Projections onto the spaces of Toeplitz operators

by MAREK PTAK (Kraków)

Abstract. Projections onto the spaces of all Toeplitz operators on the N-torus and the unit sphere are constructed. The constructions are also extended to generalized Toeplitz operators and applied to show hyperreflexivity results.

1. Introduction. Arveson [1] defined a projection from the algebra $B(H^2(\mathbb{T}))$ of all bounded linear operators on the Hardy space on the unit circle onto the space of all Toeplitz operators on $H^2(\mathbb{T})$. He used the classical Banach limit. We construct a projection from the algebra $B(H^2(\mathbb{T}^N))$ of all bounded linear operators on the Hardy space on the N-torus onto the space of all Toeplitz operators on $H^2(\mathbb{T}^N)$. We use the extension of the Banach limit to N-parameter sequences, given in Section 2.

In Section 4 we will use the above projection to show that the subspace of all Toeplitz operators on the N-torus is 2-hyperreflexive (for definition see Section 4). The single variable case was considered in [7].

A natural generalization of the unit circle is not only the N-torus but also the unit sphere $\partial \mathbb{B}_N$. In Section 5 we construct a projection from the algebra $B(H^2(\partial \mathbb{B}_N))$ of all bounded linear operators on the Hardy space on the unit sphere onto the space of all Toeplitz operators on $H^2(\partial \mathbb{B}_N)$.

In Section 6 we extend the idea of such a projection to generalized Toeplitz operators which were introduced in [10], [11]. We consider both one and multi-variable cases. In Section 7 we give a hyperreflexivity result for generalized Toeplitz operators. The one variable case was considered in [8].

2. Multi-variable Banach limit. There is a functional on all bounded sequences in ℓ^∞, which to any convergent sequence $\{x(n)\}_{n \in \mathbb{N}}$ assigns its
limit (see e.g. [4]). It is called the Banach limit. We extend this idea to multi-variable bounded sequences in $\ell^\infty(\mathbb{N}^N)$.

Theorem 2.1. There is a linear functional $A: \ell^\infty(\mathbb{N}^N, \mathbb{C}) \to \mathbb{C}$ (resp. $A: \ell^\infty(\mathbb{N}^N, \mathbb{R}) \to \mathbb{R}$) such that

(a) $\|A\| = 1$ and $A(1) = 1$, where 1 is the constantly 1 sequence,

(b) if $x \in \ell^\infty(\mathbb{N}^N)$ converges, then $A(x) = \lim_{k \to \infty, k \in \mathbb{N}^N} x(k)$,

(c) if $x \in \ell^\infty(\mathbb{N}^N)$ is nonnegative, i.e. $x(k) \geq 0$ for all $k \in \mathbb{N}^N$, then $A(x) \geq 0$,

(d) for any sequence $x \in \ell^\infty(\mathbb{N}^N)$ and any $i = 1, \ldots, N$, let $x^{(i)}$ denote the sequence $x^{(i)}(k) = x(k + e_i)$, where $e_i = (0, \ldots, 1, \ldots, 0)$; then $A(x) = A(x^{(i)})$.

Proof. First we deal with the case of a real-valued functional, i.e. $A: \ell^\infty(\mathbb{N}^N, \mathbb{R}) \to \mathbb{R}$. For each i, set $\mathcal{M}_i = \{x - x^{(i)} : x \in \ell^\infty(\mathbb{N}^N, \mathbb{R})\}$, where $x^{(i)}$ is defined as in (d). Note that \mathcal{M}_i is a linear manifold. Let \mathcal{M} be the subspace spanned by all \mathcal{M}_i, $i = 1, \ldots, N$. We show first that

$$d(1, \mathcal{M}) = 1,$$

where d denotes the distance from the sequence 1 to the subspace \mathcal{M}. Since $0 \in \mathcal{M}$ we have $d(1, \mathcal{M}) \leq 1$. Assume that there are $\varepsilon > 0$ and $x_i \in \mathcal{M}_i$ and $\alpha_i \in \mathbb{R}$ with $\|\alpha_i x_i\|_\infty \leq M$, $i = 1, \ldots, N$, such that

$$\left\|\mathbf{1} - \sum_{i=1}^N \alpha_i (x_i - x_i^{(i)})\right\|_\infty < 1 - \varepsilon.$$

In particular, for fixed $n \in \mathbb{N}$, for all $k = (k_1, \ldots, k_N) \in \mathbb{N}^N$ such that $|k|_\infty = \max |k_i| \leq n$, we have

$$1 - \sum_{i=1}^N \alpha_i (x_i(k) - x_i^{(i)}(k)) < 1 - \varepsilon.$$

Summation over k gives

$$n^N - \sum_{i=1}^N \alpha_i \left(\sum_{|k|_\infty \leq n} x_i(k) - \sum_{|k|_\infty \leq n} x_i(k + e_i) \right) < n^N - n^N \varepsilon.$$

Thus

$$n^N \varepsilon < \sum_{i=1}^N |\alpha_i| \left(\sum_{|k|_\infty \leq n} |x_i(k)| + \sum_{|k|_\infty \leq n} |x_i(k + e_i)| \right) \leq 2n^{N-1} NM.$$

Hence $n \varepsilon < 2NM$ and we have a contradiction for n large enough, so (1) follows.

The Hahn–Banach theorem yields a linear functional A on $\ell^\infty(\mathbb{N}^N, \mathbb{R})$ such that $A(1) = 1$, $A(\mathcal{M}) = 0$ and $\|A\| = 1$.
To see (b), for a given sequence $x \in \ell^\infty(\mathbb{N}^N, \mathbb{R})$ and for all multi-indices in \mathbb{N}^N, define by multi-induction the following sequences:

$$x_{(e_i)} = x^{(i)} \quad \text{and} \quad x_{(k+e_i)} = (x_{(k)})^{(i)}.$$

Note that the definition is correct since $(x_{(k-e_i)})^{(j)} = (x_{(k-e_j)})^{(i)}$. For fixed $k = (k_1, \ldots, k_N) \in \mathbb{N}^N$ we have

$$x_{(k)} - x = (x_{(k)} - x_{(k-e_N)}) + \cdots + (x_{(k_1,\ldots,k_2,1)} - x_{(k_1,\ldots,k_2,0)}) + \cdots + (x_{(k_1,0,\ldots,0)} - x_{(k_1-1,0,\ldots,0)}) + \cdots + (x_{(1,0,\ldots,0)} - x).$$

Thus $A(x) = A(x_{(k)})$. If x is convergent and $\alpha = \lim_{k' \to \infty, k' \in \mathbb{N}^N} x(k')$, then

$$|A(x) - \alpha| = |A(x_{(k)} - \alpha \cdot 1)| \leq \|x_{(k)} - \alpha \cdot 1\|_\infty \leq \sup\{|x(k_1', \ldots, k'_N) - \alpha| : k'_i > k_i \text{ for all } i\}.$$

Thus $|A(x) - \alpha|$ is arbitrarily small and we get (b).

Condition (c) and extension to the case of complex-valued sequences can be shown as in the single variable case (see for example [4]).

3. Projection onto Toeplitz operators on the N-torus. Let \mathbb{T} be the unit circle on the complex plane \mathbb{C}. Set $L^2(\mathbb{T}) = L^2(\mathbb{T}, m)$ and $L^\infty(\mathbb{T}) = L^\infty(\mathbb{T}, m)$, where m is the normalized Lebesgue measure on \mathbb{T}. Let $H^2(\mathbb{T})$ be the Hardy space corresponding to $L^2(\mathbb{T})$ and let $P_{H^2(\mathbb{T})}$ be the orthogonal projection from $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. We denote by $H^\infty(\mathbb{T})$ the Hardy space corresponding to $L^\infty(\mathbb{T})$, i.e. the space of those functions from $L^\infty(\mathbb{T})$ which have an analytic extension to the whole unit disc \mathbb{D}.

For each $\varphi \in L^\infty(\mathbb{T})$ we define $T_\varphi \in B(H^2(\mathbb{T}))$ by $T_\varphi f = P_{H^2(\mathbb{T})}(\varphi f)$ for $f \in H^2(\mathbb{T})$. The operator T_φ is called a Toeplitz operator with symbol φ. Let $T(\mathbb{T})$ denote the space of all Toeplitz operators, and $A(\mathbb{T})$ the space of Toeplitz operators with symbols from $H^\infty(\mathbb{T})$. We have ([6, Corollary to Problem 194])

$$T(\mathbb{T}) = \{ A \in B(H^2(\mathbb{T})) : A = T_z^* AT_z \},$$

and by [6, Problem 116],

$$A(\mathbb{T}) = \{ A \in B(H^2(\mathbb{T})) : AT_z = T_z A \}.$$

Similarly we denote the corresponding spaces on the N-torus, $L^2(\mathbb{T}^N)$, $L^\infty(\mathbb{T}^N)$, $H^2(\mathbb{T}^N)$, $H^\infty(\mathbb{T}^N)$ and the projection $P_{H^2(\mathbb{T}^N)} : L^2(\mathbb{T}^N) \to H^2(\mathbb{T}^N)$. For each $\varphi \in L^\infty(\mathbb{T}^N)$ we define the Toeplitz operator $T_\varphi \in B(H^2(\mathbb{T}^N))$ by $T_\varphi f = P_{H^2(\mathbb{T}^N)}(\varphi f)$. We denote by $T(\mathbb{T}^N)$ the space of all Toeplitz operators and by $A(\mathbb{T}^N)$ the space of all Toeplitz operators with symbols from $H^\infty(\mathbb{T}^N)$. By T_{z_i}, $i = 1, \ldots, N$, we denote the multiplication operators by the independent variables. Since the operators T_{z_i} commute we can set $T_{z^k} = T_{z_1}^{k_1} \cdots T_{z_N}^{k_N}$ for $k = (k_1, \ldots, k_n) \in \mathbb{N}^N$ ($z^k = z_1^{k_1} \cdots z_N^{k_N}$).
Similarly to the one variable case we have the following characterizations (see [9, Proposition 3.3]):

\[T(T^N) = \{ A \in B(H^2(T^N)) : A = T^*_z A T_z, \ i = 1, \ldots, N \}, \]

\[A(T^N) = \{ A \in B(H^2(T^N)) : AT_z = T_z A, \ i = 1, \ldots, N \}. \]

We will construct a projection onto the space of all Toeplitz operators on the \(N \)-torus.

Theorem 3.1. There is a positive linear projection \(\pi : B(H^2(T^N)) \to T(T^N) \) such that

(a) \(\pi(I) = I, \ ||\pi|| = 1, \)

(b) \(\pi(T) = T \) for \(T \in T(T^N), \)

(c) \(\pi(AT_\varphi) = \pi(A)T_\varphi \) for \(A \in B(H^2(T^N)) \) and \(T_\varphi \in A(T^N), \)

(d) \(\pi(A) \) belongs to the weakly-closed convex hull of \(\{ T^*_z A T_z : k \in N^N \} \)

for \(A \in B(H^2(T^N)), \)

(e) \(\pi(P_k) = 1, \) where \(P_k \) is the orthogonal projection on the range of \(T_z^* \).

Proof. For \(A \in B(H^2(T^N)) \) and \(x, y \in H^2(T^N) \) we define

\[[x, y] = A(\{ (T^*_z A T_z, x, y) \}) \]

where \(A \) denotes the multi-variable Banach limit given in Theorem 2.1. Since \((x, y) \mapsto [x, y] \) is a bounded sesquilinear form, there is an operator \(\pi(A) \in B(H^2(T^N)) \) such that

\[(\pi(A)x, y) = A(\{ (T^*_z A T_z, x, y) \}). \]

From the definition it is easy to see that \(\pi(I) = I. \) Note that for any \(i, \) by Theorem 2.1(d),

\[(T^*_z, \pi(A)T_z, x, y) = (\pi(A)T_z, x, T_z, y) = A(\{ (T^*_z A T_z, x, T_z, y) \} k \in N^N) \]

\[= A(\{ (T^*_z A T_z, x, y) \} k \in N^N) = (\pi(A)x, y). \]

Thus \(T^*_z, \pi(A)T_z = \pi(A) \) and, by the characterization (4) of Toeplitz operators, we see that \(\pi(A) \in T(T^N). \)

If \(A \in T(T^N) \) then, by (4), \(\{ (T^*_z A T_z, x, y) \} k \in N^N = \{ (Ax, y) \} k \in N^N \) is a constant sequence for all \(x, y \) and \((\pi(A)x, y) = (Ax, y) \) by Theorem 2.1(b), thus \(\pi(A) = A. \)

Formula (6) also implies that \(\pi \) is positive. If (d) is not satisfied then for a given operator \(A \in B(H^2(T^N)) \) there are \(x, y \in H^2(T^N) \) such that \((\pi(A)x, y) \neq 0, \) but \((Bx, y) = 0 \) for all \(B \) in the weakly-closed convex hull of \(\{ (T^*_z A T_z, x, y) : k \in N^N \}. \) This contradicts Theorem 2.1(c). The remaining properties follow from formula (6). □
4. 2-hyperreflexivity of Toeplitz operators on the N-torus. As before, for a given complex separable Hilbert space \mathcal{H} we denote by $B(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}. It is well known that the space of trace class operators τc is predual to $B(\mathcal{H})$ with the dual action $\langle A, f \rangle = \text{tr}(Af)$ for $A \in B(\mathcal{H})$ and $f \in \tau c$. The trace norm in τc will be denoted by $\| \cdot \|_1$. Denote by F_k the set of operators of rank at most k. Every rank-one operator may be written as $x \otimes y$ for some $x, y \in \mathcal{H}$, where $(x \otimes y)z = (z, y)x$ for $z \in \mathcal{H}$. Moreover, $\text{tr}(T(x \otimes y)) = (Tx, y)$.

Let $S \subset B(\mathcal{H})$ be a norm-closed subspace. We denote by $d(T, S)$ the standard distance from an operator T to the subspace S. It is known that when S is weak*-closed, $d(T, S) = \sup \{|\text{tr}(Tf)| : f \in S_\perp, \|f\|_1 \leq 1\}$, where S_\perp denotes the preannihilator of S.

Recall that if S is a weak*-closed subspace of $B(\mathcal{H})$, then S is reflexive if and only if S_\perp is a closed linear span of rank-one operators contained in S_\perp (i.e., $S_\perp = \text{span}(S_\perp \cap F_1)$). At the other extreme, if $S_\perp \cap F_1 = \{0\}$ then we call S transitive. A weak*-closed subspace $S \subset B(\mathcal{H})$ is called k-reflexive if $S_\perp = \text{span}(S_\perp \cap F_k)$. We also have a stronger property: S is called hyperreflexive if there is a constant a such that

\[
d(T, S) \leq a \sup \{|\langle T, x \otimes y \rangle| : x \otimes y \in S_\perp, \|x \otimes y\|_1 \leq 1\}
\]

for all $T \in B(\mathcal{H})$, and k-hyperreflexive if there is a such that for any $T \in B(\mathcal{H})$,

\[
d(T, S) \leq a \sup \{|\text{tr}(Tf)| : f \in S_\perp \cap F_k, \|f\|_1 \leq 1\}.
\]

The distance on the right hand side will be denoted by $\alpha_k(T, S)$. Let $\kappa_k(S)$ be the infimum of the constants a in (8); we call it the k-hyperreflexivity constant. For further properties of k-reflexivity and k-hyperreflexivity the reader is referred to [3] and [7].

Analyzing the spaces of all Toeplitz operators on the unit circle $T(\mathbb{T})$ and on the N-torus $T(\mathbb{T}^N)$ from the reflexivity point of view, note first that the characterizations (2) and (4) allow us to see that both spaces are weak*-closed. The space $T(\mathbb{T})$ is transitive, but 2-reflexive (see [2]) and even 2-hyperreflexive (see [7]).

In [9] it was shown that $T(\mathbb{T}^N)$ is transitive, thus not reflexive, but that it is 2-reflexive. Now we will show the stronger condition: 2-hyperreflexivity.

Theorem 4.1. The space of all Toeplitz operators on the torus $T(\mathbb{T}^N)$ is 2-hyperreflexive and $\kappa_2(T(\mathbb{T}^N)) \leq 2$.

Proof. Let $A \in B(H^2(\mathbb{T}^N))$. Since $\pi(A)$ belongs to the weakly-closed convex hull of the set $\{T^*_z \cdot AT_z : k \in \mathbb{N}^N\}$, we have
\[d(A, T(T^N)) \leq \|A - \pi(A)\| \leq \sup_{k \in \mathbb{N}} \|A - T_{z_k}^* AT_{z_k}\| \]

\[\leq \sup_{k \in \mathbb{N}} \sup \{ |((A - T_{z_k}^* AT_{z_k})x, y)| : x, y \in H^2(T^N), \|x \otimes y\|_1 = 1 \} \]

\[\leq \sup_{k \in \mathbb{N}} \sup \{ |(Ax, y) - (Az^k x, z^k y)| : x, y \in H^2(T^N), \|x \otimes y\|_1 = 1 \} \]

\[\leq \sup_{k \in \mathbb{N}} \sup \{ |\text{tr}(A(x \otimes y - z^k x \otimes z^k y))| : x, y \in H^2(T^N), \|x \otimes y\|_1 = 1 \}. \]

Since \(\text{rank}(x \otimes y - z^k x \otimes z^k y) \leq 2 \) and \(\|x \otimes y - z^k x \otimes z^k y\|_1 \leq 2 \) if \(\|x \otimes y\|_1 = 1 \), it follows that \(d(A, T(T^N)) \leq 2 \alpha_2(A, T(T^N)) \).

5. Projection onto Toeplitz operators on the unit ball. Let \(\mathbb{B}_N \) be the unit ball in \(\mathbb{C}^N \) and denote by \(\sigma \) the normalized surface measure on the unit sphere \(\partial \mathbb{B}_N \). We set \(L^2(\partial \mathbb{B}_N) = L^2(\partial \mathbb{B}_N, \sigma) \) and \(L^\infty(\partial \mathbb{B}_N, \sigma) \) denote by \(H^2(\partial \mathbb{B}_N) \), \(P_{H^2}(\partial \mathbb{B}_N) \) etc. the corresponding spaces and operators on \(\partial \mathbb{B}_N \). Also the symbols \(T_{z_i} \) and \(T_{z_k} \) have the same meaning as before.

In [5] it was shown that

\[T(\partial \mathbb{B}_N) = \left\{ A \in B(H^2(\partial \mathbb{B}_N)) : A = \sum_{i=1}^N T_{z_i}^* AT_{z_i} \right\}, \]

\[A(\partial \mathbb{B}_N) = \{ A \in B(H^2(\partial \mathbb{B}_N)) : AT_{z_i} = T_{z_i}A, i = 1, \ldots, N \}. \]

For a given operator \(A \in B(H^2(\partial \mathbb{B}_N)) \) we define by induction a sequence \(\{A^{(n)}\}_{n \in \mathbb{N}} \) in \(B(H^2(\partial \mathbb{B}_N)) \):

\[A^{(0)} = A, \quad A^{(n+1)} = \sum_{i=1}^N T_{z_i}^* A^{(n)} T_{z_i}. \]

Note that \(I^{(n)} = I \) and if \(T \in T(\partial \mathbb{B}_N) \), then \(T^{(n)} = T \) by (9). Moreover, by (10),

\[(AT_{z_i})^{(n)} = A^{(n)} T_{z_i} \quad \text{for} \quad A \in B(H^2(\partial \mathbb{B}_N)) \quad \text{and} \quad T_{z_i} \in A(\partial \mathbb{B}_N). \]

Lemma 5.1. If \(A \in B(H^2(\partial \mathbb{B}_N)) \), then \(\|A^{(n)}\| \leq 2\|A\| \).

Proof. For \(k = (k_1, \ldots, k_N) \in \mathbb{N}^N \) we write \(k! = k_1! \cdots k_N! \) and \(|k| = k_1 + \cdots + k_N \). One can easily note that

\[A^{(n)} = \sum_{|k| = n} \frac{n!}{k!} T_{z_k}^* AT_{z_k}. \]

If \(x \in H^2(\partial \mathbb{B}_N) \), then

\[|(A^{(n)}x, x)| \leq \sum_{|k| = n} \frac{n!}{k!} |(Az^k x, z^k x)| \leq \|A\| \sum_{|k| = n} \frac{n!}{k!} \|z^k x\|^2 \]
where Λ is a bounded sesquilinear form, there is an operator π such that

\[N(3.1(d)) \text{ is a consequence of (12), and the proof of (d) is similar to that of Theorem 5.2.} \]

Thus the numerical range satisfies \(w(A(n)) \leq \|A\| \) and \(\|A(n)\| \leq 2\|A\| \) by [6].

Theorem 5.2. There is a positive linear projection \(\pi : B(H^2(\partial \mathbb{B}_N)) \to T(\partial \mathbb{B}_N) \) such that

(a) \(\pi(I) = I, \|\pi\| \leq 2 \),
(b) \(\pi(T) = T \) for \(T \in T(\partial \mathbb{B}_N) \),
(c) \(\pi(\lambda T) = \pi(\lambda)T \) for \(\lambda \in \mathbb{C} \),
(d) \(\pi(A) \) belongs to the weakly-closed convex hull of \(\{A(n) : n \in \mathbb{N}\} \) for \(A \in B(H^2(\partial \mathbb{B}_N)) \).

Proof. For \(A \in B(H^2(\partial \mathbb{B}_N)) \) and \(x, y \in H^2(\partial \mathbb{B}_N) \) we define

\[[x, y] = A(\{(A(n)x, y)\}_{n \in \mathbb{N}}) \]

where \(A \) denotes the one-dimensional Banach limit (see Theorem 2.1). Note that \(\{(A(n)x, y)\}_{n \in \mathbb{N}} \in \ell^\infty(\mathbb{N}, \mathbb{C}) \) by Lemma 5.1. Since \((x, y) \mapsto [x, y] \) is a bounded sesquilinear form, there is an operator \(\pi(A) \in B(H^2(\partial \mathbb{B}_N)) \) such that

\[(\pi(A)x, y) = A(\{(A(n)x, y)\}_{n \in \mathbb{N}}). \]

Since \(I(n) = I \), we have \(\pi(I) = I \).

Now, by Theorem 2.1(d), we get

\[\left(\sum_{i=1}^N T_{zi}^* \pi(A)T_{zi}x, y \right) = \sum_{i=1}^N (\pi(A)zi x, z_i y) = \sum_{i=1}^N A(\{(A(n)zi x, z_i y)\}_{n \in \mathbb{N}}) = A(\left\{ \left(\sum_{i=1}^N T_{zi}^* A(n)T_{zi}x, y \right) \right\}_{n \in \mathbb{N}}) = \pi(A)x, y. \]

Thus \(\pi(A) \in T(\partial \mathbb{B}_N) \) by (9).

If \(A \in T(\partial \mathbb{B}_N) \) then \(A(n) = A \) for all \(n \), and thus \(\pi(A) = A \). Property (c) is a consequence of (12), and the proof of (d) is similar to that of Theorem 3.1(d).

6. Projection onto generalized Toeplitz operators. The idea of generalized Toeplitz operators is to replace in the characterization (2) the backward shift \(T_z^* \) by any contraction. Precisely, for given contractions \(S, T \)
in $B(\mathcal{H})$, an operator $X \in B(\mathcal{H})$ is called a generalized Toeplitz operator with respect to S and T if $X = SXT^*$. These operators were investigated in [11]. The space of all such operators is denoted by $T(S, T)$. Note that this definition implies weak*-closedness of $T(S, T)$.

In [10] this idea was extended to two variables. It is easy to extend it to the multi-variable case. Having in mind the characterization (4) of Toeplitz operators on the N-torus we make the following definition. For given N-tuples $S = (S_1, \ldots, S_N)$ and $T = (T_1, \ldots, T_N)$ of commuting contractions on \mathcal{H}, an operator $X \in B(\mathcal{H})$ is called a generalized Toeplitz operator with respect to S and T if $X = S_iX T_i^*$ for $i = 1, \ldots, N$. The space of all such operators is denoted by $T(S, T)$. It is also weak*-closed. For a given commuting N-tuple $S = (S_1, \ldots, S_N)$ we set $S^k = S_1^{k_1} \cdots S_N^{k_N}$ for $k = (k_1, \ldots, k_N) \in \mathbb{N}^N$.

Now we extend the definition of the projection considered in Section 3 to generalized Toeplitz operators. We formulate the theorem for arbitrary N, but even the case $N = 1$ is worth noting.

Theorem 6.1. Let S and T be two N-tuples of commuting contractions on \mathcal{H}. There is a linear projection $\pi: B(\mathcal{H}) \to T(S, T)$ such that

(a) $\|\pi\| \leq 1$,
(b) $\pi(X) = X$ for $X \in T(S, T)$,
(c) if $A \in B(\mathcal{H})$ then $\pi(A)$ belongs to the weakly-closed convex hull of $\{S^k A T^{*k} : k \in \mathbb{N}^N\}$.

Proof. Let Λ be the functional from Theorem 2.1. For $A \in B(\mathcal{H})$ and $x, y \in \mathcal{H}$ we define

$$(\pi(A)x, y) = \Lambda(\{(S^k A T^{*k} x, y)\}_{k \in \mathbb{N}^N}).$$

To check the details, one can follow the proof of Theorem 3.1. □

7. 2-hyperreflexivity of generalized Toeplitz operators. The reflexive behavior of the space $T(S, T)$ of generalized Toeplitz operators depends on the contractions S, T. For example if the underlying Hilbert space is the Hardy space on the unit circle and $S = T = T_z^*$ then $T(T_z^*, T_z^*) = T(\mathbb{T})$ is transitive. On the other hand, the space $T(S, T)$ might be even (hyper)reflexive. For example, if $S = T = I_H$ then $T(I_H, I_H) = B(\mathcal{H})$, which is (hyper)reflexive. However, we can estimate the reflexive behavior even for arbitrary N by

Theorem 7.1. Let S and T be two N-tuples of commuting contractions on \mathcal{H}. Then $T(S, T)$ is 2-hyperreflexive.

Proof. By Theorem 6.1(c), for any $A \in B(\mathcal{H})$, $\pi(A)$ belongs to the weakly-closed convex hull of $\{S^k A T^{*k} : k \in \mathbb{N}^N\}$. As in the proof of Theorem
4.1 we can show that
\[d(A, T(S, T)) \leq \|A - \pi(A)\| \leq \sup_{k \in \mathbb{N}} \|A - S^k A T^{*k}\| \]
\[\leq \sup_{k \in \mathbb{N}} \sup \{ |\text{tr}(A(x \otimes y - T^{*k}x \otimes S^{*k}y))| : \|x \otimes y\|_1 = 1 \}. \]
Since \(\text{rank}(x \otimes y - T^{*k}x \otimes S^{*k}y) \leq 2\) and \(\|x \otimes y - T^{*k}x \otimes S^{*k}y\|_1 \leq 2\) for \(\|x \otimes y\|_1 = 1\), we have
\[d(A, T(S, T)) \leq 2\alpha_2(A, T(S, T)). \]

Theorem 7.1 for \(N = 1\) is also a consequence of [8].

Added in proof. D. Timotin (private communication) has shown that the norm of the projection in Theorem 5.2 is equal to 1, \(\|\pi\| = 1\).

References

Institute of Mathematics
University of Agriculture
Al. Mickiewicza 24/28
30-059 Kraków, Poland
E-mail: rmptak@cyf-kr.edu.pl

Reçu par la Rédaction le 27.1.2005
Révisé le 22.7.2005