Projections onto the spaces of Toeplitz operators

by Marek Ptak (Kraków)

Abstract

Projections onto the spaces of all Toeplitz operators on the N-torus and the unit sphere are constructed. The constructions are also extended to generalized Toeplitz operators and applied to show hyperreflexivity results.

1. Introduction. Arveson [1] defined a projection from the algebra $B\left(H^{2}(\mathbb{T})\right)$ of all bounded linear operators on the Hardy space on the unit circle onto the space of all Toeplitz operators on $H^{2}(\mathbb{T})$. He used the classical Banach limit. We construct a projection from the algebra $B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$ of all bounded linear operators on the Hardy space on the N-torus onto the space of all Toeplitz operators on $H^{2}\left(\mathbb{T}^{N}\right)$. We use the extension of the Banach limit to N-parameter sequences, given in Section 2.

In Section 4 we will use the above projection to show that the subspace of all Toeplitz operators on the N-torus is 2-hyperreflexive (for definition see Section 4). The single variable case was considered in [7].

A natural generalization of the unit circle is not only the N-torus but also the unit sphere $\partial \mathbb{B}_{N}$. In Section 5 we construct a projection from the algebra $B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$ of all bounded linear operators on the Hardy space on the unit sphere onto the space of all Toeplitz operators on $H^{2}\left(\partial \mathbb{B}_{N}\right)$.

In Section 6 we extend the idea of such a projection to generalized Toeplitz operators which were introduced in [10], [11]. We consider both one and multi-variable cases. In Section 7 we give a hyperreflexivity result for generalized Toeplitz operators. The one variable case was considered in [8].
2. Multi-variable Banach limit. There is a functional on all bounded sequences in ℓ^{∞}, which to any convergent sequence $\{x(n)\}_{n \in \mathbb{N}}$ assigns its

[^0]limit (see e.g. [4]). It is called the Banach limit. We extend this idea to multi-variable bounded sequences in $\ell^{\infty}\left(\mathbb{N}^{N}\right)$.

Theorem 2.1. There is a linear functional $\Lambda: \ell^{\infty}\left(\mathbb{N}^{N}, \mathbb{C}\right) \rightarrow \mathbb{C}$ (resp. $\left.\Lambda: \ell^{\infty}\left(\mathbb{N}^{N}, \mathbb{R}\right) \rightarrow \mathbb{R}\right)$ such that
(a) $\|\Lambda\|=1$ and $\Lambda(\mathbf{1})=1$, where $\mathbf{1}$ is the constantly 1 sequence,
(b) if $x \in \ell^{\infty}\left(\mathbb{N}^{N}\right)$ converges, then $\Lambda(x)=\lim _{k \rightarrow \infty, k \in \mathbb{N}^{N}} x(k)$,
(c) if $x \in \ell^{\infty}\left(\mathbb{N}^{N}\right)$ is nonnegative, i.e. $x(k) \geq 0$ for all $k \in \mathbb{N}^{N}$, then $\Lambda(x) \geq 0$,
(d) for any sequence $x \in \ell^{\infty}\left(\mathbb{N}^{N}\right)$ and any $i=1, \ldots, N$, let $x^{(i)}$ denote the sequence $x^{(i)}(k)=x\left(k+e_{i}\right)$, where $e_{i}=(0, \ldots, 1, \ldots, 0)$; then $\Lambda(x)=\Lambda\left(x^{(i)}\right)$.
Proof. First we deal with the case of a real-valued functional, i.e. Λ : $\ell^{\infty}\left(\mathbb{N}^{N}, \mathbb{R}\right) \rightarrow \mathbb{R}$. For each i, set $\mathcal{M}_{i}=\left\{x-x^{(i)}: x \in \ell^{\infty}\left(\mathbb{N}^{N}, \mathbb{R}\right)\right\}$, where $x^{(i)}$ is defined as in (d). Note that \mathcal{M}_{i} is a linear manifold. Let \mathcal{M} be the subspace spanned by all $\mathcal{M}_{i}, i=1, \ldots, N$. We show first that

$$
\begin{equation*}
d(\mathbf{1}, \mathcal{M})=1 \tag{1}
\end{equation*}
$$

where d denotes the distance from the sequence $\mathbf{1}$ to the subspace \mathcal{M}. Since $0 \in \mathcal{M}$ we have $d(\mathbf{1}, \mathcal{M}) \leq 1$. Assume that there are $\varepsilon>0$ and $x_{i} \in \mathcal{M}_{i}$ and $\alpha_{i} \in \mathbb{R}$ with $\left\|\alpha_{i} x_{i}\right\|_{\infty} \leq M, i=1, \ldots, N$, such that

$$
\left\|\mathbf{1}-\sum_{i=1}^{N} \alpha_{i}\left(x_{i}-x_{i}^{(i)}\right)\right\|_{\infty}<1-\varepsilon .
$$

In particular, for fixed $n \in \mathbb{N}$, for all $k=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$ such that $|k|_{\infty}=\max \left|k_{i}\right| \leq n$, we have

$$
1-\sum_{i=1}^{N} \alpha_{i}\left(x_{i}(k)-x_{i}^{(i)}(k)\right)<1-\varepsilon
$$

Summation over k gives

$$
n^{N}-\sum_{i=1}^{N} \alpha_{i}\left(\sum_{\substack{|k|_{\infty} \leq n \\ k_{i}=1}} x_{i}(k)-\sum_{\substack{|k|_{\infty} \leq n \\ k_{i}=n}} x_{i}\left(k+e_{i}\right)\right)<n^{N}-n^{N} \varepsilon
$$

Thus

$$
n^{N} \varepsilon<\sum_{i=1}^{N}\left|\alpha_{i}\right|\left(\sum_{\substack{|k|_{\infty} \leq n \\ k_{i}=1}}\left|x_{i}(k)\right|+\sum_{\substack{|k|_{\infty} \leq n \\ k_{i}=n}}\left|x_{i}\left(k+e_{i}\right)\right|\right) \leq 2 n^{N-1} N M
$$

Hence $n \varepsilon<2 N M$ and we have a contradiction for n large enough, so (1) follows.

The Hahn-Banach theorem yields a linear functional Λ on $\ell^{\infty}\left(\mathbb{N}^{N}, \mathbb{R}\right)$ such that $\Lambda(\mathbf{1})=1, \Lambda(\mathcal{M})=0$ and $\|\Lambda\|=1$.

To see (b), for a given sequence $x \in \ell^{\infty}\left(\mathbb{N}^{N}, \mathbb{R}\right)$ and for all multi-indices in \mathbb{N}^{N}, define by multi-induction the following sequences:

$$
x_{\left(e_{i}\right)}=x^{(i)} \quad \text { and } \quad x_{\left(k+e_{i}\right)}=\left(x_{(k)}\right)^{(i)}
$$

Note that the definition is correct since $\left(x_{\left(k-e_{i}\right)}\right)^{(j)}=\left(x_{\left(k-e_{j}\right)}\right)^{(i)}$. For fixed $k=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$ we have

$$
\begin{aligned}
x_{(k)}-x= & \left(x_{(k)}-x_{\left(k-e_{N}\right)}\right)+\cdots+\left(x_{\left(k_{1}, \ldots,-k_{2}, 1\right)}-x_{\left(k_{1}, \ldots, k_{2}, 0\right)}\right) \\
& +\cdots+\left(x_{\left(k_{1}, 0, \ldots, 0\right)}-x_{\left(k_{1}-1,0, \ldots, 0\right)}\right)+\cdots+\left(x_{(1,0, \ldots, 0)}-x\right) .
\end{aligned}
$$

Thus $\Lambda(x)=\Lambda\left(x_{(k)}\right)$. If x is convergent and $\alpha=\lim _{k^{\prime} \rightarrow \infty, k^{\prime} \in \mathbb{N}^{N}} x\left(k^{\prime}\right)$, then

$$
\begin{aligned}
|\Lambda(x)-\alpha| & =\left|\Lambda\left(x_{(k)}-\alpha \cdot \mathbf{1}\right)\right| \leq\left\|x_{(k)}-\alpha \cdot \mathbf{1}\right\|_{\infty} \\
& \leq \sup \left\{\left|x\left(k_{1}^{\prime}, \ldots, k_{N}^{\prime}\right)-\alpha\right|: k_{i}^{\prime}>k_{i} \text { for all } i\right\}
\end{aligned}
$$

Thus $|\Lambda(x)-\alpha|$ is arbitrarily small and we get (b).
Condition (c) and extension to the case of complex-valued sequences can be shown as in the single variable case (see for example [4]).
3. Projection onto Toeplitz operators on the N-torus. Let \mathbb{T} be the unit circle on the complex plane \mathbb{C}. Set $L^{2}(\mathbb{T})=L^{2}(\mathbb{T}, m)$ and $L^{\infty}(\mathbb{T})=$ $L^{\infty}(\mathbb{T}, m)$, where m is the normalized Lebesgue measure on \mathbb{T}. Let $H^{2}(\mathbb{T})$ be the Hardy space corresponding to $L^{2}(\mathbb{T})$ and let $P_{H^{2}(\mathbb{T})}$ be the orthogonal projection from $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{T})$. We denote by $H^{\infty}(\mathbb{T})$ the Hardy space corresponding to $L^{\infty}(\mathbb{T})$, i.e. the space of those functions from $L^{\infty}(\mathbb{T})$ which have an analytic extension to the whole unit disc \mathbb{D}.

For each $\varphi \in L^{\infty}(\mathbb{T})$ we define $T_{\varphi} \in B\left(H^{2}(\mathbb{T})\right)$ by $T_{\varphi} f=P_{H^{2}(\mathbb{T})}(\varphi f)$ for $f \in H^{2}(\mathbb{T})$. The operator T_{φ} is called a Toeplitz operator with symbol φ. Let $\mathcal{T}(\mathbb{T})$ denote the space of all Toeplitz operators, and $\mathcal{A}(\mathbb{T})$ the space of Toeplitz operators with symbols from $H^{\infty}(\mathbb{T})$. We have ($[6$, Corollary to Problem 194])

$$
\begin{equation*}
\mathcal{T}(\mathbb{T})=\left\{A \in B\left(H^{2}(\mathbb{T})\right): A=T_{z}^{*} A T_{z}\right\} \tag{2}
\end{equation*}
$$

and by [6, Problem 116],

$$
\begin{equation*}
\mathcal{A}(\mathbb{T})=\left\{A \in B\left(H^{2}(\mathbb{T})\right): A T_{z}=T_{z} A\right\} \tag{3}
\end{equation*}
$$

Similarly we denote the corresponding spaces on the N-torus, $L^{2}\left(\mathbb{T}^{N}\right)$, $L^{\infty}\left(\mathbb{T}^{N}\right), H^{2}\left(\mathbb{T}^{N}\right), H^{\infty}\left(\mathbb{T}^{N}\right)$ and the projection $P_{H^{2}\left(\mathbb{T}^{N}\right)}: L^{2}\left(\mathbb{T}^{N}\right) \rightarrow H^{2}\left(\mathbb{T}^{N}\right)$. For each $\varphi \in L^{\infty}\left(\mathbb{T}^{N}\right)$ we define the Toeplitz operator $T_{\varphi} \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$ by $T_{\varphi} f=P_{H^{2}\left(\mathbb{T}^{N}\right)}(\varphi f)$. We denote by $\mathcal{T}\left(\mathbb{T}^{N}\right)$ the space of all Toeplitz operators and by $\mathcal{A}\left(\mathbb{T}^{N}\right)$ the space of all Toeplitz operators with symbols from $H^{\infty}\left(\mathbb{T}^{N}\right)$. By $T_{z_{i}}, i=1, \ldots, N$, we denote the multiplication operators by the independent variables. Since the operators $T_{z_{i}}$ commute we can set $T_{z^{k}}=T_{z_{1}}^{k_{1}} \cdots T_{z^{N}}^{k_{N}}$ for $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{N}\left(z^{k}=z_{1}^{k_{1}} \cdots z_{N}^{k_{N}}\right)$.

Similarly to the one variable case we have the following characterizations (see [9, Proposition 3.3]):

$$
\begin{align*}
\mathcal{T}\left(\mathbb{T}^{N}\right) & =\left\{A \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right): A=T_{z_{i}}^{*} A T_{z_{i}}, i=1, \ldots, N\right\} \tag{4}\\
\mathcal{A}\left(\mathbb{T}^{N}\right) & =\left\{A \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right): A T_{z_{i}}=T_{z_{i}} A, i=1, \ldots, N\right\} \tag{5}
\end{align*}
$$

We will construct a projection onto the space of all Toeplitz operators on the N-torus.

Theorem 3.1. There is a positive linear projection $\pi: B\left(H^{2}\left(\mathbb{T}^{N}\right)\right) \rightarrow$ $\mathcal{T}\left(\mathbb{T}^{N}\right)$ such that
(a) $\pi(I)=I,\|\pi\|=1$,
(b) $\pi(T)=T$ for $T \in \mathcal{T}\left(\mathbb{T}^{N}\right)$,
(c) $\pi\left(A T_{\varphi}\right)=\pi(A) T_{\varphi}$ for $A \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$ and $T_{\varphi} \in \mathcal{A}\left(\mathbb{T}^{N}\right)$,
(d) $\pi(A)$ belongs to the weakly-closed convex hull of $\left\{T_{z^{k}}^{*} A T_{z^{k}}: k \in \mathbb{N}^{N}\right\}$ for $A \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$,
(e) $\pi\left(P_{k}\right)=1$, where P_{k} is the orthogonal projection on the range of $T_{z^{k}}$.
Proof. For $A \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$ and $x, y \in H^{2}\left(\mathbb{T}^{N}\right)$ we define

$$
[x, y]=\Lambda\left(\left\{\left(T_{z^{k}}^{*} A T_{z^{k}} x, y\right)\right\}_{k \in \mathbb{N}^{N}}\right)
$$

where Λ denotes the multi-variable Banach limit given in Theorem 2.1. Since $(x, y) \mapsto[x, y]$ is a bounded sesquilinear form, there is an operator $\pi(A) \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$ such that

$$
\begin{equation*}
(\pi(A) x, y)=\Lambda\left(\left\{\left(T_{z^{k}}^{*} A T_{z^{k}} x, y\right)\right\}_{k \in \mathbb{N}^{N}}\right) \tag{6}
\end{equation*}
$$

From the definition it is easy to see that $\pi(I)=I$. Note that for any i, by Theorem 2.1(d),

$$
\begin{aligned}
\left(T_{z_{i}}^{*} \pi(A) T_{z_{i}} x, y\right) & =\left(\pi(A) T_{z_{i}} x, T_{z_{i}} y\right)=\Lambda\left(\left\{\left(T_{z^{k}}^{*} A T_{z^{k}} T_{z_{i}} x, T_{z_{i}} y\right)\right\}_{k \in \mathbb{N}^{N}}\right) \\
& =\Lambda\left(\left\{\left(T_{z^{k+e_{i}}}^{*} A T_{z^{k+e_{i}}} x, y\right)\right\}_{k \in \mathbb{N}^{N}}\right) \\
& =\Lambda\left(\left\{\left(T_{z^{k}}^{*} A T_{z^{k}} x, y\right)\right\}_{k \in \mathbb{N}^{N}}\right)=(\pi(A) x, y)
\end{aligned}
$$

Thus $T_{z_{1}}^{*} \pi(A) T_{z_{1}}=\pi(A)$ and, by the characterization (4) of Toeplitz operators, we see that $\pi(A) \in \mathcal{T}\left(\mathbb{T}^{N}\right)$.

If $A \in \mathcal{T}\left(\mathbb{T}^{N}\right)$ then, by (4), $\left\{\left(T_{z^{k}}^{*} A T_{z^{k}} x, y\right)\right\}_{k \in \mathbb{N}^{N}}=\{(A x, y)\}_{k \in \mathbb{N}^{N}}$ is a constant sequence for all x, y and $(\pi(A) x, y)=(A x, y)$ by Theorem 2.1(b), thus $\pi(A)=A$.

Formula (6) also implies that π is positive. If (d) is not satisfied then for a given operator $A \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$ there are $x, y \in H^{2}\left(\mathbb{T}^{N}\right)$ such that $(\pi(A) x, y) \neq 0$, but $(B x, y)=0$ for all B in the weakly-closed convex hull of $\left\{\left(T_{z^{k}}^{*} A T_{z^{k}} x, y\right): k \in \mathbb{N}^{N}\right\}$. This contradicts Theorem 2.1(c). The remaining properties follow from formula (6).
4. 2-hyperreflexivity of Toeplitz operators on the N-torus. As before, for a given complex separable Hilbert space \mathcal{H} we denote by $B(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}. It is well known that the space of trace class operators τc is predual to $B(\mathcal{H})$ with the dual action $\langle A, f\rangle=\operatorname{tr}(A f)$ for $A \in B(\mathcal{H})$ and $f \in \tau c$. The trace norm in τc will be denoted by $\|\cdot\|_{1}$. Denote by F_{k} the set of operators of rank at most k. Every rank-one operator may be written as $x \otimes y$ for some $x, y \in \mathcal{H}$, where $(x \otimes y) z=(z, y) x$ for $z \in \mathcal{H}$. Moreover, $\operatorname{tr}(T(x \otimes y))=(T x, y)$.

Let $\mathcal{S} \subset B(\mathcal{H})$ be a norm-closed subspace. We denote by $d(T, \mathcal{S})$ the standard distance from an operator T to the subspace \mathcal{S}. It is known that when \mathcal{S} is weak ${ }^{*}$-closed, $d(T, \mathcal{S})=\sup \left\{|\operatorname{tr}(T f)|: f \in \mathcal{S}_{\perp},\|f\|_{1} \leq 1\right\}$, where \mathcal{S}_{\perp} denotes the preannihilator of \mathcal{S}.

Recall that if \mathcal{S} is a weak*-closed subspace of $B(\mathcal{H})$, then \mathcal{S} is reflexive if and only if \mathcal{S}_{\perp} is a closed linear span of rank-one operators contained in \mathcal{S}_{\perp} (i.e., $\mathcal{S}_{\perp}=\operatorname{span}\left(\mathcal{S}_{\perp} \cap F_{1}\right)$). At the other extreme, if $\mathcal{S}_{\perp} \cap F_{1}=\{0\}$ then we call \mathcal{S} transitive. A weak*-closed subspace $\mathcal{S} \subset B(\mathcal{H})$ is called k-reflexive if $\mathcal{S}_{\perp}=\operatorname{span}\left(\mathcal{S}_{\perp} \cap F_{k}\right)$. We also have a stronger property: \mathcal{S} is called hyperreflexive if there is a constant a such that

$$
\begin{equation*}
d(T, \mathcal{S}) \leq a \sup \left\{|\langle T, x \otimes y\rangle|: x \otimes y \in \mathcal{S}_{\perp},\|x \otimes y\|_{1} \leq 1\right\} \tag{7}
\end{equation*}
$$

for all $T \in B(\mathcal{H})$, and k-hyperreflexive if there is a such that for any $T \in$ $B(\mathcal{H})$,

$$
\begin{equation*}
d(T, \mathcal{S}) \leq a \sup \left\{|\operatorname{tr}(T f)|: f \in \mathcal{S}_{\perp} \cap F_{k},\|f\|_{1} \leq 1\right\} \tag{8}
\end{equation*}
$$

The distance on the right hand side will be denoted by $\alpha_{k}(T, \mathcal{S})$. Let $\kappa_{k}(\mathcal{S})$ be the infimum of the constants a in (8); we call it the k-hyperreflexivity constant. For further properties of k-reflexivity and k-hyperreflexivity the reader is referred to [3] and [7].

Analyzing the spaces of all Toeplitz operators on the unit circle $\mathcal{T}(\mathbb{T})$ and on the N-torus $\mathcal{T}\left(\mathbb{T}^{N}\right)$ from the reflexivity point of view, note first that the characterizations (2) and (4) allow us to see that both spaces are weak*-closed. The space $\mathcal{T}(\mathbb{T})$ is transitive, but 2-reflexive (see [2]) and even 2-hyperreflexive (see [7]).

In [9] it was shown that $\mathcal{T}\left(\mathbb{T}^{N}\right)$ is transitive, thus not reflexive, but that it is 2 -reflexive. Now we will show the stronger condition: 2-hyperreflexivity.

Theorem 4.1. The space of all Toeplitz operators on the torus $\mathcal{T}\left(\mathbb{T}^{N}\right)$ is 2-hyperreflexive and $\kappa_{2}\left(\mathcal{T}\left(\mathbb{T}^{N}\right)\right) \leq 2$.

Proof. Let $A \in B\left(H^{2}\left(\mathbb{T}^{N}\right)\right)$. Since $\pi(A)$ belongs to the weakly-closed convex hull of the set $\left\{T_{z^{k}}^{*} A T_{z^{k}}: k \in \mathbb{N}^{N}\right\}$, we have

$$
\begin{aligned}
& d\left(A, \mathcal{T}\left(\mathbb{T}^{N}\right)\right) \leq\|A-\pi(A)\| \leq \sup _{k \in \mathbb{N}^{N}}\left\|A-T_{z^{k}}^{*} A T_{z^{k}}\right\| \\
& \quad \leq \sup _{k \in \mathbb{N}^{N}} \sup \left\{\left|\left(\left(A-T_{z^{k}}^{*} A T_{z^{k}}\right) x, y\right)\right|: x, y \in H^{2}\left(\mathbb{T}^{N}\right),\|x \otimes y\|_{1}=1\right\} \\
& \quad \leq \sup _{k \in \mathbb{N}^{N}} \sup \left\{\left|(A x, y)-\left(A z^{k} x, z^{k} y\right)\right|: x, y \in H^{2}\left(\mathbb{T}^{N}\right),\|x \otimes y\|_{1}=1\right\} \\
& \quad \leq \sup _{k \in \mathbb{N}^{N}} \sup \left\{\left|\operatorname{tr}\left(A\left(x \otimes y-z^{k} x \otimes z^{k} y\right)\right)\right|: x, y \in H^{2}\left(\mathbb{T}^{N}\right),\|x \otimes y\|_{1}=1\right\}
\end{aligned}
$$

Since $\operatorname{rank}\left(x \otimes y-z^{k} x \otimes z^{k} y\right) \leq 2$ and $\left\|x \otimes y-z^{k} x \otimes z^{k} y\right\|_{1} \leq 2$ if $\|x \otimes y\|_{1}=1$, it follows that $d\left(A, \mathcal{T}\left(\mathbb{T}^{N}\right)\right) \leq 2 \alpha_{2}\left(A, \mathcal{T}\left(\mathbb{T}^{N}\right)\right)$.
5. Projection onto Toeplitz operators on the unit ball. Let \mathbb{B}_{N} be the unit ball in \mathbb{C}^{N} and denote by σ the normalized surface measure on the unit sphere $\partial \mathbb{B}_{N}$. We set $L^{2}\left(\partial \mathbb{B}_{N}\right)=L^{2}\left(\partial \mathbb{B}_{N}, \sigma\right)$ and $L^{\infty}\left(\partial \mathbb{B}_{N}\right)=$ $L^{\infty}\left(\partial \mathbb{B}_{N}, \sigma\right)$ and denote by $H^{2}\left(\partial \mathbb{B}_{N}\right), P_{H^{2}\left(\partial \mathbb{B}_{N}\right)}$ etc. the corresponding spaces and operators on $\partial \mathbb{B}_{N}$. Also the symbols $T_{z_{i}}$ and $T_{z^{k}}$ have the same meaning as before.

In [5] it was shown that

$$
\begin{align*}
& \mathcal{T}\left(\partial \mathbb{B}_{N}\right)=\left\{A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right): A=\sum_{i=1}^{N} T_{z_{i}}^{*} A T_{z_{i}}\right\} \tag{9}\\
& \mathcal{A}\left(\partial \mathbb{B}_{N}\right)=\left\{A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right): A T_{z_{i}}=T_{z_{i}} A, i=1, \ldots, N\right\} \tag{10}
\end{align*}
$$

For a given operator $A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$ we define by induction a sequence $\left\{A^{(n)}\right\}_{n \in \mathbb{N}}$ in $B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$:

$$
\begin{equation*}
A^{(0)}=A, \quad A^{(n+1)}=\sum_{i=1}^{N} T_{z_{i}}^{*} A^{(n)} T_{z_{i}} \tag{11}
\end{equation*}
$$

Note that $I^{(n)}=I$ and if $T \in \mathcal{T}\left(\partial \mathbb{B}_{N}\right)$, then $T^{(n)}=T$ by (9). Moreover, by (10),

$$
\begin{equation*}
\left(A T_{\varphi}\right)^{(n)}=A^{(n)} T_{\varphi} \quad \text { for } A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right) \text { and } T_{\varphi} \in \mathcal{A}\left(\partial \mathbb{B}_{N}\right) \tag{12}
\end{equation*}
$$

Lemma 5.1. If $A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$, then $\left\|A^{(n)}\right\| \leq 2\|A\|$.
Proof. For $k=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$ we write $k!=k_{1}!\cdots k_{N}!$ and $|k|=$ $k_{1}+\cdots+k_{N}$. One can easily note that

$$
\begin{equation*}
A^{(n)}=\sum_{|k|=n} \frac{n!}{k!} T_{z^{k}}^{*} A T_{z^{k}} \tag{13}
\end{equation*}
$$

If $x \in H^{2}\left(\partial \mathbb{B}_{N}\right)$, then

$$
\left|\left(A^{(n)} x, x\right)\right| \leq \sum_{|k|=n} \frac{n!}{k!}\left|\left(A z^{k} x, z^{k} x\right)\right| \leq\|A\| \sum_{|k|=n} \frac{n!}{k!}\left\|z^{k} x\right\|^{2}
$$

$$
\begin{aligned}
& =\|A\| \sum_{|k|=n} \frac{n!}{k!} \int_{\partial \mathbb{B}_{N}}\left|z^{k} x(z)\right|^{2} d \sigma(z)=\|A\| \int_{\partial \mathbb{B}_{N}}|x(z)|^{2} \sum_{|k|=n} \frac{n!}{k!}\left|z^{k}\right|^{2} d \sigma(z) \\
& =\|A\| \int_{\partial \mathbb{B}_{N}}|x(z)|^{2}\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{n} d \sigma(z)=\|A\|\|x\|^{2}
\end{aligned}
$$

Thus the numerical range satisfies $w\left(A^{(n)}\right) \leq\|A\|$ and $\left\|A^{(n)}\right\| \leq 2\|A\|$ by [6].

TheOrem 5.2. There is a positive linear projection $\pi: B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right) \rightarrow$ $\mathcal{T}\left(\partial \mathbb{B}_{N}\right)$ such that
(a) $\pi(I)=I,\|\pi\| \leq 2$,
(b) $\pi(T)=T$ for $T \in \mathcal{T}\left(\partial \mathbb{B}_{N}\right)$,
(c) $\pi\left(A T_{\varphi}\right)=\pi(A) T_{\varphi}$ for $A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$ and $T_{\varphi} \in \mathcal{A}\left(\partial \mathbb{B}_{N}\right)$,
(d) $\pi(A)$ belongs to the weakly-closed convex hull of $\left\{A^{(n)}: n \in \mathbb{N}\right\}$ for $A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$.

Proof. For $A \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$ and $x, y \in H^{2}\left(\partial \mathbb{B}_{N}\right)$ we define

$$
[x, y]=\Lambda\left(\left\{\left(A^{(n)} x, y\right)\right\}_{n \in \mathbb{N}}\right)
$$

where Λ denotes the one-dimensional Banach limit (see Theorem 2.1). Note that $\left\{\left(A^{(n)} x, y\right)\right\}_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N}, \mathbb{C})$ by Lemma 5.1. Since $(x, y) \mapsto[x, y]$ is a bounded sesquilinear form, there is an operator $\pi(A) \in B\left(H^{2}\left(\partial \mathbb{B}_{N}\right)\right)$ such that

$$
\begin{equation*}
(\pi(A) x, y)=\Lambda\left(\left\{\left(A^{(n)} x, y\right)\right\}_{n \in \mathbb{N}}\right) \tag{14}
\end{equation*}
$$

Since $I^{(n)}=I$, we have $\pi(I)=I$.
Now, by Theorem 2.1(d), we get

$$
\begin{aligned}
& \left(\sum_{i=1}^{N} T_{z_{i}}^{*} \pi(A) T_{z_{i}} x, y\right)=\sum_{i=1}^{N}\left(\pi(A) z_{i} x, z_{i} y\right) \\
& =\sum_{i=1}^{N} \Lambda\left(\left\{\left(A^{(n)} z_{i} x, z_{i} y\right)\right\}_{n \in \mathbb{N}}\right)=\Lambda\left(\left\{\left(\sum_{i=1}^{N} T_{z_{i}}^{*} A^{(n)} T_{z_{i}} x, y\right)\right\}_{n \in \mathbb{N}}\right) \\
& = \\
& =\Lambda\left(\left\{\left(A^{(n+1)} x, y\right)\right\}_{n \in \mathbb{N}}\right)=(\pi(A) x, y)
\end{aligned}
$$

Thus $\pi(A) \in \mathcal{T}\left(\partial \mathbb{B}_{N}\right)$ by (9).
If $A \in \mathcal{T}\left(\partial \mathbb{B}_{N}\right)$ then $A^{(n)}=A$ for all n, and thus $\pi(A)=A$. Property (c) is a consequence of (12), and the proof of (d) is similar to that of Theorem 3.1(d).
6. Projection onto generalized Toeplitz operators. The idea of generalized Toeplitz operators is to replace in the characterization (2) the backward shift T_{z}^{*} by any contraction. Precisely, for given contractions S, T
in $B(\mathcal{H})$, an operator $X \in B(\mathcal{H})$ is called a generalized Toeplitz operator with respect to S and T if $X=S X T^{*}$. These operators were investigated in [11]. The space of all such operators is denoted by $\mathcal{T}(S, T)$. Note that this definition implies weak*-closedness of $\mathcal{T}(S, T)$.

In [10] this idea was extended to two variables. It is easy to extend it to the multi-variable case. Having in mind the characterization (4) of Toeplitz operators on the N-torus we make the following definition. For given N-tuples $\mathbf{S}=\left(S_{1}, \ldots, S_{N}\right)$ and $\mathbf{T}=\left(T_{1}, \ldots, T_{N}\right)$ of commuting contractions on \mathcal{H}, an operator $X \in B(\mathcal{H})$ is called a generalized Toeplitz operator with respect to \mathbf{S} and \mathbf{T} if $X=S_{i} X T_{i}^{*}$ for $i=1, \ldots, N$. The space of all such operators is denoted by $\mathcal{T}(\mathbf{S}, \mathbf{T})$. It is also weak*-closed. For a given commuting N-tuple $\mathbf{S}=\left(S_{1}, \ldots, S_{N}\right)$ we set $\mathbf{S}^{k}=S_{1}^{k_{1}} \cdots S_{N}^{k_{N}}$ for $k=\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$.

Now we extend the definition of the projection considered in Section 3 to generalized Toeplitz operators. We formulate the theorem for arbitrary N, but even the case $N=1$ is worth noting.

Theorem 6.1. Let \mathbf{S} and \mathbf{T} be two N-tuples of commuting contractions on \mathcal{H}. There is a linear projection $\pi: B(\mathcal{H}) \rightarrow \mathcal{T}(\mathbf{S}, \mathbf{T})$ such that
(a) $\|\pi\| \leq 1$,
(b) $\pi(X)=X$ for $X \in \mathcal{T}(\mathbf{S}, \mathbf{T})$,
(c) if $A \in B(\mathcal{H})$ then $\pi(A)$ belongs to the weakly-closed convex hull of $\left\{\mathbf{S}^{k} A \mathbf{T}^{* k}: k \in \mathbb{N}^{N}\right\}$.

Proof. Let Λ be the functional from Theorem 2.1. For $A \in B(\mathcal{H})$ and $x, y \in \mathcal{H}$ we define

$$
(\pi(A) x, y)=\Lambda\left(\left\{\left(\mathbf{S}^{k} A \mathbf{T}^{* k} x, y\right)\right\}_{k \in \mathbb{N}^{N}}\right)
$$

To check the details, one can follow the proof of Theorem 3.1.
7. 2-hyperreflexivity of generalized Toeplitz operators. The reflexive behavior of the space $\mathcal{T}(S, T)$ of generalized Toeplitz operators depends on the contractions S, T. For example if the underlying Hilbert space is the Hardy space on the unit circle and $S=T=T_{z}^{*}$ then $\mathcal{T}\left(T_{z}^{*}, T_{z}^{*}\right)=\mathcal{T}(\mathbb{T})$ is transitive. On the other hand, the space $\mathcal{T}(S, T)$ might be even (hyper)reflexive. For example, if $S=T=I_{H}$ then $\mathcal{T}\left(I_{H}, I_{H}\right)=B(\mathcal{H})$, which is (hyper)reflexive. However, we can estimate the reflexive behavior even for arbitrary N by

Theorem 7.1. Let \mathbf{S} and \mathbf{T} be two N-tuples of commuting contractions on \mathcal{H}. Then $\mathcal{T}(\mathbf{S}, \mathbf{T})$ is 2-hyperreflexive.

Proof. By Theorem 6.1(c), for any $A \in B(\mathcal{H}), \pi(A)$ belongs to the weakly-closed convex hull of $\left\{\mathbf{S}^{k} A \mathbf{T}^{* k}: k \in \mathbb{N}^{N}\right\}$. As in the proof of Theorem
4.1 we can show that

$$
\begin{aligned}
d(A, \mathcal{T}(\mathbf{S}, \mathbf{T})) & \leq\|A-\pi(A)\| \leq \sup _{k \in \mathbb{N}^{N}}\left\|A-\mathbf{S}^{k} A \mathbf{T}^{* k}\right\| \\
& \leq \sup _{k \in \mathbb{N}^{k}} \sup \left\{\left|\operatorname{tr}\left(A\left(x \otimes y-\mathbf{T}^{* k} x \otimes \mathbf{S}^{* k} y\right)\right)\right|:\|x \otimes y\|_{1}=1\right\}
\end{aligned}
$$

Since $\operatorname{rank}\left(x \otimes y-\mathbf{T}^{* k} x \otimes \mathbf{S}^{* k} y\right) \leq 2$ and $\left\|x \otimes y-\mathbf{T}^{* k} x \otimes \mathbf{S}^{* k} y\right\|_{1} \leq 2$ for $\|x \otimes y\|_{1}=1$, we have

$$
d(A, \mathcal{T}(\mathbf{S}, \mathbf{T})) \leq 2 \alpha_{2}(A, \mathcal{T}(\mathbf{S}, \mathbf{T}))
$$

Theorem 7.1 for $N=1$ is also a consequence of [8].
Added in proof. D. Timotin (private communication) has shown that the norm of the projection in Theorem 5.2 is equal to $1,\|\pi\|=1$.

References

[1] W. T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233.
[2] E. A. Azoff and M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156 (1998), 411-428.
[3] J. B. Conway, A Course in Operator Theory, Amer. Math. Soc., Providence, 2000.
[4] -, A Course of Functional Analysis, Springer, New York, 1990.
[5] A. M. Davie and N. P. Jewell, Toeplitz operators in several complex variables, J. Funct. Anal. 26 (1977), 356-368.
[6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1967.
[7] K. Kliś and M. Ptak, k-hyperreflexive subspaces, Houston J. Math., to appear.
[8] H. S. Mustafayev, On hypereflexivity of some operator spaces, Int. J. Math. Math. Sci. 19 (1996), 603-606.
[9] M. Ptak, On the reflexivity of multigenerator algebras, Dissertationes Math. 378 (1998).
[10] -, Two variable Toeplitz type operators, Acta Sci. Math. (Szeged), 71 (2005), 353362.
[11] V. Pták and P. Vrbová, Operators of Toeplitz and Hankel type, ibid. 52 (1988), 117-140.

Institute of Mathematics
University of Agriculture
Al. Mickiewicza 24/28
30-059 Kraków, Poland
E-mail: rmptak@cyf-kr.edu.pl

Révisé le 22.7.2005

[^0]: 2000 Mathematics Subject Classification: Primary 47B35; Secondary 47L80, 46B45.
 Key words and phrases: Banach limit, Hardy space, Toeplitz operator, reflexive subspace, hyperreflexive subspace, k-hyperreflexive subspaces, transitive subspace.

 This research was supported by grant No 1 P03A 01627 of KBN, Poland.

