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On the Kantorovich–Rubinstein maximum principle

for the Fortet–Mourier norm

by Henryk Gacki (Katowice)

Abstract. A new version of the maximum principle is presented. The classical Kanto-
rovich–Rubinstein principle gives necessary conditions for the maxima of a linear func-
tional acting on the space of Lipschitzian functions. The maximum value of this functional
defines the Hutchinson metric on the space of probability measures. We show an analogous
result for the Fortet–Mourier metric. This principle is then applied in the stability theory
of Markov–Feller semigroups.

1. Introduction. We study semigroups of Markov–Feller operators act-
ing on the space Msig of signed measures. Our goal is to show the utility
of the maximum principle technique in proving the asymptotic stability for
this class of semigroups. The classical Kantorovich–Rubinstein maximum
principle for the Hutchinson metric was already used to prove the stability
of stochastically perturbed dynamical systems with discrete time (see [4]),
stochastic semigroups generated by the Tjon–Wu equation (see [11]) and
semigroups generated by Poisson driven stochastic differential equations
(see [5]).

In the present paper we formulate the maximum principle for the Fortet–
Mourier metric. Our proof is based on a theorem concerning local changes
of Lipschitzian functions (see [6]). This version of maximum principle will
be formulated precisely in Section 3. In Section 4 we will show its applica-
tions in the stability theory of Markov–Feller semigroups. In particular we
will discuss the problem of the asymptotic stability of a Markov operator
appearing in the theory of the cell cycle [10]. Some recent results in this area
were obtained by P. Janoska [8].

2. Preliminaries. Let (X, ̺) be a metric space. We denote by R the
real line, R+ = [0,∞) and by N the set of positive integers. Further B
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denotes the σ-algebra of Borel subset of X and M the family of all finite
Borel measures on X. Let

Msig = {µ1 − µ2 : µ1, µ2 ∈ M}

be the space of finite signed measures. By M1 we denote the subset of
M such that µ(X) = 1 for µ ∈ M1. The elements of M1 will be called
distributions. For arbitrary µ ∈ Msig we denote by µ+ and µ− the positive
and negative parts of µ. Then µ = µ+ − µ−, and |µ| = µ+ + µ− is the
total variation of µ. As usual, B(X) denotes the space of all bounded Borel
measurable functions f : X → R, and C(X) the subspace of all bounded
continuous functions. Both spaces are considered with the supremum norm

‖f‖ = sup
x∈X

|f(x)|.

For every f : X → R and µ ∈ Msig we write

(1) 〈f, µ〉 =
\
X

f(x)µ(dx),

whenever this integral exists. In the space M1 we introduce the Fortet–

Mourier metric by the formula

(2) ‖µ1 − µ2‖F = sup{|〈f, µ1 − µ2〉| : f ∈ F},

where F is the set of functions f : X → R satisfying

‖f‖ ≤ 1 and |f(x) − f(y)| ≤ ̺(x, y) for x, y ∈ X.

We say that a sequence (µn), µn ∈ M1, converges weakly to a measure
µ ∈ M1 if

(3) lim
n→∞

〈f, µn〉 = 〈f, µ〉 for f ∈ C(X).

If X is a Polish space, condition (3) is equivalent to

lim
n→∞

‖µn − µ‖F = 0.

Moreover, M1 with the distance given by (2) is a complete metric space
(see [3]).

Denote by B(x, r) the closed ball in X with centre x ∈ X and radius r.
Let µ ∈ M1. We define the support of µ to be

suppµ = {x ∈ X : µ(B(x, ε)) > 0 for every ε > 0}.

Remark 1. It is easy to see that for every nontrivial measure µ ∈ Msig

such that µ(X) = 0 the sets suppµ+ and suppµ− are nonempty.

A metric space (X, ̺) is called boundedly compact if every closed and
bounded subset of X is a compact set (see [13]). This condition implies that
(X, ̺) is a Polish space.



Kantorovich–Rubinstein maximum principle 109

3. Maximum principle. A function f : X → R defined on a metric
space (X, ̺) will be called contractive if

(4) |f(x) − f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.

In the proof of our main result, Theorem 2, we will use the following property
of contractive functions (see [6]):

Theorem 1. Let (X, ̺) be a boundedly compact metric space and let

f : X → R be a contractive function satisfying

(5) inf f > −∞.

Further let an open set G ⊂ X and a compact set K ⊂ G be given. Then

there exists an ε0 > 0 such that for every ε ∈ (0, ε0) there exists a contractive

function f̃ : X → R satisfying the following conditions:

(6) f̃(x) = f(x) for x ∈ X \ G, f̃(x) = f(x) + ε for x ∈ K.

(7) f(x) ≤ f̃(x) ≤ f(x) + ε for x ∈ G \ K.

Replacing f by −f we obtain from Theorem 1 the following result:

Remark 2. If sup f < ∞ and f : X → R is a contractive function then
there exists an ε0 > 0 such that for every ε ∈ (−ε0, 0) there is a contractive

function f̃ : X → R satisfying conditions (6) and the inequality

(8) f(x) + ε ≤ f̃(x) ≤ f(x) for x ∈ G \ K.

In order to formulate the main result of our paper we introduce a func-
tional of the form

(9) ϕ(f) = 〈f, µ〉, f ∈ F ,

where µ is a given signed measure satisfying

(10) µ = µ1 − µ2, µ1 6= µ2, µ1, µ2 ∈ M1.

The following theorem extends the Kantorovich–Rubinstein principle to the
Fortet–Mourier norm.

Theorem 2. Assume that (X, ̺) is a boundedly compact metric space

and that µ satisfies condition (10). Then there exists a function f0 ∈ F such

that

(11) ϕ(f0) = ‖µ‖F .

Moreover , if a function f0 ∈ F satisfies (11) then it fulfills at least one of

the following two conditions:

1o There exist x, y ∈ X, x 6= y, such that

(12) |f0(x) − f0(y)| = ̺(x, y).
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2o The function f0 has the following properties:

f0(x) = 1 for x ∈ suppµ+,(13)

f0(x) = −1 for x ∈ suppµ−.(14)

Proof. Condition (10) implies that for every f ∈ F the integral (9) exists
and

(15) |ϕ(f)| < ∞.

It follows immediately that there exists a sequence (fn), fn ∈ F , satisfying

(16) lim
n→∞

ϕ(fn) = sup
f∈F

ϕ(f) < ∞.

According to the Ulam theorem (see [3]) we can choose an increasing se-
quence of compact sets Ks ⊂ X such that

(17) |µ|(X \ Ks) < 1/s for s = 1, 2 . . . .

Using the Arzelà–Ascoli theorem and the diagonal Cantor process we find
a subsequence (fαn) which converges pointwise on the set

(18) K̂ =
∞⋃

s=1

Ks

to a function f̂ : K̂ → R. Evidently f̂ satisfies the Lipschitz condition with
constant 1. According to the McShane theorem (see [14]) there exists an

extension f0 of f̂ defined on X which satisfies the Lipschitz condition with
the same constant. From the construction it follows that (fαn) converges

to f0 on K̂ and |µ|(X \ K̂) = 0. By the Lebesgue dominated convergence
theorem we have

lim
n→∞

ϕ(fαn) = ϕ(f0).

This and (16) imply (11). Now we are going to show that every f0 ∈ F
satisfying (11) fulfils (1o) or (2o). Suppose, on the contrary, that there exists
a contractive f0 ∈ F such that

(19) ϕ(f0) = ‖µ‖F and f0(x0) < 1 for some x0 ∈ suppµ+.

Let X = X+ ∪ X− be the Hahn decomposition for µ. From the continuity
of f0 there is a closed ball B(x0, r0) such that

f0(x) < 1 for x ∈ B(x0, r0).

Moreover
µ+(B(x0, r0)) > 0.

According to the Ulam theorem there is a compact set K ⊆ B(x0, r0)∩X+

such that

(20) µ+(K) > 0.

Evidently µ−(K) = 0 and f0(x) < 1 for x ∈ K.
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Define

Kδ = {x ∈ X : ̺(x, K) < δ}.

Using the compactness of K we can find a δ > 0 such that

(21) µ−(Kδ \ K) ≤ µ+(K)/2 and sup
x∈Kδ

f0(x) < 1.

Since K ⊂ Kδ and the set Kδ is open, according to Theorem 1 there exists an

ε > 0 such that ε < 1−supx∈Kδ
f0(x), and a contractive function f̃0 : X → R

satisfying conditions (6) and (7) with G = Kδ. From (6), (7) and the equality
µ−(K) = 0 it follows that

〈f̃0, µ〉 − 〈f0, µ〉 =
\

X\Kδ

(f̃0(x) − f0(x))µ(dx)

+ ε
\
K

µ+(dx) +
\

Kδ\K

(f̃0(x) − f0(x))µ(dx)

≥ εµ+(K) −
\

Kδ\K

(f̃0(x) − f0(x))µ−(dx)

≥ εµ+(K) − εµ−(Kδ \ K).

Now using (21) we obtain

〈f̃0, µ〉 ≥ 〈f0, µ〉 + εµ+(K)/2.

Since f̃ is a contractive function, this contradicts (19) and finishes the proof
in the case when f0(x0) < 1 for some x0 ∈ suppµ+. If f(x0) > −1 for some
x0 ∈ suppµ−, the argument is similar. It is based on Remark 2.

Using Theorem 2 it is easy to prove the following

Colollary 1. Let µ1 and µ2 be two distinct distributions. Assume that

(22) dist(supp (µ1 − µ2)+, supp (µ1 − µ2)−) < 2.

Then every f0 ∈ F satisfying (11) fulfills condition 1o.

Proof. Suppose on the contrary that there exists a contractive f0 ∈ F
such that

(23) ϕ(f0) = sup
g∈F

ϕ(g).

Using (22) we can find points x0 ∈ supp (µ1−µ2)+ and y0 ∈ supp (µ1−µ2)−
such that ̺(x0, y0) ≤ 2. On the other hand, by condition 2o of the maximum
principle we have f0(x0) − f0(y0) = 2, which is impossible.

4. Applications. Let (X, ̺) be a boundedly compact metric space. This
assumption will not be repeated in what follows.
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An operator P : M → M is called a Markov operator if it satisfies the
following three conditions:

(i) P is positively linear:

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ≥ 0 and µ1, µ2 ∈ M,

(ii) P preserves the measure of the space:

Pµ(X) = µ(X) for µ ∈ M.

(iii) There exists an operator U : B(X) → B(X) such that

(24) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈ M.

The operator U is called dual to P . If in addition Uf ∈ C(X) for f ∈ C(X),
then the Markov operator P is called Fellerian.

Remark 3. Every Markov operator P can be uniquely extended as a
linear operator to the space of all signed measures.

Setting µ = δx in (24) we obtain

(25) (Uf)(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X,

where δx ∈ M1 is the point (Dirac) measure supported at x.
From formula (24) it follows immediately that U is a linear operator

satisfying the following conditions:

Uf ≥ 0 for f ≥ 0, f ∈ B(X),(26)

U1X = 1X ,(27)

Ufn ↓ 0 for fn ↓ 0, fn ∈ B(X).(28)

Remark 4. The dual operator U has the unique extension to the set of
all Borel measurable, nonnegative, not necessarily bounded functions on X,
such that formula (24) holds.

Conditions (26)–(28) allow us to reverse the roles of P and U . Namely if
an operator U satisfying (26)–(28) is given we may define a Markov operator
P : M → M by setting

(29) Pµ(A) = 〈U1A, µ〉 for µ ∈ M, A ∈ B.

A mapping π : X × B → [0, 1] is called a transition function if π(x, ·) is
a probability measure for every x ∈ X and π(·, A) is a measurable function
for every A ∈ B.

Having a transition function π we may define the corresponding Markov
operator P : Msig → Msig by the formula

(30) Pµ(A) =
\
X

π(x, A)µ(dx) for µ ∈ Msig, A ∈ B,



Kantorovich–Rubinstein maximum principle 113

and its dual operator U : B(x) → B(X) by

(31) Uf(x) =
\
X

f(u)π(x, du).

Conversely, having a Markov operator P we may define a function π :
X × B → [0, 1] by setting

(32) π(x, A) = Pδx(A).

Clearly, π is a transition function such that (30) is satisfied.
Thus, conditions (30), (32) show a one-to-one correspondence between

the Markov operators and the transition functions.
Note that a Markov operator P is Fellerian if and only if its transition

function has the following property:

xn → x implies π(xn, ·) → π(x, ·) weakly.

If this condition is satisfied the transition function π is also called Fellerian.
A Markov operator P is called Lipschitzian with a constant k > 0 if

(33) ‖Pµ1 − Pµ2‖F ≤ k‖µ1 − µ2‖F for µ1, µ2 ∈ M1.

If k ≤ 1 then P is a nonexpansive operator.
A family (P t)t≥0 of Markov operators is called a semigroup if

P t+s = P tP s for t, s ∈ R
+

and P 0 = I is the identity operator on Msig.
If the Markov operators P t for t ∈ R

+ are Fellerian, we say that (P t)t≥0

is a Markov–Feller semigroup. We denote by (U t)t≥0 the semigroup of the
dual operators to (P t)t≥0.

A Markov semigroup (P t)t≥0 is called locally Lipschitzian if there exists
a locally bounded function k : R

+ → R
+ such that for every t ∈ R

+ the
Markov operator P t is Lipschitzian with constant k(t). If k(t) ≤ 1 for t ∈ R

+,
then (P t)t≥0 is a nonexpansive semigroup.

A nonexpansive semigroup (P t)t≥0 is called strongly contracting on M1

if for every µ1, µ2 ∈ M1, µ1 6= µ2, there is a t0 ∈ R
+ such that

‖P t0µ1 − P t0µ2‖F < ‖µ1 − µ2‖F .

A measure µ∗ ∈ M is called stationary (or invariant) for a Markov semi-
group (P t)t≥0 if

P tµ∗ = µ∗ for t ∈ R
+.

A Markov semigroup (P t)t≥0 is called asymptotically stable if there is a
stationary distribution µ∗ such that

(34) lim
t→∞

‖P tµ − µ∗‖F = 0 for µ ∈ M1.

The distribution µ∗ satisfying (34) is unique.
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A continuous V : X → [0,∞) is called a Lyapunov function if

(35) lim
̺(x,x0)→∞

V (x) = ∞

for some x0 ∈ X. Of course this definition is meaningful only in the case
when X is unbounded. It is evident that the validity on (35) does not depend
on the choice of x0.

A family Π of probability measures on X is said to be tight if for every
positive ε there exists a compact set K such that

(36) µ(K) ≥ 1 − ε for all µ ∈ Π.

Using the Lyapunov function, it is easy to give a sufficient condition for
the tightness of trajectories of a Markov semigroup.

Lemma 1. Let (P t)t≥0 be a Markov–Feller semigroup and (U t)t≥0 its

dual semigroup. Assume that there exists a Lyapunov function V such that

for t ≥ 0,

(37) U tV (x) ≤ AV (x) + B for x ∈ X,

where A, B are nonnegative constants. Then for every µ ∈ M1 the family

(P tµ)t≥0 of distributions is tight.

Proof. Fix an ε > 0 and a µ ∈ M1. By the Ulam theorem we may choose
a compact set K ⊂ X such that

µ(K) ≥ 1 − ε/2.

Set VK = supx∈K V (x). We define a new measure µ by µ(E) = µ(E ∩ K),
where E ∈ B. Let Y = V −1([0, q]), where q is a positive number satisfying

(38) q ≥
2

ε
(AVK + B).

Using the Chebyshev inequality and the definition of µ we have

P tµ(Y ) ≥ P tµ(Y ) ≥ 1 −
ε

2
−

1

q

\
X

V (x)P tµ(dx)

= 1 −
ε

2
−

1

q

\
X

U tV (x)µ(dx).

Now using inequality (37) we obtain

P tµ(Y ) ≥ 1 −
ε

2
−

1

q

[
A
\
X

V (x)µ(dx) + Bµ(K)
]
.

From this and (38) it follows that

P tµ(Y ) ≥ 1 −
ε

2
−

1

q
[AVK + B] ≥ 1 − ε for t ≥ 0.



Kantorovich–Rubinstein maximum principle 115

Since the set Y is bounded and closed, it is compact. This completes the
proof.

Theorem 3. Let (P t)t≥0 be a Markov–Feller semigroup and (U t)t≥0 its

dual semigroup. Assume that :

(i) There is t0 ∈ R
+ such that for every f ∈ F ,

|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y,(39)

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ R
+.(40)

(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists t1 ∈ R
+ such that

(41) dist(supp (P t1(µ1 − µ2))+, supp (P t1(µ1 − µ2))−) < 2.

(iii) There is a Lyapunov function V such that

(42) U tV (x) ≤ AV (x) + B for x ∈ X and t ≥ 0,

where A, B are nonnegative constants.

Then the semigroup (P t)t≥0 is asymptotically stable.

Proof. From (40), it follows immediately that U t(F) ⊂ F for t ∈ R
+

and that the Markov–Feller semigroup (P t)t≥0 is nonexpansive. Indeed, for
µ1, µ2 ∈ M1 and t ∈ R

+ we have

‖P tµ1 − P tµ2‖F = sup{|〈U tf, µ1 − µ2〉| : f ∈ F} ≤ ‖µ1 − µ2‖F .(43)

We claim that (P t)t≥0 is also strongly contracting. For the proof fix
µ1, µ2 ∈ M1, µ1 6= µ2. According to the maximum principle for the Fortet–
Mourier norm there exists a function f0 ∈ F such that

(44) 〈f0, P
t0+t1µ1 − P t0+t1µ2〉 = ‖P t0+t1µ1 − P t0+t1µ2‖F .

This equality may be rewritten in the form

(45) 〈U t0f0, P
t1µ1 − P t1µ2〉 = ‖P t0+t1µ1 − P t0+t1µ2‖F .

The function U t0f satisfies (39), so according to Corollary 1 and part 2o of
the maximum principle applied to the measures P t1µ1 − P t1µ2 we obtain

(46) ‖P t0+t1µ1 − P t0+t1µ2‖F < ‖P t1µ1 − P t1µ2‖.

From this and inequality (43) it follows that the Markov–Feller semigroup
(P t)t≥0 is strongly contracting.

To complete the proof it is sufficient to verify that for every µ ∈ M1 the
trajectory {P tµ}t≥0 is compact with respect to the Fortet–Mourier norm.
Let (tn) be a sequence of integers such that tn → ∞ and tn ∈ R

+ for n ∈ N.
From Lemma 1 and condition (42) it follows that the family (P tnµ)n∈N

of distributions is tight. Further, from the Prokhorov theorem it follows
immediately that there exists a subsequence (P tkn µ)n∈N which converges
weakly to a measure µ0 ∈ M1.
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We have verified that the semigroup (P t)t≥0 is strongly contracting and
that the orbits are compact. According to the variational principle (see [9])
the semigroup (P t)t≥0 is asymptotically stable.

For locally Lipschitzian Markov semigroups the following version of The-
orem 3 can be proved similarly:

Theorem 4. Let (P t)t≥0 be a locally Lipschitzian Markov semigroup on

Msig and (U t)t≥0 its dual semigroup. Assume that :

(i) There is t0 ∈ R
+ such that for every f ∈ F ,

(47) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.

(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists n0 ∈ N such that

(48) dist(supp (Pn0t0(µ1 − µ2))+, supp (Pn0t0(µ1 − µ2))−) < 2.

(iii) There is a Lyapunov function V such that for n ≥ 0,

(49) Unt0V (x) ≤ AV (x) + B for x ∈ X,

where A, B are nonnegative constants.

Then (P t)t≥0 is asymptotically stable.

We complete this series of sufficient conditions for the asymptotic sta-
bility of Markov semigroups by the following

Theorem 5. Let (P t)t≥0 be a Markov–Feller semigroup and (U t)t≥0 its

dual semigroup. Assume that :

(i) There is t0 ∈ R
+ such that for every f ∈ F ,

|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y,(50)

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ R
+.(51)

(ii) There exist t0, t1, t2 ∈ R
+ such that for every f ∈ F , either

U t0+t1f(x) ∈ (−1, 1] for x ∈ X,

or

U t0+t2f(x) ∈ [−1, 1) for x ∈ X.

(iii) There is a Lyapunov function V such that for t ≥ 0,

(52) U tV (x) ≤ AV (x) + B for x ∈ X,

where A, B are nonnegative constants.

Then (P t)t≥0 is asymptotically stable.

Proof. We repeat the argument used in the proof of Theorem 3. However,
in this case for µ1, µ2 ∈ M1, µ1 6= µ2, equality (44) should be replaced by

(53) 〈f0, P
t0+t̃µ1 − P t0+t̃µ2〉 = ‖P t0+t̃µ1 − P t0+t̃µ2‖F ,
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where t̃ = min(t1, t2) and f0 ∈ F . Again this may be rewritten in the form

(54) 〈U t0+t̃f0, µ1 − µ2〉 = ‖P t0+t̃µ1 − P t0+t̃µ2‖F .

The function U t0f satisfies (50), so according to (ii) and part 2o of the
Fortet–Mourier maximum principle for µ1 − µ2 we obtain

‖P t0+t̃µ1 − P t0+t̃µ2‖ < ‖µ1 − µ2‖.

This shows that (P t)t≥0 is strongly contracting with respect to the Fortet–
Mourier norm. The remaining part of the proof is the same as for Theo-
rem 3.

We may simplify the verification of condition (ii). Namely, we have

Proposition 1. Let π : X × B → [0, 1] be a Fellerian transition func-

tion. Assume that

(55) suppπ(x, ·) = X for x ∈ X.

Then for every f ∈ F , either

Uf(x) ∈ (−1, 1] for x ∈ X,

or

Uf(x) ∈ [−1, 1) for x ∈ X,

where U is the corresponding dual operator (31).

Proof. Fix f ∈ F and suppose that there exists an x1 ∈ X such that
Uf(x1) = 1. By the properties of the dual operator we have

U1X(x1) − Uf(x1) =
\
X

[1X(y) − f(y)] π(x1, dy) = 0.

From this and (55) it follows that

(56) f(x) = 1 π(x1, ·)-almost everywhere.

Because f is continuous, this is equivalent to

f(x) = 1 for x ∈ X.

Since U is the dual operator we conclude that

Uf(x) = 1 for x ∈ X.

If there exists an x2 ∈ X such that Uf(x2) = −1 the argument is similar.

In order to illustrate the utility of Theorem 5 we show a sufficient condi-
tion for the asymptotic stability of a special Markov operator. It is related
to mathematical models of the cell cycle [10].

Example 1. We will study the asymptotic stability of Markov operators
describing the evolution of measures due to the action of randomly chosen
transformations. In the classical case the family of transformations is finite.
Typical results of this kind may be found in [1, 2, 12, 4]. The case of an
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infinite family was recently discussed by P. Janoska in [7] and [8]. Our result
is based on a quite different technique related to the maximum principle for
the Fortet–Mourier norm. The main difference between our approach and
the results of P. Janoska is that we do not assume any kind of compactness
on the set of indices.

Again, let (X, ̺) be a boundedly compact metric space. Further, let
(I, κ) be a metric space of indices. We consider a continuous transformation
S : X × I → X and a function F : X × BI → [0, 1], where BI denotes the
σ-algebra of Borel subsets of I. We assume that F satisfies the following
conditions:

(1) For every x ∈ X the mapping F (x, ·) : BI → [0, 1] is a probability
measure.

(2) For every A ∈ BI the function F (·, A) : X → X is measurable.

Now we present an imprecise description of the process considered in this
example.

Choose an arbitrary point x0 ∈ X and randomly select a point i0 ∈ I
according to the distribution F (x0, ·). When the point i0 is drawn we define
x1 = S(x0, i0). Having x1 we select i1 ∈ I according to the distribution
F (x1, ·) and we define x2 = S(x1, i1) and so on. Denoting by µn, n = 0, 1, . . . ,
the distribution of xn, i.e. µn(A) = prob(xn ∈ A), we define P as the
transition operator such that µn+1 = Pµn.

The above procedure can be easily formalized. To do this fix x ∈ X
and set µ0 = δx. According to the description of our process and from the
definition of the dual operator U we have

Uf(x) = 〈Uf, δx〉 = 〈f, Pδx〉 = 〈f, µ1〉 for f ∈ B(X).

This means that Uf(x) is the mathematical expectation of f(x1) if x0 = x
is fixed. On the other hand, according to our description, the expectation of
f(x1) is equal to \

I

f(S(x, i))F (x, di).

Since x was arbitrary this implies

(57) Uf(x) =
\
I

f(S(x, i))F (x, di) for x ∈ X.

We take (57) as the precise formal definition of the operator U and we
define P as the Markov operator corresponding to U . Thus P is the unique
operator satisfying

(58) 〈f, Pµ〉 = 〈Uf, µ〉.

To formulate sufficient conditions of the asymptotic stability of P we
introduce the following notations.
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Consider the class Φ of functions ϕ : [0,∞) → [0,∞) satisfying the
following three conditions:

(a) ϕ is continuous and ϕ(0) = 0;
(b) ϕ is nondecreasing and concave;
(c) ϕ(x) > 0 for x > 0 and limx→∞ ϕ(x) = ∞.

We denote by Φ0 the family of functions satisfying (a), (b).
The inequality

(59) ω(t) + ϕ̃(r(t)) ≤ ϕ̃(t) for t ≥ 0

plays an important role in the study of the asymptotic behaviour of the
Markov operator P . In [12] Lasota and Yorke discussed the cases when the
functional inequality (59) has a solution belonging to Φ.

If r(t) < t and ϕ̃ ∈ Φ is a solution of (59) then the function R
+ ∋ t 7→

ϕ̃(t) + t ∈ R
+ satisfies the strict functional inequality

(60) ω(t) + ϕ(r(t)) < ϕ(t) for t ≥ 0.

The transition function π : X ×B → [0, 1] corresponding to P is defined
by the formula

(61) π(x, A) = Pδx(A) =
\
I

1A(S(x, i))F (x, di) for (x, A) ∈ X × B.

Finally, denote by ‖ · ‖T the total variation norm in the space Msig(I).

Proposition 2. Let ω, r ∈ Φ0 be such that 0 ≤ r(x) < x and that the

functional inequality (60) has a solution in the class Φ. Moreover , assume

that the following conditions are satisfied :

(i) we have\
I

̺(S(x, i), S(y, i))F (x, di) ≤ r(̺(x, y)) for x, y ∈ X,(62)

‖F (x, ·) − F (y, ·)‖T ≤ ω(̺(x, y)) for x, y ∈ X.(63)

(ii) There is a point x0 ∈ X such that

(64) sup
x∈X

\
I

̺(x0, S(x0, i))F (x, di) < ∞.

(iii) The transition function π given by (61) satisfies

(65) suppπ(x, ·) = X for x ∈ X.

Then the operator P given by (57) and (58) is asymptotically stable.

Proof. Consider a solution ϕ ∈ Φ of (60) corresponding to the pair (ω, r).
The function

(66) ̺ϕ(x, y) = ϕ(̺(x, y)) for x, y ∈ X
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is again a metric on X. Denote by ‖ · ‖ϕ the Fortet–Mourier norm generated
by ̺ϕ, i.e.

‖µ‖Fϕ = sup{|〈f, µ〉| : f ∈ Fϕ} for µ ∈ Msig,

where Fϕ ⊂ C(X) is the set of all f such that |f | ≤ 1 and

|f(x) − f(y)| ≤ ̺ϕ(x, y) for x, y ∈ X.

Now fix f ∈ Fϕ. We are going to show that Uf is a contractive function
with respect to the metric ̺ϕ. Using (57), (63) and the continuity of S it is
easy to verify that Uf ∈ C(X) and |Uf | ≤ 1. Moreover for x, y ∈ X, x 6= y,
we have

|Uf(x)−Uf(y)| =
∣∣∣
\
I

f(S(x, i))F (x, di)−
\
I

f(S(y, i))F (y, di)
∣∣∣

≤ ‖F (x, ·) − F (y, ·)‖T +
\
I

|f(S(x, i))−f(S(y, i))|F (x, di).

From this and (i) it follows that

|Uf(x) − Uf(y)| ≤ ω(̺(x, y)) +
\
I

ϕ(̺(S(x, i), S(y, i)))F (x, di)

≤ ω(̺(x, y)) + ϕ
(\

I

̺(S(x, i), S(y, i))F (x, di)
)

≤ ω(̺(x, y)) + ϕ(r(̺(x, y)))

According to (60), the last inequality implies

(67) |Uf(x) − Uf(y)| < ̺ϕ(x, y).

Now, we will verify that

(68) UnV (x) ≤ r(1)V (x) + B for x ∈ X and n ∈ N,

where V (x) = ̺(x, x0) and

B = (1 − r(1))−1
(
r(1) + sup

x∈X

\
I

̺(x0, S(x0, i))F (x, di)
)
.

In fact from (62) it follows that

(69)
\
I

̺(S(x, i), x0)F (x, di) ≤ r(̺(x, x0)) +
\
I

̺(x0, S(x0, i))F (x, di).

Moreover, since r is nondecreasing, concave and r(0) = 0, we have

r(x) ≤ r(1)x + r(1).

The last inequality, (57) and (69) imply (68).
By Proposition 1 and Theorem 5 the operator P is asymptotically stable

with respect to the Fortet–Mourier norm ‖ · ‖Fϕ generated by ̺ϕ.
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Finally, because the classes of convergent sequences in both spaces
(Msig, ‖·‖Fϕ) and (Msig, ‖·‖F ) are the same, the operator is asymptotically
stable with respect to the Fortet–Mourier norm ‖ · ‖F .
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