On sectional curvature of a Riemannian manifold with semi-symmetric metric connection

by Füsun Özen Zengin, S. Aynur Uysal and Sezgin Altay Demirbag (Istanbul)

Abstract. We prove that if the sectional curvature of an \(n \)-dimensional pseudo-symmetric manifold with semi-symmetric metric connection is independent of the orientation chosen then the generator of such a manifold is gradient and also such a manifold is subprojective in the sense of Kagan.

1. Introduction. Let \((M_n, g)\) be an \(n \)-dimensional differentiable manifold of class \(C^\infty \) with the metric tensor \(g \), the Riemannian connection \(\nabla \) and a smooth linear connection \(\nabla^* \) on \(M_n \). A smooth linear connection \(\nabla^* \) on \(M_n \) is said to be semi-symmetric if its torsion tensor \(T \) satisfies the relation

\[
T(X, Y) = w(Y)X - w(X)Y
\]

where \(w \) is a smooth linear differential form and \(X \) and \(Y \) are any smooth vector fields on \(M_n \), [Y1]. The concept of a semi-symmetric connection has been studied on Kenmotsu manifolds [PD1], almost contact manifolds [DS], Sasakian manifolds [PD2] and Riemannian manifolds [D]. It is known [Y1] that if \(\nabla^* \) is a semi-symmetric metric connection then

\[
\nabla^*_X Y = \nabla_X Y + w(Y)X - g(X, Y)\rho, \tag{2}
\]

\[
g(X, \rho) = w(X), \tag{3}
\]

for any vector fields \(X \) and \(Y \). Further, it is also known [Y1] that if \(R^* \) and \(R \) denote the curvature tensors of the smooth linear connection \(\nabla^* \) and the Levi-Civita connection \(\nabla \), respectively, then

\[
R^*(X, Y)Z = R(X, Y)Z - \alpha(Y, Z)X + \alpha(X, Z)Y - g(Y, Z)AX + g(X, Z)AY \tag{4}
\]

2010 Mathematics Subject Classification: 53B15, 53B20.
Key words and phrases: semi-symmetric metric connection, sectional curvature, conformally flat manifold, pseudo-symmetric manifold, concircular vector field.
where α is a tensor field of type $(0,2)$ defined by

$$\alpha(X,Y) = (\nabla_X w)(Y) - w(X)w(Y) + \frac{1}{2} w(\rho)g(X,Y)$$

and A is a tensor field of type $(1,1)$ defined by

$$g(AX,Y) = \alpha(X,Y)$$

for any vector fields X and Y.

We shall use the following results in the next section:

In a local coordinate system, equations (4), (5) and (6) can be written as follows:

$$(7) \ \ R_{ijkh}^* = R_{ijkh} - \frac{1}{2} n(n-2) P_{ij} g_{kh} + \frac{1}{2} P_{ijkh} + \frac{1}{2} P_{jikh} + \frac{1}{2} P_{ijkh} - \alpha g_{ih}$$

where

$$(8) \ \ P_{jk} = \nabla_j w_k - w_j w_k + \frac{1}{2} g_{jk} w^h w^h, \quad P^h_k = P_{km} g^{mh}.$$

From (7), we have (see [Y1])

$$(9) \ \ R_{ih}^* = R_{ih} - (n-2) P_{ih} - \alpha g_{ih},$$

$$(10) \ \ R^* = R - 2(n-1) \alpha,$$

where

$$(11) \ \ \alpha = g^{ih} P_{ih}.$$

M. C. Chaki [CH] introduced a type of non-flat Riemannian manifold (M_n, g) $(n \geq 2)$ whose curvature tensor R_{hijk} satisfies the condition

$$(12) \ \ \nabla_l R_{hijk} = 2 \lambda_l R_{hijk} + \lambda_h R_{lijk} + \lambda_i R_{hilk} + \lambda_j R_{hijkl} + \lambda_k R_{hijl}$$

where λ_l is a non-zero vector which is called the generator of the manifold. Such a manifold is called pseudo-symmetric and is denoted by $(PS)_n$.

A Riemannian manifold is called an Einstein manifold if its Ricci tensor is proportional to its metric.

Moreover, an n-dimensional manifold with a semi-symmetric metric connection is called an Einstein manifold with a semi-symmetric metric connection if the symmetric part of the Ricci tensor is proportional to the metric, i.e.,

$$(13) \ \ R^*_{(ij)} = \lambda g_{ij}$$

where λ is a scalar function.

Now, we can state the following lemma which will be used in our subsequent work:

Lemma. Suppose that S is a $(0,2)$ covariant tensor. If for all linearly independent vectors X and Y,

$$(14) \ \ S_{\alpha\beta\lambda\mu} X^\alpha Y^\beta X^\lambda Y^\mu = 0,$$
then
\[S_{\alpha\beta\lambda\mu} + S_{\lambda\mu\alpha\beta} + S_{\alpha\mu\lambda\beta} + S_{\lambda\beta\alpha\mu} = 0. \]
Here \(X^\alpha \) and \(Y^\beta \) are the contravariant components of \(X \) and \(Y \), respectively, [LR].

2. Sectional curvatures of a Riemannian manifold having a semi-symmetric metric connection. Let \(P(x^k) \) be any point of \(M_n(\nabla^*, g) \) and denote by \(X^\alpha, Y^\alpha \) the components of two linearly independent vectors \(X, Y \in T_P(M_n) \). These vectors determine a two-dimensional subspace (plane) \(\pi \) in \(T_P(M_n) \).

The scalar
\[K^*(\pi) = \frac{R^*_{\alpha\beta\lambda\mu}X^\alpha Y^\beta X^\lambda Y^\mu}{(g^\beta\lambda g^\alpha\mu - g^\alpha\lambda g^\beta\mu)X^\alpha Y^\beta X^\lambda Y^\mu} \]
is called the sectional curvature of \(M_n(\nabla^*, g) \) at \(P \) with respect to the plane \(\pi \).

From (16), it follows that
\[S_{\alpha\beta\lambda\mu}X^\alpha Y^\beta X^\lambda Y^\mu = 0 \]
where we have put
\[S_{\alpha\beta\lambda\mu} = R^*_{\alpha\beta\lambda\mu} - K^*(\pi)(g^\beta\lambda g^\alpha\mu - g^\alpha\lambda g^\beta\mu). \]
Assume that at any point \(P \in M_n(\nabla^*, g) \), the sectional curvatures for all planes in \(T_P(M_n) \) are the same. A two-dimensional Riemannian manifold having semi-symmetric metric connection need not be considered, since it has only one plane at each point. Then, according to the Lemma, the condition (15) gives
\[R^*_{\alpha\beta\lambda\mu} + R^*_{\lambda\mu\alpha\beta} + R^*_{\alpha\mu\lambda\beta} + R^*_{\lambda\beta\alpha\mu} = 2K^*(\pi)(g_{\mu\alpha}g_{\lambda\beta} + g_{\alpha\beta}g_{\mu\lambda}) \]
\[R^*_{\lambda\beta} = \frac{2}{n-1}K^*(\pi)g_{\lambda\beta}. \]
Multiply the equation (19) by \(g^\alpha\mu \) to find
\[\frac{R^*_{\lambda\beta} + R^*_{\beta\lambda}}{2} = (n-1)K^*(\pi)g_{\lambda\beta}. \]
This can be rewritten in the form
\[R^*_{(\lambda\beta)} = (n-1)K^*(\pi)g_{\lambda\beta} \]
where
\[R^*_{(\lambda\beta)} = \frac{R^*_{\lambda\beta} + R^*_{\beta\lambda}}{2}. \]
Transvecting (21) by \(g^\lambda\beta \), we get
\[R^* = n(n-1)K^*(\pi). \]
From (9), we have
\begin{equation}
R_{[\lambda\beta]}^* = (2 - n)P_{[\lambda\beta]}.
\end{equation}

Since the sectional curvatures at \(P \in M_n(\nabla^*, g) \) are the same for all planes in \(T_P(M_n) \), by using (16), we have
\begin{equation}
R_{\alpha\beta\lambda\mu}^* = K^* (\pi) (g_{\beta\lambda}g_{\alpha\mu} - g_{\alpha\lambda}g_{\beta\mu}).
\end{equation}

Multiplying (25) by \(g^{\alpha\mu} \) and summing over \(\alpha \) and \(\mu \), we get
\begin{equation}
R_{\lambda\beta}^* = K^* (\pi) (n - 1)g_{\lambda\beta}.
\end{equation}

From (8), (21), (25) and (26), it follows that
\begin{align}
& (27) \quad R_{[\lambda\beta]}^* = 0, \\
& (28) \quad \nabla_{[\lambda} w_{\beta]} = 0.
\end{align}

(21) means that \(M_n(\nabla^*, g) \) is an Einstein manifold with a semi-symmetric metric connection. (28) implies that the 1-form \(w \) is closed.

With the help of (7), (8) and (28), we find that
\begin{equation}
R_{\alpha\beta\lambda\mu}^* + R_{\beta\lambda\alpha\mu}^* + R_{\lambda\alpha\beta\mu}^* = 0,
\end{equation}
i.e., the first Bianchi identity holds for the linear connection.

From (9) and (10) we have
\begin{equation}
P_{ij} = -\lambda_{ij} - \frac{R_{ih}^*}{n - 2} - \frac{R^* g_{ih}}{2(n - 1)(n - 2)}
\end{equation}
where
\begin{equation}
\lambda_{ij} = -\frac{1}{n - 2} R_{ij} + \frac{1}{2(n - 1)(n - 2)} R g_{ij}.
\end{equation}

From (21), (23) and (27), we have \(R_{ih}^* = R^* g_{ih}/n \). Then, by using (30), we find
\begin{equation}
P_{ij} = -\lambda_{ij} - \frac{R^* g_{ij}}{2n(n - 1)}.
\end{equation}

By the aid of the equations (7), (23) and (32), we get
\begin{equation}
R_{ijkl}^* = C_{ijkl} + K^* (\pi) (g_{ih}g_{jk} - g_{ik}g_{jh}).
\end{equation}

By using (25) and (33), we can easily see that this space is conformally flat.

In [1], by using a different method, it has been shown that if a Riemannian manifold admits a semi-symmetric metric connection with closed \(\pi \) constant curvature, then the manifold is conformally flat.
Since this manifold is conformally flat, we have

\[R_{ijkh} = \frac{1}{(n-2)} (g_{jk}R_{ih} - g_{ik}R_{jh} + g_{ih}R_{jk} - g_{jh}R_{ik}) \]

\[- \frac{1}{(n-1)(n-2)} R (g_{jk}g_{ih} - g_{jh}g_{ik}). \]

By using (31), the equation (34) can be rewritten as

\[R_{ijkh} = -g_{jk}\lambda_{ih} - g_{ih}\lambda_{jk} + g_{ik}\lambda_{jh} + g_{jh}\lambda_{ik}. \]

If we multiply the equation (12) by \(g^{hk} \), we obtain

\[2\lambda_l R_{jk} + \lambda_j R_{lk} + \lambda_k R_{lj} = \nabla_l R_{jk}. \]

Multiplying (36) by \(g^{jk} \), we find

\[2\lambda_l R + 4\lambda_i g^{ih} R_{lh} = \nabla_l R. \]

By cyclic permutation of the indices \(l, j \) and \(k \) and by using the last two equations and (36), we have the relation

\[\lambda_l R_{jk} + \lambda_j R_{lk} + \lambda_k R_{lj} = \frac{1}{4} (\nabla_l R_{jk} + \nabla_j R_{kl} + \nabla_k R_{lj}). \]

It is known [CH] that a conformally flat \((PS)_n\) \((n \geq 3)\) cannot be of zero scalar curvature and in a conformally flat \((PS)_n\), it is also known [T] that

\[R_{ij} = \frac{R - t}{n - 1} g_{ij} + \frac{nt - R}{(n-1)\lambda_p\lambda^p} \lambda_i \lambda_j \]

where \(R \) denotes the scalar curvature and \(t \) is a scalar.

The expression (39) can be written as

\[R_{ij} = \theta g_{ij} + \beta v_i v_j \]

where

\[\theta = \frac{R - t}{n - 1}, \quad \beta = \frac{nt - R}{n - 1}, \quad \lambda^h R_{hk} = t \lambda_k, \quad v_i = \frac{\lambda_i}{\sqrt{\lambda_m\lambda^n}} \]

and \(v_i \) is a unit vector.

Thus, from (34) and (40), we have

\[R_{ijkl} = b(-g_{jl}v_i v_k + g_{jk}v_i v_l - g_{ik}v_j v_l + g_{il}v_j v_k) + a (g_{dl}g_{jk} - g_{jl}g_{ik}) \]

where \(a = \frac{R - 2t}{(n-1)(n-2)} \) and \(b = \frac{nt - R}{(n-1)(n-2)}. \)

D. Smaranda [S] calls a Riemannian manifold whose curvature tensor satisfies (42) a manifold of almost constant curvature. Hence, we have the following theorem:

Theorem 2.1. If a \((PS)_n\) admits a semi-symmetric metric connection with constant sectional curvature then this manifold is of almost constant curvature.
For a conformally flat \((PS)_n\), the following condition holds \([T]\):

\[
\lambda^j \nabla_l R_{jk} = \lambda^j \lambda_j R_{lk} + \frac{3n-2}{n-1} t \lambda_l \lambda_k - \frac{t}{n-1} g_{lk} \lambda^j \lambda_j.
\]

Taking the covariant derivative of \((41)_3\) with respect to \(x^m\) and using equation \((43)\), we find

\[
\lambda^h \lambda_h R_{km} + \frac{3n-2}{n-1} t \lambda_m \lambda_k - \frac{t}{n-1} g_{km} \lambda^h \lambda_h = \lambda_k \nabla_m t + t \nabla_m \lambda_k - R_{hk} \nabla_m \lambda^h.
\]

From \((40)\), \((41)\) and \((44)\), we get

\[
R - t n^{-1} g_{km} \lambda^h \lambda_h + \frac{nt - R}{n-1} \lambda_k \lambda_m + \frac{(3n-2)t}{n-1} \lambda_k \lambda_m - \frac{t}{n-1} g_{km} \lambda^h \lambda_h
\]

\[
= \lambda_k \nabla_m t + t \nabla_m \lambda_k - R_{hk} \nabla_m \lambda^h.
\]

If we multiply \((45)\) by \(\lambda^k\) then we find

\[
\nabla_m t = 4t \lambda_m.
\]

With the help of \((37)\) and \((40)\), we get

\[
\nabla_l R = 2((n+2) \theta + 3 \beta) \lambda_l.
\]

From equation \((47)\), it is clear that the covariant vector \(\lambda_l\) is a gradient. Thus, we have the following theorem:

Theorem 2.2. If a \((PS)_n\) admits a semi-symmetric metric connection with constant sectional curvature then the covariant vector \(\lambda_l\) of this manifold is a gradient.

Now, for a conformally flat manifold \((PS)_n\), we have (see \([DG]\))

\[
v_l \nabla_k \beta - v_k \nabla_l \beta + \beta (\nabla_k v_l - \nabla_l v_k) = 0.
\]

By using \((41)_2\) and \((46)\), we obtain

\[
v_l \nabla_k \beta - v_k \nabla_l \beta = 0.
\]

By using \((48)\) and \((49)\), we get

\[
\beta = 0 \quad \text{or} \quad \nabla_k v_l - \nabla_l v_k = 0.
\]

If \(\beta = 0\) then the manifold is flat. This contradicts the hypotheses. Thus, from \((50)\),

\[
\nabla_k v_l - \nabla_l v_k = 0.
\]

It is known \([DG]\) that the covariant vector \(v_i\) of a conformally flat \((PS)_n\) is a proper concircular vector field. Hence, we have the following theorem:

Theorem 2.3. A \((PS)_n\) admitting a semi-symmetric metric connection with a constant sectional curvature has a proper concircular vector field.
It is known [A] that if a conformally flat manifold admits a proper concircular vector field then the manifold is a subprojective manifold in the sense of Kagan. Thus, we can state the following theorem:

Theorem 2.4. If a $(PS)_n$ admits a semi-symmetric metric connection with a constant sectional curvature then this manifold is subprojective.

In [Y3], K. Yano proved that for a Riemannian manifold to admit a concircular vector field, it is necessary and sufficient that there exists a coordinate system with respect to which the fundamental quadratic differential form may be written in the form

$$ds^2 = (dx^1)^2 + c^q g^{*}_{\alpha \beta} dx^\alpha dx^\beta$$

where

$$g^{*}_{\alpha \beta} = g^{*}_{\alpha \beta}(x')$$

are functions of x' ($\alpha, \beta, \nu = 2, 3, \ldots, n$) and $q = q(x^1) \neq \text{const}$ is a function of x^1 only. Since a conformally flat $(PS)_n$ admits a proper concircular vector field v_i, the manifold under consideration is the warped product $1 \times_{e^q} M^*$ where (M^*, g^*) is an $(n-1)$-dimensional Riemannian manifold.

Since this manifold is conformally flat, from (34), the following equation is satisfied:

$$\nabla_k R_{jl} - \nabla_l R_{jk} = \frac{1}{2(n-1)} (g_{jl} \nabla_k R - g_{jk} \nabla_l R).$$

Gębarowski [G] proved that the warped product $1 \times_{e^q} M^*$ satisfies (52) if and only if M^* is an Einstein manifold.

Thus, we can state the following theorem:

Theorem 2.5. If a $(PS)_n$ admits a semi-symmetric metric connection with a constant sectional curvature then this manifold is the warped product $1 \times_{e^q} M^*$ where M^* is an Einstein manifold.

Acknowledgements. The authors wish to express their sincere thanks to the referee for his valuable suggestions towards the improvement of the paper.

References

Füsun Özen Zengin, Sezgin Altay Demirbag
Department of Mathematics
Istanbul Technical University
34469 Istanbul, Turkey
E-mail: fozen@itu.edu.tr
saltay@itu.edu.tr

S. Aynur Uysal
Department of Mathematics
Dogus University
Kadıköy, Istanbul, Turkey
E-mail: auysal@dogus.edu.tr

Received 24.5.2010
and in final form 9.8.2010 (2222)