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Existence of solutions for infinite systems of parabolic
equations with functional dependence

by ANNA PUDELKO (Krakéw)

Abstract. The Cauchy problem for an infinite system of parabolic type equations
is studied. General operators of parabolic type of second order with variable coefficients
are considered and the system is weakly coupled. We prove the existence and uniqueness
of a bounded solution under Carathéodory type conditions and its differentiability, as
well as the existence and uniqueness in the class of functions satisfying a natural growth
condition. Both results are obtained by the fixed point method.

1. Introduction. Let S be an arbitrary set of indices. Let B(.S) be the
space of mappings v : S 3 i — v' € R such that sup{|v’| : i € S} <
endowed with the supremum norm

[vll ) := sup{|v’| : i € S}.

For every nonempty set X C R we denote by Cg(X) the space of mappings
w: X 3z wx) € B(S), where w(z) : S > i — w'(z) € R, and the
functions w’ are continuous in X. We also use the notation w = {w'};cs.
When the functions w' are additionally bounded we denote the space of these
functions by C'Bg(X ). We remark that the space C Bg(X ) endowed with the

supremum norm
|lwllo := sup{|wi(x)| xe X, ie S}

is a Banach space.
Let T be an arbitrary positive constant. Set 2 = (0,7] x R™, 0 =
[0,7] x R™. For w € CBg(f2) and for a fixed t > 0 we define

lwllos == sup{|w'(t, )| : (t,2) € 2, t < t, i€ S}
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Let f = {f'}ies and ¢ = {¢'}ics, where
fli2xC0s(2) > (t,x,s) — fit,x,s) €ER, i€S,
o R sz i(z)ER, €S
Let u = {u'};cs be composed of unknown functions u’ of the variables

(t,x) = (t,x1,...,7m). F = {F'}ics denotes the family of the following
second order parabolic operators:

. B . . mo 52 mo B .
i — — A b= E Lo(t - Eb"t — (¢
F ot A’ A jk:1ajk( ,$) afﬂjal’k +j:1 ]( 7:6) al’j +C( ,$),

where the coefficients aék(t,m), b;- (t,z) and ¢(t,x) are defined in (2.
We consider an infinite system of weakly coupled (!) semilinear parabolic
equations of reaction-diffusion-convection type of the form

(1) Flu](t,z) = fit,z,u),  i€8,
supplemented with the initial condition
(2) u(0,z) = p(x) for z € R™.

The notation f(t,z,u) means that the functions f* are functionals of the
function u. We consider the functional dependence of Volterra type, i.e.
(V) for any (t,z) € 2 and 0,7 € Cs(£2) such that n/(,z) = 7/ ({,z) for

0<t<t,je S wehave fi(t,z,n) = f'(t,z,7), i € S.
This means that the values of the functions f'(t,z,u), i € S, depend only
on the past history of the process. Examples of such functionals are:

(a) Pt u) =u (o't Br)
where o € [0,1], ' € R™ and Bz = (Bix1, ..., B0Tm);
: i — for 0 <7<t zeR™
(b) f’(t,aj,u):{u (t—m7,z) for0<7<t x ,
alt —T,x) for0<t< 7, zecR™
where a = {a'};cg is a function defined for [—7,0] x R™;
t
(c) fit,m,u) = | A7, 2, u(r, ) dr.
0
Such functionals can describe delays and deviations or be integrals “over the
past”.
This paper can be considered as a continuation of the author’s study [10]

of certain infinite systems of parabolic differential-functional equations. Now,
we consider a more general form of operator with lower order z-derivatives.

(1) That is, every equation contains all unknown functions and derivatives of only one
unknown function.
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The goal of the paper is to prove two theorems. The first concerns the ex-
istence and uniqueness of solution of the Cauchy problem (1), (2) for the infi-
nite system in the class of bounded continuous functions under Carathéodory
type assumptions, i.e. the integrability of the function f with respect to ¢
and continuity with respect to the other variables. The second is a similar
theorem but in the class of functions satisfying a certain growth condition.
We will apply the Banach contraction principle, as in [10], [3], [4]. In [10], to
solve the above problem in the space of bounded continuous functions under
the classical assumptions the Banach fixed point theorem was also used. In
[3] and [4], by the same methods, the existence and uniqueness of solution
was proved for the Cauchy problem for a parabolic equation with functional
dependence represented by a Hale-type operator. The initial-boundary value
problem for similar infinite systems was considered e.g. in [1], [2].

This paper is organized as follows. In the next section the necessary no-
tations and definitions are introduced. We also formulate the assumptions
which are valid throughout the paper, and recall two auxiliary lemmas. Sec-
tion 3 contains the results concerning the bounded continuous solutions. In
the last section we state and prove the main result of the paper, i.e. the
existence and uniqueness of solution for the Cauchy problem (1), (2) with
the growth condition |u®(t, z)| < D exp(d|x|?).

2. Notations, definitions and assumptions. Throughout the paper
we use the following notation. The Euclidean norm in R™ is denoted by
| - | and the norms in function spaces by || - || with appropriate indices; in
particular the supremum norm is denoted by || - |lo. By L'(X) we denote
the space of all integrable functions defined on a nonempty measurable set
X CR™.

We now formulate the crucial assumptions on the coefficients of the op-
erators {F'};cs, which are sufficient for existence of a fundamental solution
for the homogeneous system associated with (1).

(H) The coefficients aék(t,x), b;-(t,x), c(t,x), i€ S, jk=1,...,m, are
bounded continuous functions in {2 such that aék(t, x) = a};j(t, x) and

the following uniform Hélder conditions with exponent a (0 < e < 1)
are satisfied in 2: there exists H > 0 such that

i (t ) — al (¢, 2')| < H(jw — /| + [t = ']*/?),
B (t.2) — bt < Hlo— o',
i(t,2) — ¢t 2)] < Hlz — /|
for all (t,z), (t/,2') € 2 and j,k=1,...,m.

(P) The operators F*, i € S, are uniformly parabolic in {2, i.e. there is
© > 0 such that
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m ) m
o ah(ta)gt >y &
g k=1 j=1

for all (t,z) € 2 and & = (£4,...,&n) € R™.

LEMMA 1. If assumptions (P) and (H) hold then there exist fundamen-
tal solutions I''(t,x;7,€) of the equations F'[u'|(t,z) = 0, i € S, and the
following inequalities hold:

2
Il < el e -EZE). e,
for some p* < pu where pu* depends on p and H whereas ¢ depends on u, o, T.

A proof of Lemma 1 can be found in [6, Chap. 1, Th. 2.1] or [7, Chap. 1,
Sec. 2-6].

REMARK 1. Under the assumptions of Lemma 1 the following estimates
on the derivatives of the fundamental solution hold:

8 C1 * ‘m_€’2
o 52 ) Co |$_£|2
i i . <
8tF (t LT, 5) 8$j8$kp (t,:C,T,f)‘ = (t—T)(m+2)/ < a 4(t—T)>

forall0<7<t<T, z,£€R™ iecSand j,k=1,...,m
We can also obtain Holder continuity conditions with § € (0, 1]:

[T (t, 5 7,8) — T (8, T 7, €)|
c Lz —&)? - _
< ot e TS Yl - 892 4 o -,

= (t —7)(m+)/2 4t — 1)
9 i, . 0 iz
%jr(txa’rvé)_a—w]r( 7‘5)‘

C1,6 ’ §| £16/2 —15
= (t — 7)m+it0)/z < w 4t — ))“t_t'/ =t

foral0 <7 <t<t<T,z,T,£€R™ i€ Sand jk=1,...,m. A proof of
this can be found in [6, Chap. 1].

The above inequalities imply immediately

if"(t,x;n 5)’ d¢ < Cy(t —7)~1/2

J It e glde < and  § o
J

RrR™ R™
fori € S, j =1,...,m, where C = c(4n/p*)™? and Cy = c1(4n/pu*)"™/2.
The notation for constants which appear in Lemma 1 and Remark 1 will be
valid throughout the paper.
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Now, for each 7 € Cs(£2) we define the operator F = {F’};c5 by setting

Fn)(t,2) = f'(t,z,m), i€S.
Using the fundamental solutions and the operator F we can transform the
differential problem (1), (2) into the integral system
t
(3)  wit,x)= | I'(t, 20,9 de+ | | T'(t, 27, OF [ul(r, &) dé dr
R™ 0OR™
fort >0, x € R™.

DEFINITION. A function u € Cs(£2) is said to be a C-solution of the
differential problem (1), (2) in {2 if it satisfies the system of integral equa-
tions (3).

To end this section we recall a certain technical lemma which will be used
later.

LEMMA 2. If 0 < B < A then

m/2 AB
§ expl-ale -6+ BlePyds = (75 ) e iglel).
Rm

This follows from the equality

“. AB ,
x.

- A-B""'

~Alz — € + BI¢)* =

1=

- (\/m & — ﬁ 35@2>2

Changing variables as follows: z; = VA — B§& — \/zf—iB :612, and making use

of the fact that {g,, exp (—|z|?)dz = 7™/2 for 2 = (21,...,2n), we obtain
the result.

3. Bounded solutions. Recall that in [10] we proved the existence and
uniqueness of a bounded solution for the problem (1), (2). The main idea
of the proof was as follows. In the space C Bg({2) we defined an operator T
by the right-hand sides of the integral system (3). Then using the Banach
fixed point theorem we found the unique solution of the equation v = T|u]
in that space with respect to a weighted norm || - ||o (of Bielecki type, cf.
[5]). The result was obtained under the classical assumptions, i.e.

ASSUMPTION 1.

(C) fi(-,-,s) is continuous for all i and s;
(L) f! satisfies the Lipschitz condition in s untformly with respect to
(t,z) and i, i.e. AL >0 Vi € S V(t,z) € 2 Vs, s € CBg(12)

‘fi(tvxvs) - fi(tw%'ag)’ < LHS - gHO;
(B) 3IMy > 0Vie SV(t,z) € R |fit,z,0)| < M.
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The definition of C-solution and analysis of the classical results suggest
that it is possible to obtain similar existence theorems under weaker condi-
tions. Namely, one can replace continuity conditions by Carathéodory type
conditions, i.e. integrability of the right-hand sides with respect to ¢, and re-
place the Lipschitz constants in the classical Lipschitz condition by suitable
integrable functions. This approach admits a weak singularity at ¢ = 0T,
that is, we can consider L(t) =t=%, g €[0,1).

Now, we formulate the Carathéodory type conditions.

ASSUMPTION 2.

(Cy) fzi(t, -, 8) € O(R™) and fi(-,x,s) € L'[0,T] for all i;
(Ly) f* satisfies the Lipschitz condition in s uniformly with respect to
(t,x) and i, i.e. 3L € L'[0,T] Vi € S ¥(t,x) € 2 Vs,5 € CBs(2)
[f (2, 5) = f'(t,2,8)] < L(t)l|s — 5]o;
(By) 3My € L'[0,T] Vi € S V(t,z) € 2 |fi(t,z,0)| < My(t).
An example of f = {f*};cs which satisfies these conditions is
t/2
fitt,wu) = | m(t — 1) Al(u(t, z)) dr
0
where A = {A'};cs satisfies the Lipschitz condition with respect to the
norm || - || g(sy uniformly with respect to i € S and sup;cg |A*(0)| < oo, and
m is a function such that t — 86/2 |m(t — 7)| dr is integrable on [0,77]; e.g.
m(t) = 1/t'"1F with 5 € (0,1) and A" = S>7T% 4,27 where k is a positive

j=i—k
integer and {ay, }nen is a bounded sequence.

THEOREM 1. Let assumptions (H) and (P) hold. Let f = {f'}ics satisfy
Assumption 2 and ¢ € CBg(R™). Then there exists a unique C-solution u
of the problem (1), (2) in 2.

Proof. The proof is analogous to that in [10]. Let ¢ (¢) be a nondecreasing
continuous function defined on [0, 7] which satisfies the inequality

VCL(m)¢(r)dr <0y(t), 0<0<1;
0

for example ¥ (t) = exp{(C/0) Sg L
defined by the right-hand side of (

(1) dr}. Let the operator T = {T};cs be
3), i.e. fort >0, x € R™,

t

Tt x) = | I'(t,2;0,8)¢" () dg + | | I'(t, 257, OF [u](7, €) d€ dr.
Rm™ OR™
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For u = T[2], w = T[z], and z,Z € CBg(f2) we have
t

Jul (t, @) =@ (t,2)] < |z = Zllog | CL(T)i(7) dr < 0]z = Zllo.p 9 ().
0

This shows that T defines a contraction from the space C'Bg({2) into itself
with respect to the weighted norm || - [|g 4, where

z]l0 = sup{% (t,r) € 2,i € S}.

The boundedness of T[z] is an easy consequence of Assumption 2 and the
estimate

IT(llo < O (K + llzllo§ L(r)b(r) dr + § Mo(r)u(r) i ). =
0 0

Next, we recall that the C-solution of the problem (1), (2) in {2 obtained
under classical assumptions has continuous first order z-derivatives in 2 with
no additional assumption.

In case of Carathéodory type assumptions, it is also possible to obtain
continuous z-differentiability, but under stronger assumptions.
First, we introduce the following notation:

ug(t,x) = | T'(t,2;0,8)¢(€) d&.
R
PROPOSITION 1. Suppose that all assumptions of Theorem 1 hold and
(By) IM, € LY0,T) Vi € S V(t,x) € 2 |fi(t,z,up)| < My(t).
Then the C-solution u satisfies the inequality

(4) lu — wgllo < G(t) == | CM,(r) exp(CSL(s) ds) dr.
0 T

Furthermore, if

¢ My(7) + L(r)G(r)

(5)  3M >030€(0,1)Vtel0,T] §) BB dr < M
and
t—h?
(6) ’lli{%h | (My(r)+L(nNG(r)(t—7)"dr=0, t>0,
0

then the first order x-derivatives of u in {2 exist and are continuous.
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Proof. To obtain (4) we estimate the difference v — u, in the same way
as we proved the boundedness of T[z] in the previous theorem:

t

((w—up)(t,2)| <\ | [0t 7, €) f(7, €, u)| dE dr
0OR™
t

<V V10t s O1(F Tl (,€) = Flug](r, €)] + [F'ug](7,)]) d€ dr.

0ORm™
Then by (Bw)a (L¢), and (V),

|(u—ug)(t,2)| < | C(My(7) + L(7)llu = ugllos) dr
0

and the Gronwall lemma yields (4).

Define
A o A . .
I; = S Epz(t,l‘;T,f)Fz[u](T,g) d¢ forie S, j=1,....,m
Rm™m
By Remark 1, for alli € S and j =1,...,m,
i c1 (z—§*) 1
1< | G men] - G s )+ LG
C
< L (M () + LG,

From (5) it follows that the integrals Sg Iji» dr are almost uniformly convergent

for all ¢,z where (¢,2) € {2, which implies the differentiability of u with

respect to x. Their continuity can be obtained from the estimate

¢ o . i A

| | =itz m OF [l (r,€) de dr - S —FZ 7, ) F [u] (7, ) d¢ dr
OR

oORmM al‘j

. m/2 t — 7
9171(4—*) [ (M (7) + L()G () L ar
0

1 t—T
+ 01| (Ml7) + L(T)G(r)) == dr
- m/2t z—7|°
+ c1,5<i—*> § (M (7) + L(r)G(7)) (t‘_ﬂﬁ dr

0
forall0<t<t<T,z,7,£€R™ icSand j,k=1,...,m
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Thus, taking h = V't — ¢ and making use of (5) and (6) one can see that
S[t) I]Z: drt are continuous in z and continuous in ¢ uniformly with respect to x
forall ¢ € S and j = 1,...,m. This implies the continuity of the first order
x-derivatives of the C-solution and ends the proof of Proposition 1. =

4. Unbounded solutions. This section is devoted to the existence of a
unique solution for the problem (1), (2) in the class of continuous functions
which satisfy the growth condition |u’(t,z)| < Dexp (d|z|?). Without this
condition, the initial-valued problem in an unbounded domain is ill-posed,
as shown by Tikhonov’s well known example [11]. The results in this section
are similar to those concerning bounded solutions, but there is an important
difference: the solutions in the previous section were global in time, whereas
if the initial data and right-hand sides are unbounded then the solutions may
blow up.

We denote by C'T the space of all positive, real-valued, continuous and
nondecreasing functions defined on the set [0, 7.

For w € Cg(f2) we define the following family of weighted norms of
Bielecki type:

7
t
Hw”2,¢ = sup sup L’x)’z7
ieS (1a)en XP(o(t)|z]?)

s sy s wi(t, )|
TR s YD exp(G(D]af?)’

where ¢,1 € CT. Let Eé’(b be the space of all functions w € Cs(§2) such
that

[[]

ID>0VY(t,z) e RVie S |w'(t,z)] < Dexp(o(t)|z]?)

for every ¢ € CT. We notice that the space E;"z) endowed with the norm
| - ll2,4 is a Banach space. If ¢, ¢ € C, then

PO)[DO)]lwll2pp < llwllag < D(T)SDN"?[w]]2,6,,

which shows that the weighted norms || - ||2.4 and || - ||2,4,4 are equivalent.

This immediately implies that Eé’(z) with the norm ||-[|2,4 is a Banach space
as well.

ASSUMPTION 3.

(KC) EIF >0VieSVeeR™ |p(x)] < K exp (6(0)|z]?);

(C) f'(-s,s) is continuous for each i € S;

(B) IMy > 0Vie SV(t,z) € 2 |fi(t,x,0)| < Myexp(é(t)|z]?).

An example of f = {f'};cs which satisfies the conditions from Assump-
tion 3 and condition (£) which appears in the assumptions of Theorem 2 is
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t

fit, v, u) = \m(t — 1) Al (u(t, z)) dr

0
where m is a function such that SoT |m(T — 7)|dr < oo and A = {A'}ies
satisfies the Lipschitz condition with respect to the norm || - || g(gy uniformly
with respect to i € S and sup;cg |A*(0)| < oo.
THEOREM 2. Let assumptions (H) and (P) hold. Let ¢ € CT be a func-
tion satisfying the inequality
()
pr = 4p(r)(t —7)
where p* is the constant which appeared in Lemma 1. Let Assumption 3 be
satisfied and let 11 (t) := exp{CLt/0}, where 0 < 0§ < 1, L > 0. Moreover,

suppose that the operator generated by f = {f'}ics satisfies the following
condition:

(£)3L>0Vie S Vs,5¢€ E2”
IF'[s] = F'[8l2.6,0, < Llls = Sll2.6,-

Then there exists a unique solution u € Eé’d) of the problem (1), (2).

<p(t) for0<7T<t<T,

REMARK 2. In order to avoid the dependence of the left hand side on L,
condition (£) can be written in the following equivalent form:

(L) 3L>0VieSVs,5e Ey”
|Fi(t, 2, 8) — Fi(t,2,3)| < Ll|s — 3l2.p, L () [0(8)] ™2 exp (4(t)|2]?)

Before giving a proof of Theorem 2 we give an example of a function ¢(t)
satisfying the assumptions (cf. [9]): ¢(t) = K/(1 —4Kt) for 0 < t < 1/4K
with K € Ry. Since the function ¢(t) appears in the weighted norm the

T
i)
unbounded solutions which satisfy the desired growth condition.

Proof of Theorem 2. We show that the operator T defined by the right-
hand side of (3) is a contraction from the space E;’(z) into itself with respect
to the norm || - [|2,4.4, -

Let 2,z € Eé’d) and u = T[z],u = T[z]. Owing to the definition of the
mapping T and the operator F,

inequality < ¢(t) determines the domain of existence of the

(@) — (@) < | | 10 27, &) 1F1(r,€,2) — Fi(r,€,7)| de dr
0OR™
= | [ 10 27, ) [F[2)(r, ) — FE)(r, ©)] de dr

0R™
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t , ,
i [E[2](7, &) — F[Z(7, €|
= Ti(t, x; T,
)3 O ot P esplolr) €
x i (T)[$(r)]™2 exp(@(7)[€[) dé dr.
By condition (£) and Lemma 1 one can further estimate as follows:

|ui(t,x) —ﬂi(t,x)\

<Lz = Zllogp, | § 1T (8257, O (m)[6(0)]™? exp(o(7) |€]°) dé dr

Rm™m

< Llz = Zl2.6m

L

Br(DBEI™2 | |7t i, ) exp(é(r)|E[?) de dr

R™

< L|iz = Zlog., Ve ()om)™? | et — 1)

Rm
* 2
<oxp( G5 ) explo(le?) dear
Now, from Lemma 2 we obtain
|ui(t’ SL‘) - ﬂi(tv ZL‘)|

. t . o A (t — 1) m/2
e T L O e e e

1w ()| l?
- eXp(m —4g(r)(t - T>> i

L

Ot o+ Ol O e

—Z t T 47T¢(T) m/2
< cL||z —Z||2,6,6, §¢L( )<,,k —4p(7)(t — T))

pro(r)|zf?
) eXp(m —16(n)(t - T>> "

Due to the property of the function ¢(¢) we have

()|l 2
exp (LHTNE ) < explotnel)

which implies

|ui(t,x) — ﬂi(t, x)| P .
< L(i_”> 12 = Zlla.6. [T exp(é () 2]?) | . (7) dr

0
< (o)™ *r(t) exp(d(t)|2*)0]| 2 = Zl|2,6,0, -
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Thus, finally,

(7) IT[z] = TEl2.gn < Ollz = Zll2.p.-
This means that the operator T is a contraction with respect to the weighted

norm ||-{|2,4., - The inequality (7) also implies the boundedness of T[z] with
respect to this norm:

1T l2.6., < IT(O)12,0,6, + I T[] =T [0]ll2,6,0, < C(K+MoT)+0]2ll2,6,0, -

Therefore, from the Banach contraction principle it follows that there
exists a unique fixed point u = {u’};cs in E§’¢ of the mapping T, which
means that the problem (1), (2) has a unique C-solution satisfying the growth
condition |u’(t,x)| < Dexp(¢(t)|z|?) in 2. Theorem 2 is proved.

REMARK 3. In Theorem 2 we assumed that the operator generated by
the right-hand sides of (1) satisfies the Lipschitz type condition with respect
to the weighted norm || - [|2,4.4, - This condition is stronger than the classical
one, but the example for the heat equation with functional dependence from
[9] shows that the latter is not enough for the functional case when the initial
data and right-hand sides are unbounded. But, in the case of non-functional
dependence as well as in the case of functional dependence but in spaces of
bounded continuous functions, the classical Lipschitz condition is sufficient,
as was shown in [10].

If we know more about functional dependence and can effectively es-
timate the norm of the operator which determines that dependence, the
Lipschitz condition with respect to the weighted norm can be weakened, but
not to the classical one. An example is the Hale operator and the results
included in [3].

As in the previous section we can allow a weak singularity at ¢t = 0 by
formulating the theorem under a Carathéodory type condition.
ASSUMPTION 4.

(Cy) filt,-,s) € C(R™) and fi(-,z,s) € L1[0,T] for all i € S;
(Bt) dMy € LI[O,T] Vie S V(t,x) en
(82, 0)| < Mo(t) exp(e(t)]]?).
THEOREM 3. Let (H) and (P) hold. Let ¢ € CT be a function satisfying
wr (1)
pr—4o(r)(t —7)
where p* is the constant which appeared in Lemma 1. Let condition (IC)
from Assumption 3 be satisfied and let ¢, (t) := exp{(C/0) Sf) L(7)dr}, where

0<éb<land L€ LI[O,T]. Moreover, suppose that Assumption 4 holds and
the function f = {f'}ics satisfies the following Lipschitz condition:

<P(t) for0<7T<t<T,
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(L) 3L € L'[0,T] Vi € S ¥(t,2) € 2 Vs,5 € E5?

[f1 (82, 8) = f1(82,8)] < L(t)lls = Bl2.6,0, 0L (D[] exp (6(2)]a]).

Then there exists a unique solution u € Eé’d) of the problem (1), (2).

(1]
(2]
(3]
[4]
[5]

[6]
[7]

(8]

9]

[10]

[11]

We omit the proof, since it is analogous to the proof of Theorem 2.
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