S

|
D‘| e >
=
~
£
S

Y
F(t,z,y) ( ' ! )
i (1 (0, W (0 4 (b)) + (1(2) + k(D) g e — Ty

Note that if (z,y) : [to,b] — R? is a solution of (3), then u(t) = h(t)z(t) is
a solution of (1) on [to, b].
For (t,x,y) € D we obviously have

v (t) < Fi(t,o(t),y) =y,

and
(@) (t) < Falt, 2,7 (1))
follows from the following inequalities (note that (¢, h(t)x) € S): From (i)
we obtain
f(t,hx, h'v + hv') — f(t, hx, W'z + hv') < k|h/|(z — ).

Hence

B 2h
FQ(tw%"E/) f(t,h:(},h/.%"i‘hﬁ) <l+k|h’> —Tﬂ/

b|>—~ blr—‘

/ / 2/
f(t, hx hlv—l—h_')—k%(x—ﬂ)—l— (l—l—k‘%)aj—%ﬁ'
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1 n 20
:Ef(t,hx,v)+la:+k|h’_——ﬁl

!/ /
= %f(t,h:r,v') + %(h:p) +k‘%5— %v
which by (ii) is
> % +1v+k |Z|— QTM@’:E".
Analogously
w'(t) > Fi(t,w(t),y) =,
and

@) (t) = Fu(t, 2,0 (t)).

According to Max Miiller’s Theorem we have a solution of (3), hence a
solution w : [tg,b] — R of the initial value problem

(4)  d"(t) = f(t,u(t),u'(t)), u(to) = h(to)co, u'(to) = I (to)co+h(to)ct,

on [to, b]
In case ty € (a,b] we consider the initial value problem (4) to the left,
i.e., for any ¢ : [a,b] — R we set

o () =pla+b—1) (L€ [a,b]),
and define S_ and f_ :S_ xR — R by
S_={(t,x):t€la,b],v_(t) <z <w_(t)}
and
f-(t,x,p) = fla+b—t,z,—p).
Now, (2) and (i)—(iii) hold for h, k, I, v, w, and S, f replaced by h_, k_, I_,
v_, w—, and S_, f_, respectively. Since also
U'(to) 2 W (to) = (0-)(a+b—to) < (W-)(a+b—to),

the first part of our proof, where tg is replaced by a + b — tg, gives a solution
u_:[a+b—ty,b — R of

(u=)"(t) = f=(t, u-(t), (u-)' (1)),
U— (a +b— to) = h(t[))C[), (u_)'(a +b— to) = —h/(t[))C[) — h(to)cl,

and u = (u_)_ solves (4) on [a,to].

If, in case to € (a,b), we choose ¢y € [U(to),w(to)], c1 = V' (to) = W' (to),
we may put together the solutions obtained by the above procedure to get
a solution of (4) on [a, b], which a fortiori satisfies v < u < w on [a, b].

To prove the theorem on the given interval I, which we may assume to be
noncompact, we choose an increasing sequence (1,,)5 ; of compact intervals
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such that
oo
I=|JI.
n=1

If I contains one of its boundary points, it belongs to some I,,, and we
assume ng = 1 without loss of generality. Next, for each n we choose a
solution u,, : I, — R of (1) such that

v(t) <wup(t) <w(t) (te€ly).
We fix n € N and consider u,,,, m > n. Then
|t ()| < max{|f(7,2,0)] : 7 € Ln, v(7) <z < w()} + k(t)|[ug, (D)] (¢ € L),

from which we get (by [1, Chapter XII, Lemma 5.1]) a constant L,, > 0 such
that
lur, ()| < L, (m>mn,tel,).

By a standard diagonal procedure and Ascoli-Arzela’s Theorem we get a
subsequence (uy,) which (together with the first and second derivatives) is
locally uniformly convergent on I. Its limit is then a solution v : I — R of
(1) such that v(t) < wu(t) <w(t)on I. m

4. Examples. Let g : [0,00) x R?> — R be continuous and bounded
(a < g < f3), and Lipschitz continuous in its third variable. Let || - || denote
Euclid’s norm on R™, n > 2. The classical Ansatz for rotationally symmetric
solutions of

(5) Az() = g(l€ll, 2(6), I(grad 2)(E)]]) (£ € R™)
is the transformation u(||&||) = 2(&), leadmg to the singular problem
-1

(6) u(t) = g(t,u(t), [u'(t)]) —

We may choose {(t) = 0 and k(t) =
constant of p — ¢(t,x,p). Then h(t)

; u'(t)  (t € (0,00)).

k + (n — 1)/t with ko any Lipschitz
= 1 solves (2). Fix ¢ € R and consider

p

o(t) = %tQ-i-C, w(t) = £ +c.
Then
v"(t):%:a—%(n—l)
< gl /(1) ~ (1) (@ € R, 1e (0,00))
and 5 5
w”(t)=5:ﬁ—5<n—1)
n—1

w'(t) (v eR, te(0,00)).
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By Theorem 1 there is a solution u : (0,00) — R of (6) with v(t) < u(t)
w(t) (t € (0,00)). In particular the extension u(0) = ¢ leads to u/(0) =
By elementary calculus, u € C?([0,00),R). Therefore z(¢) := u(||€]]) is
C%(R"™,R), and is a symmetric solution of equation (5) such that

RSV

Clel? +e< ) <D lel e (€ R,

REMARK. In general there is no harmonic function between v < w if v
is superharmonic and w is subharmonic [2].

In our second example we consider the case f(¢,z, p) f(t, ), k(t) =0,
and constant functions v(t) = m, w(t) = M (¢t € I). Then conditions (i)-(iii)
reduce to

I(t)ym < f(t,z) + 1)z <I)M (tel,m<z<M).
If f is of the form f(¢,x) = I(t)g(¢,x) and [(t) > O these inequalities hold if
m<gt,x)+x<M (tel, m<z<M).

Consider for example I = (0, 1),
2

h(t) =t(1—1), I(t)= Tk
for which (2) holds, and ¢(t,x) = cos(tx) — . By Theorem 1 there is a
solution u : (0,1) — R of
2(cos(tu(t)) — u(t))
t(1—1t)

U//(t) —

with —1 < u(t) < 1 (¢ € (0,1)).
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