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Linear systems over P1 × P1 with base points of multiplicity
bounded by three

by Tomasz Lenarcik (Kraków)

Abstract. We propose a combinatorial method of proving non-specialty of a linear
system of curves with multiple points in general position. As an application, we obtain
a classification of special linear systems on P1 × P1 with multiplicities not exceeding 3.

1. Introduction. Let p1, . . . , pr ∈ P1 × P1 denote points in general
position and let m1, . . . ,mr be positive integers. Consider the blowing up
π : X → P1 × P1 at p1, . . . , pr, and denote the exceptional divisors by
E1, . . . , Er respectively. For given d, e ≥ 0, we define L(d,e)(p1m1, . . . , prmr)
to be a complete linear system of the divisor

dH1 + eH2 −m1E1 − · · · −mrEr,

where H1 and H2 are the pullbacks of the classes of P1×{a1} and {a2}×P1

respectively, and a1, a2 ∈ P1 are arbitrary. It can be understood as a linear
space of curves of bidegree (d, e) that vanish at pi with multiplicity at least
mi for any i = 1, . . . , r. For a sufficiently general choice of affine coordi-
nates, each curve from L(d,e)(p1m1, . . . , prmr) can be uniquely represented
(up to a constant factor) by a polynomial in two variables, X and Y , which
contains monomials of the form XαY β with 0 ≤ α ≤ d and 0 ≤ β ≤ e.
Therefore, it follows from linear algebra that the projective dimension of
L(d,e)(p1m1, . . . , prmr) is not less than

(1.1) max
{
− 1, (d+ 1)(e+ 1)−

∑
i

(
mi + 1

2

)
− 1
}
.

The actual dimension, however, does not have to equal the expected dimen-
sion (1.1), as the equations may happen to be linearly dependent even for
a general choice of p1, . . . , pr. In such an instance, we say that the linear
system is special. A similar definition can be formulated for special linear
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systems over P2 (see for example [Dum]). Further details about linear sys-
tems will be presented in Section 1.

In Section 2 we propose a combinatorial technique of proving non-specialty
of linear systems. Several approaches of this kind have recently been de-
veloped, including degeneration techniques by Ciliberto, Dumitrescu and
Miranda [CDM], an application of tropic geometry by Baur and Draisma
[Dra, BD], and a reduction method by Dumnicki and Jarnicki [Dum, DJ].

Comprehensive research has been done on linear systems over P2 in con-
nection with the Gimigliano–Harbourne–Hirschowitz Conjecture (see [H] for
the original statement or [Dum] for further references). In [DJ], Dumnicki
and Jarnicki gave a classification of all special systems over P2 with mul-
tiplicities at most 11, which made it possible to verify that Gimigliano–
Harbourne–Hirschowitz Conjecture holds for all systems of this type. The
case of P1 × P1 seems to be less investigated in terms of such classification.
As long as all multiplicities of the base points equal 2, the problem of spe-
cialty of linear systems has been widely studied by many authors for varieties
of type Pn1 × · · · × Pnk . This is due to the fact that special linear systems
of this kind are closely related to defective Segre–Veronese embeddings (see
[CGG1, CGG2] by Catalisano, Geramita, Gimigliano and [BD, CDM]).

As an application of the method introduced in Section 2, we state Theo-
rem 2.2, which gives a characterization of special linear systems over P1×P1

with base points of multiplicity at most 3. While writing this paper, we found
that such a characterization had already been known for homogeneous sys-
tems, i.e. systems with base points of multiplicities all equal to 3 (Laface [L]).
The proof of Theorem 2.2, which is the main result of this paper, will be
presented in Section 3.

2. Linear systems. Let K be an arbitrary field, N = {0, 1, 2, . . .} and
N∗ = {1, 2, 3, . . .}. For any δ ∈ N2 we write δ = (δ1, δ2).

Definition 2.1. Any finite and nonempty set D ⊂ N2 will be called
a diagram. Let r ∈ N∗ and m1, . . . ,mr ∈ N (1). Let L be a field of rational
functions over K in variables x1, y1, . . . , xr, yr. We define a linear system
spanned over a diagram D with base points of multiplicities m1, . . . ,mr

to be an L-vector space LD(m1, . . . ,mr) ⊂ L[X,Y ] of polynomials f =∑
δ∈D AδX

δ1Y δ2 such that

(2.1)
∂α+βf

∂Xα∂Y β
(xi, yi) = 0 for i = 1, . . . , r and α+ β < mi.

Denote byM = MD(m1, . . . ,mr) the matrix of the system of equations (2.1),

(1) There is a technical reason to consider zero; see for example the proof of Theo-
rem 3.2.
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which are linear with respect to the unknown coefficients {Aδ}δ∈D. We say
that the system LD(m1, . . . ,mr) is special if M is not of maximal rank. Ob-
serve that the entries ofM belong to the polynomial ring K[x1, y1, . . . , xr, yr].

Given d, e ∈ N, we denote by L(d,e)(m1, . . . ,mr) a linear system spanned
by the diagram {0, 1, . . . , d} × {0, 1, . . . , e}. For any diagram D and for any
numbers m1, . . . ,mt ∈ N, q1, . . . , qt ∈ N∗ we shall use the following notation:

LD(m×q11 , . . . ,m×qtt ) := LD(
q1︷ ︸︸ ︷

m1, . . . ,m1, . . . ,

qt︷ ︸︸ ︷
mt, . . . ,mt).

In Section 3 we will prove the following result:

Theorem 2.2. Assume that d ≥ e ≥ 0. A linear system of the form
L(d,e)(1×p, 2×q, 3×r) is special if and only if one of the following conditions
holds:

(S0) e = 0, p+ 2q + 3r ≤ d and max{q, r} ≥ 1,
(S1) e = 1, p+ 3q + 5r ≤ 2d+ 1 and r ≥ 1,
(S2) e = 2, p = 0, d = q + 2r − 1 and 2 - q + r,
(S3) e = 3, and for some n ≥ 1:

(S3a) d = 3n, p = q = 0 and r = 2n+ 1,
(S3b) d = 3n, p ≤ 1, q = 1 and r = 2n,
(S3c) d = 3n+ 1, p ≤ 2, q = 0 and r = 2n+ 1,
(S3d) d = 3n+ 2, p = 0, q = 2 and r = 2n+ 1,

(S4) d = 5, e = 4, p = q = 0 and r = 5.

Throughout the proof, we take advantage of a relation between geometri-
cal properties of the diagram D and the rank of the matrixMD(m1, . . . ,mr)
(see Theorem 3.2). For linear systems that contain only one base point this
relation can be expressed as follows (see [Dum] for the proof):

Proposition 2.3. Let D = {δ1, . . . , δs} be a diagram and suppose that
#D = s =

(
m+1

2

)
for some m ∈ N∗. Then detMD(m) = 0 (i.e. the system

LD(m) is special) if and only if there exists a curve of degree m − 1 that
contains all points of D. Moreover, if detMD(m) 6= 0, then

detMD(m) = Axδ1,1+···+δs,1−N(m)yδ1,2+···+δs,2−N(m)

for some A ∈ K\0, with N(m) ∈ Z≥0 being some constant that depends only
on m.

This motivates the following definition:

Definition 2.4. Let D be a diagram and #D =
(
m+1

2

)
. We say that D

is non-special (resp. special) of degree m if detMD(m) 6= 0 (resp. = 0).

At this point, an attractive idea may come to mind that maybe non-special
systems with multiple points can be somehow constructed from single-point
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non-special systems, in terms of their “supporting” diagrams. It turns out
that this idea may be applied in some specific situations. We explain the
details in the following section.

3. Unique tilings. We now introduce the notion of a unique tiling, and
state Theorems 3.2 and 3.5. Thanks to these theorems, we will be able to
prove non-specialty of linear systems in terms of finding a solution for some
specific problem of exact covering.

Definition 3.1. Given a diagram D, we define its center of mass c(D)
by

(3.1) Q2 3 (c1(D), c2(D)) = c(D) :=
1

#D

∑
d∈D

d.

We say that a finite and non-empty set of diagrams T is a tiling if any two
elements of T are disjoint. Suppose that T and T ′ are tilings, and consider
a mapping f : T → T ′. We say that T and T ′ are congruent through f , and
write f : T ' T ′, if the following conditions hold:

(i) #f(D) = #D, c(f(D)) = c(D) for any D ∈ T ,
(ii) f is one-to-one,
(iii)

⋃
T =

⋃
T ′.

A tiling T that contains only non-special diagrams is said to be unique if for
any tiling T ′ the condition f : T ' T ′ implies that either T = T ′ and
f = idT , or T ′ contains a special diagram.

The following theorem states a relation between uniqueness of a partic-
ular tiling and non-specialty of a linear system.

Theorem 3.2. Let T = {D1, . . . , Dr} be a unique tiling such that #Di =(
mi+1

2

)
. If D is a diagram for which one of the following conditions holds:

(i) D1 ∪ · · · ∪Dr ⊂ D,
(ii) D ⊂ D1 ∪ · · · ∪Dr,

then LD(m1, . . . ,mr) is non-special.

Remark. The following notation will be used throughout the proof.
Given a diagram D and numbers m, r, i > 0, where i ≤ r, we define

M
(i)
D (m) := MD(0×i−1,m, 0×r−i).

Observe that the entries of the matrix M
(i)
D (m) depend only on variables

xi, yi (see Definition 2.1).

Proof. Let M = MD(m1, . . . ,mr). We shall group the rows of M into
submatrices M1, . . . ,Mr such that Mi corresponds to

(
mi+1

2

)
equations that
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depend on variables xi, yi (see Definition 2.1). The columns of M are in-
dexed by the elements of D in a natural way (note that each element of D
corresponds to a monomial).

First, observe that it is sufficient to prove the theorem under the assump-
tion of (i). Now define D′ = D1∪ · · ·∪Dr. From (i) it follows that the minor
M(D′) consisting of the columns indexed by the elements of D′ is maximal.
By the Laplace decomposition we get

detM(D′) =
∑

ε(D′1, . . . , D
′
r) detM1(D′1) · · · detMr(D′r)(3.2)

=
∑

ε(D′1, . . . , D
′
r) detM (1)

D′
1
(m1) · · · detM (r)

D′
r
(mr)

where ε(D′1, . . . , D′r) ∈ {−1, 1}, and the summation runs over all partitions
{D′1, . . . , D′r} of D′ for which #D′i =

(
mi+1

2

)
.

Let si = #D′i. From Proposition 2.3 it follows that each component of
the sum (3.2) is non-zero if and only if D′1, . . . , D′r are non-special. Moreover,
such a component is a monomial of the form

(3.3) detM (1)
D′

1
(m1) · · · detM (r)

D′
r
(mr)

= Ax
c1(D′

1)s1−N(m1)
1 y

c2(D′
1)s1−N(m1)

1 · · ·xc1(D′
r)sr−N(mr)

r yc2(D′
r)sr−N(mr)

r

with some A ∈ K\0. Thanks to the uniqueness of T , the non-zero monomial

detM (1)
D1

(m1) · · · detM (r)
Dr

(mr)

turns up as a component of (3.2) only once. Since it cannot be reduced, we
get detM(D′) 6= 0.

Remark. A weak point of Theorem 3.2 is the assumption about unique-
ness of the tiling. Verifying whether a given tiling is unique or not may seem
even more challenging than evaluating the rank of the matrix related to a
linear system “by hand”. This problem is partially addressed by Theorem 3.5,
which gives a sufficient condition for uniqueness of a tiling. Before stating
this result, we introduce some definitions.

Definition 3.3. Given a diagramD, we define its boundary distributions
ϕ1(D), ϕ2(D) and inertial momentum i(D) as follows:

ϕ1(D) : N 3 α 7→ #(D ∩ {α} × N) ∈ N,
ϕ2(D) : N 3 β 7→ #(D ∩ N× {β}) ∈ N,

i(D) =
∑
δ∈D
‖δ − c(D)‖2

where ‖ · ‖ denotes the Euclidean norm. We say that a diagram D is stable
if it is non-special, its vertical and horizontal sections are segments, and for
any diagram D′ the equalities #D = #D′ and c(D) = c(D′) imply that at
least one of the following conditions holds:
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(i) D′ is special,
(ii) i(D′) > i(D),
(iii) i(D′) = i(D), ϕ1(D′) = ϕ1(D) and ϕ2(D′) = ϕ2(D).

We will also need the following relation, defined on the set of all diagrams:

D � D′ ⇔ there exist δ = (δ1, δ2) ∈ D and δ′ = (δ′1, δ
′
2) ∈ D′,

such that δ1 = δ′1 and δ2 ≤ δ′2.
When restricted to a particular tiling, this relation may be extended to
a partial ordering. The following observation contains further details. We
omit the simple proof.

Observation 3.4. Let T be a tiling. Suppose that the projection on the
first coordinate of any diagram in T is a segment. Then the following condi-
tions are equivalent:

(i) � can be extended to a partial ordering on T ,
(ii) for any D,D′ ∈ T the relations D � D′ and D′ � D imply D = D′.

The following fact will be our main tool throughout the proof of Theo-
rem 2.2 in the next section.

Theorem 3.5. Suppose that a tiling T consists of stable diagrams. If the
relation � can be extended to a partial ordering on T , then T is unique.

Example 3.6. Any 1-diagram, i.e. a diagram which is singleton, is stable.
A simple consequence of this trivial observation, thanks to Theorems 3.2
and 3.5, is the well known fact that any linear system with base points of
multiplicities all equal to 1 is non-special. More examples of stable diagrams
can be found in Figure 1.

Fig. 1. All 3-diagrams and 6-diagrams up to isometry. Note that any 6-diagram, apart
from the “triangular” one, can be covered with two 3-diagrams. We will make use of this
property in the proof of Theorem 2.2.

Remark. Whether a given diagram is special or not can be usually
verified with the help of the Bézout Theorem and Proposition 2.3. Thanks
to Observation 3.4(ii), it is very easy to check whether � can be extended
to a partial ordering on a given tiling. Meanwhile, determining if a diagram
is stable or not seems to be a more complex task. As the condition of being
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a stable diagram is an invariant of isometry, the problem of finding all stable
diagrams of a bounded degree leads to a finite number of cases, and so it
can be solved through effective, but tedious, computation.

Figure 1 represents all stable diagrams consisting of three or six elements,
up to isometry. Every diagram that is isometric to one of them will be called
either a 3-diagram or a 6-diagram.

Proof of Theorem 3.5. We proceed by induction on the number of el-
ements of T . It is clear that a tiling consisting of one diagram is always
unique.

Let T = {D1, . . . , Ds} and D =
⋃
T . Suppose that T ′ = {D′1, . . . , D′s}

consists of non-special diagrams and f : T ' T ′ where f : Dj 7→ D′j for j =
1, . . . , s. Our goal is to prove that Dj = D′j for any j. From the elementary
properties of inertial momentum one has

(3.4)
s∑
j=1

#Dj‖c(Dj)‖2 + i(Dj) =
∑
d∈D
‖d‖2 =

s∑
j=1

#D′j‖c(D′j)‖2 + i(D′j).

As the Dj are stable diagrams and the D′j are non-special, it follows that
i(Dj) ≤ i(D′j). From (3.4) we get i(Dj) = i(D′j) for any j = 1, . . . , s. Since
Dj is a stable diagram, it follows that ϕ1(Dj) = ϕ1(D′j) for any j = 1, . . . , s.

By assumption, we can extend � to a partial ordering on T . Without loss
of generality we may assume that D1 is minimal. For any α ∈ N we define

m(α) :=
{

min{β ∈ N : (α, β) ∈ D1} if ϕ1(D1)(α) > 0,
0 otherwise.

Since the vertical sections of D1 are segments and ϕ1(D1)(α) = ϕ1(D′1)(α),
and since D1 is minimal, we get

(3.5) m(α) + (m(α) + 1) + . . .+ (m(α) + ϕ1(D1)(α)− 1)

=
(ϕ1(D1)(α)− 1)ϕ1(D1)(α)

2
+ ϕ1(D1)(α) ·m(α) ≤

∑
(α,β)∈D′

1

β.

Summing up (3.5) for all possible α we get

#D1 · c2(D1) =
∑
α∈N

(ϕ1(D1)(α)− 1)ϕ1(D1)(α)
2

+ ϕ1(D1)(α) ·m(α)(3.6)

≤
∑
α∈N

∑
(α,β)∈D′

1

β = #D′1 · c2(D′1).

From #D1 · c2(D1) = #D′1 · c2(D′1) one actually has equalities in both (3.6)
and (3.5). This implies D1 = D′1. According to the induction hypothesis, the
tiling T \ {D1} is unique. Hence, from f : T \ {D1} ' T ′ \ {D1} it follows
that D2 = D′2, . . . , Dr = D′r.
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4. The proof of Theorem 2.2. We will divide the proof into several
lemmas. The first of these gives an explanation why linear systems which
fulfill one of the conditions from Theorem 2.2 are special.

Remark. One can consider using the Cremona transformation as
a method of verifying the specialty of these linear systems (see for exam-
ple [DJ]). This is due to the fact that every complete linear system of the
form L(d,e)(m1, . . . ,mr) (over P1 × P1) is isomorphic to some linear system
over P2 (see [CGG1] for more details).

Lemma 4.1. The linear systems listed in the hypothesis of Theorem 2.2
are special.

Proof. Later, we will refer to the following two observations. We omit
their proofs as they are very simple.

Observation 4.2. Consider a diagram D and numbers m1, . . . ,mr ≥ 1.
Then the following properties hold:

(i) if #D >
∑

i

(
mi+1

2

)
, then the system LD(m1, . . . ,mr) is non-empty

(i.e. it contains a non-zero polynomial);
(ii) if we have “≤” in (i), then the system LD(m1, . . . ,mr) is non-empty

if and only if it is special.

Observation 4.3. Let D, D′ be diagrams, and m1,m
′
1, . . . ,mr,m

′
r ∈ N

(some of them may be zero). Then

LD(m1, . . . ,mr) · LD′(m′1, . . . ,m
′
r) ⊂ LD+D′(m1 +m′1, . . . ,mr +m′r)

where D + D′ = {d + d′ | d ∈ D, d′ ∈ D′}. Furthermore, if the systems on
the left-hand side of the inclusion are non-empty, then

dimL LD+D′(m1 +m′1, . . . ,mr +m′r)
≥ max{dimL LD(m1, . . . ,mr), dimL L′D(m′1, . . . ,m

′
r)}.

Let us begin with a system of the form (S2), i.e. we assume that q+ r =
2n+ 1 for some n ≥ 0 and claim that the following system is special:

L(q+2r−1,2)(2
×q, 3×r).

Thanks to Observation 4.2(ii) it is sufficient to show that the system is
non-empty. From Observation 4.3 it follows that

(L(n,1)(1
×q, 1×r))2 · L(r,0)(0

×q, 1×r) ⊂ L(q+2r−1,2)(2
×q, 3×r).

The factors are non-empty thanks to Observation 4.2(i) as the corresponding
diagrams have respectively 2(n+1) and r+1 elements. The assertion is now
a consequence of Observation 4.3.
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The reader may verify that a similar argument can be applied to (S3a),
(S3d) and (S4) as long as one considers the following inclusions:

L(2n,2)(2
×2n+1) · L(n,1)(1

×2n+1) ⊂ L(3n,3)(3
×2n+1),

L(2n+2,2)(2
×2, 2×2n+1) · L(n,1)(0

×2, 1×2n+1) ⊂ L(3n+2,3)(2
×2, 3×2n+1),

L(4,2)(2
×5) · L(1,2)(1

×5) ⊂ L(5,4)(3
×5).

From the case (S2) we already know that the factors containing base points
of multiplicity 2 are non-empty.

We will need a more detailed estimation for (S3b) and (S3c). Let us
consider the following inclusions:

L(2n,2)(0, 2, 2
×2n) · L(n,1)(0, 0, 1

×2n) ⊂ L(3n,3)(0, 2, 3
×2n),

L(2n,2)(0, 2, 2
×2n) · L(n,1)(1, 0, 1

×2n) ⊂ L(3n,3)(1, 2, 3
×2n),

L(2n,2)(0, 0, 2
×2n+1) · L(n+1,1)(0, 0, 1

×2n+1) ⊂ L(3n+1,3)(0, 0, 3
×2n+1),

L(2n,2)(0, 0, 2
×2n+1) · L(n+1,1)(0, 1, 1

×2n+1) ⊂ L(3n+1,3)(0, 1, 3
×2n+1),

L(2n,2)(0, 0, 2
×2n+1) · L(n+1,1)(1, 1, 1

×2n+1) ⊂ L(3n+1,3)(1, 1, 3
×2n+1).

In each case we can easily compute the dimension of the second factor,
which equals 2, 1, 3, 2, 1 respectively (2). Since the first factor is non-empty,
by Observation 4.3 the dimension of the system on the right-hand side of the
inclusion is at least 2, 1, 3, 2, 1, and this is more than the expected dimension.
Therefore, all systems on the right are special.

We now move to the cases (S0) and (S1). First, consider the system
L(d,1)(1×p, 2×q, 3×r) and suppose that

p+ 3q + 5r ≤ 2d+ 1 and r ≥ 1.

LetM = M(d,1)(1×p, 2×q, 3×r). Our goal is to show that each maximal minor
of M is zero. Since any six points of the diagram {0, . . . , d} × {0, 1} are
contained in two lines, from Proposition 2.3 it follows that the rows of M
corresponding to any point of multiplicity 3 (we assumed that there is at least
one such point) are linearly dependent. Hence, if only p+3q+6r ≤ 2d+2 (i.e.
the number of rows does not exceed the number of columns), thenM cannot
have the maximal rank. If p+3q+6r > 2d+2 (i.e. there are more rows than
columns), then from p+ 3q + 5r ≤ 2d+ 1 it follows that among any 2d+ 2
rows there are at least six corresponding to the same point of multiplicity 3.
Moreover, these rows are linearly dependent, as observed before.

Finally, consider an (S0) system L(d,0)(1×p, 2×q, 3×r); i.e. assume that
p + 2q + 3r ≤ d and max{q, r} ≥ 1. Let M = M(d,0)(1×p, 2×q, 3×r). First,
observe that as long as the number of rows does not exceed the number of

(2) Let us recall that systems containing only points of multiplicity 1 are always
non-special (see Example 3.6).
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columns, we can proceed as before. Otherwise, from p+2q+3r ≤ d it follows
that among any d+ 1 rows there are at least three corresponding to a point
of multiplicity 2, or at least four corresponding to a point of multiplicity 3.
Clearly, we can apply one of the previous arguments to the former case.
To deal with the latter, observe that given any four rows corresponding to
a point of multiplicity 3, at least one of them is zero. Namely, the zero row
corresponds to one of the three linear equations that arise from calculating
partial derivatives ∂/∂Y , ∂2/∂Y 2 and ∂2/∂X∂Y . They are all zero, because
polynomials in any system of the form L(d,0)(. . .) do not depend on the
variable Y .

Remark 4.4. In the following lemmas we prove non-specialty of some
class of linear systems. In fact, we only need to verify the following property:

Given a system of the form L(d,e)(1×p, 2×q, 3×r), for which none of the
conditions (S0–4) holds, there exists a tiling that fulfills the hypotheses of
Theorems 3.2 and 3.5, i.e. it either fits into the diagram {0, . . . , d}×{0, . . . , e}
or covers all of its nodes.

The assumption in Theorem 3.5 concerning the possibility of extending
� to a partial ordering will always be fulfilled. This will follow immediately
from Observation 3.4(ii).

Lemma 4.5. Any system of the form L(d,0)(1×p, 2×q, 3×r) where p+2q+
3r > d or q = r = 0 (i.e. (S0) does not hold) is non-special.

Proof. The case of q = r = 0 follows from the fact that any system with
all multiplicities equal to 1 is non-special (see Example 3.6).

Now suppose that p+2q+3r > d. According to Theorem 3.2 we only need
to check whether it is possible to cover the diagram {0, . . . , d} × {0} with
1-diagrams, 3-diagrams and 6-diagrams, numbering p, q and r respectively.
Thanks to the inequality p+ 2q+ 3r > d, the greedy algorithm presented in
Figure 2 will do.

Fig. 2. The greedy algorithm for covering diagram {0, . . . , d}×{0} under the assumption
p + 2q + 3r > d

Lemma 4.6. Any system of the form L(d,1)(1×p, 2×q, 3×r) where p+3q+
5r > 2d+ 1 or r = 0 (i.e. (S1) does not hold) is non-special.

Proof. If p + 3q + 5r > 2d + 1, then one can easily cover all nodes of
the diagram D = {0, . . . , d} × {0, 1} using the greedy algorithm suggested
in Figure 3.
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Fig. 3. The greedy algorithm for covering the diagram {0, . . . , d} × {0, 1} under the as-
sumption p + 3q + 5r > 2d + 1

Now suppose that r = 0 and p+3q ≤ 2d+1. Consider a tiling consisting
of L-shaped 3-diagrams arranged from left to right along D (as shown in
Figure 4). Thanks to the assumption p+ 3q ≤ 2d+ 1, all q diagrams will fit
into D. Moreover, this tiling may be extended by any number of 1-diagrams
(p in this case) so that condition (i) from Theorem 3.2 remains true.

Fig. 4. A tiling that fits into {0, . . . , d}×{0, 1} under the assumption r = 0, p+3q ≤ 2d+1

Remark 4.7. We will make use of the last argument from the proof of
Lemma 4.6 a few more times. It is generally true that given a tiling which
satisfies the hypotheses of Theorems 3.2 and 3.5, one can always add a single
1-diagram such that these hypotheses remain satisfied. It seems reasonable
to call this relative (3) property of a tiling “extendability by a 1-diagram”. It
is clear that one can introduce the same notion for diagrams of higher order
(like 3 or 6). Note that an arbitrary tiling does not have to be extendable
by a 6- or even 3-diagram.

From the fact that every tiling is extendable by a 1-diagram it follows
that every tiling is extendable by an arbitrary number of 1-diagrams. This
will allow us to simplify the proofs by assuming p = 0.

Lemma 4.8. Any system of the form L(d,2)(1×p, 2×q, 3×r) where p > 0
or d 6= q + 2r − 1 or 2 | q + r (i.e. (S2) does not hold) is non-special.

Proof. First, assume that 2 | r+ q. Then one can combine all 3-diagrams
and 6-diagrams into 2× 3, 3× 3 and 4× 3 blocks (see Figure 5). It is clear
that any tiling created by arranging these blocks from left to right along the
diagram D = {0, . . . , d}×{0, 1, 2} will satisfy the hypothesis of Theorem 3.2,
i.e. the tiling will either fit into D or cover all of its nodes.

Now suppose that 2 - q + r and d 6= q + 2r − 1. The difference between
the current and the previous case is that after creating 2× 3, 3× 3 and 4× 3
blocks, one 3-diagram or one 6-diagram remains unpaired. Using the same

(3) It depends on the “support” diagram of the linear system.
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Fig. 5. Left: 3- and 6-diagrams combined into 2 × 3, 3 × 3 and 4 × 3 blocks. Right: if
2 - q + r and #D = 3q + 6r, then one node remains unoccupied (see the proof below).

algorithm as before, we may end up with a tiling which neither fits into D,
nor covers all of its nodes (see Figure 5). However, this is possible only when
#D = 3q + 6r ⇔ 3d+ 3 = 3q + 6r, which we assumed to be false.

Finally, observe that if 2 - q + r and d = q + 2r − 1, then the prob-
lem identified in the previous case can be easily addressed by covering the
unoccupied node (see Figure 5) with a single 1-diagram. This is possible,
since according to the hypothesis, one has p > 0 as long as 2 - q + r and
d = q + 2r − 1.

Lemma 4.9. Assume that 3 ≤ d and p, q, r ≥ 0. Furthermore, n is chosen
to satisfy 0 ≤ d−3n < 3. Suppose that none of the following conditions holds
(see Theorem 2.2):

(S3a) d = 3n, p = q = 0 and r = 2n+ 1,
(S3b) d = 3n, p ≤ 1, q = 1 and r = 2n,
(S3c) d = 3n+ 1, p ≤ 2, q = 0 and r = 2n+ 1,
(S3d) d = 3n+ 2, p = 0, q = 2 and r = 2n+ 1.

Then the system L(d,3)(1×p, 2×q, 3×r) is non-special.

Proof. Observe that if r ≥ 2n+ 2, hence 6r ≥ 12n+ 12 ≥ 4(d+ 1), then
the diagram D = {0, . . . , d}×{0, 1, 2, 3} can be covered with n+1 blocks of
size 3× 4, each tiled with a pair of 6-diagrams.

d + 1 ≡ 0 mod 3

d + 1 ≡ 2 mod 3

d + 1 ≡ 1 mod 3

Fig. 6. Three algorithms for covering the diagram D = {0, . . . , d} × {0, 1, 2, 3} that can
be applied if 6r ≤ #D − 10.



Linear systems over P1 × P1 117

If r ≤ 2n− 1, so 6r ≤ 12n− 6 ≤ #D− 10 (i.e. after using all possible 6-
diagrams there are at least 10 unoccupied nodes), then one of the algorithms
presented in Figure 6 (the choice of the algorithm depends on d+1 modulo 3)
can be used to construct a tiling that either fits into D, or covers all of its
nodes. The blocks on the right in Figure 6 need to be used if the number
of 6-diagrams is even. Even though the algorithm is given only for p = 0,
one can simply add the desired number of 1-diagrams after constructing the
tiling from 3- and 6-diagrams (see Remark 4.7).

We still need to construct some tiling for r = 2n and r = 2n+1. Observe
that using n − 1 blocks of size 3 × 4 one reduces the problem to r = 2 or
r = 3, and d + 1 ∈ {4, 5, 6}. Since we assumed that none of the conditions
(S3a–d) hold, it can be easily verified that to get the proper tiling one can
always choose a subset of one of the tilings presented in Figure 7 and extend
it by a desired number of 1-diagrams, if needed.

Fig. 7. If r ∈ {2, 3} and d+1 ∈ {4, 5, 6}, then the desired tiling is a subset of one of these
tilings (possibly extended by a number of 1-diagrams).

Lemma 4.10. If p > 0 or q > 0 or r 6= 5 (i.e. (S4) does not hold), then
the system L(5,4)(1×p, 2×q, 3×r) is non-special.

Proof. There exists a 6-diagram covering of D = {0, . . . , 5} × {0, . . . , 4}
that uses precisely six diagrams. Hence, if only r ≥ 6, the problem is solved.
Supposing r = 0, one can construct the desired tiling by using 3-diagrams
combined into 3× 2 and 2× 3 blocks, so that as along as 3q ≥ #D it would
cover all nodes of D, and it would fit into D if the opposite inequality holds.

When r = 5 and p > 0, the first tiling on the right in Figure 8 can be
used. If p happens to be zero, then according to our assumptions q > 0,
and so the 1-diagram covering of the single node in D can be replaced by
a 3-diagram.

We still need to consider r ∈ {1, 2, 3, 4}, in which case a subset of one of
the four remaining tilings presented in Figure 8 can be used, depending on
r and the number of available 3-diagrams.
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Fig. 8. Tilings that can be used if r ∈ {1, 2, 3, 4, 5}

Lemma 4.11. For any d ≥ 6 and p, q, r ≥ 0 a linear system of the form
L(d,4)(1×p, 2×q, 3×r) is non-special.

7× 5

8× 5

9× 5

10× 5

11× 5

12× 5

18× 5

17× 5

16× 5

15× 5

14× 5

13× 5

Fig. 9. Solutions for 6 ≤ d < 18, and q = 0. As long as q 6= 0 one should consider replac-
ing an appropriate number of 6-diagrams with the same number of pairs of 3-diagrams.
This can be done (see for example Figure 1 where it is shown explicitly) for every “non-
triangular“ 6-diagram.
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Proof. Without loss of generality we may assume that p = 0. First, let
q = 0 and observe that tilings presented in Figure 9 (or their subsets) can
be used to prove non-specialty as long as d < 18. Also observe that those
tilings are always extendable by a single “non-triangular” 6-diagram (see
Remark 4.7).

Now assume that d ≥ 18. If r < 10, then one can easily fit all 6-diagrams
into D. For example, one can choose any subset of a tiling presented in
Figure 9. If r ≥ 10, then one reduces the problem of finding an appropriate
tiling to a smaller d, namely d−12, by using the 12×5 tiling in the bottom-left
corner of Figure 9.

Finally, suppose that q is arbitrary and define n = bq/2c. Let us first
construct a tiling with n+r 6-diagrams according to the algorithm described
above. When it is done, remove n (not arbitrary) 6-diagrams, and replace
them with 2n 3-diagrams. Note that this can be always done, as any 6-
diagram, apart from the “triangular” one, can be covered with two 3-diagrams
(see Remark 4.7). However, some of the tilings from Figure 9 consist of the
“triangular” diagram. In such an instance, the replacing strategy can be
worked out explicitly.

For example, the top-left 7×5 tiling consists of one triangular 6-diagram.
As long as n ≤ 4, we keep replacing the 4 “non-triangular” diagrams. As soon
as n ≥ 4, we can start by using the strategy presented in Figure 9, which
solves the problem of the “triangular” diagram, and then keep on replacing
the remaining 6-diagrams. The same type of reasoning can be applied to the
9× 5 tiling.

If q = 2n, then we are already done. If not, then we have to show that, rel-
ative toD (see Remark 4.7), the resulting tiling is extendable by a 3-diagram.

6× 6 6× 6 7× 6 9× 6

8× 6 10× 6 11× 6

Fig. 10. Solutions for 5 = e ≤ d < 11 together with a suggested strategy of replacing the
“triangular” 6-diagram
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8× 7

7× 7

10× 7

8× 8

10× 8

9× 9

11× 9

11× 11

9× 7

11× 7

11× 8

9× 8

10× 9

11× 10

10× 10

Fig. 11. Solutions for 5 < e ≤ d < 12 (see Lemma 4.12)
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A problem can only occur when not all nodes of D have been covered so far.
However, in such an instance the tiling must have been entirely created with
blocks that contain tilings (or their subsets) presented in Figure 9 (4). It can
be easily verified that these tilings are all extendable by a single 3-diagram
(relative to the corresponding blocks).

Lemma 4.12. For any 5 ≤ e ≤ d and p, q, r ≥ 0 a linear system of the
form L(d,e)(1×p, 2×q, 3×r) is non-special.

Proof. Observe that any rectangular diagram of height 6 and width ≥ 6
can be tiled with 6-diagrams combined into blocks presented in Figure 10.
We can proceed as in the proof of Lemma 4.11. First, assume that p = q = 0.
If d, e < 11, then the tilings presented in Figure 11 will do.

Now suppose that d ≥ 11. If r ≤ d + 1, then the existence of a tilling
that fits into D follows from the previous observation. As soon as r > d+ 1,
one can use a 6× (e+ 1) tiling to reduce the problem to smaller d′ = d− 6
and smaller r′ = r − (e + 1), while still having d′ > 5. If d′ < e, then one
may swap their roles, and eventually proceed by induction.

For arbitrary q the replacing strategy can be used as described in the
proof of Lemma 4.11. The analysis of the “triangular” cases can be easily
performed with the help of the strategies suggested in Figures 10 and 11.
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