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B-regularity of certain domains in C
n
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Dau Hoang Hung (Vinh)

Abstract. We study the B-regularity of some classes of domains in C
n. The results

include a complete characterization of B-regularity in the class of Reinhardt domains, we
also give some sufficient conditions for Hartogs domains to be B-regular. The last result
yields sufficient conditions for preservation of B-regularity under holomorphic mappings.

I. Introduction. Let Ω be a bounded domain in R
n. We denote by

C(∂Ω) and C(Ω) the spaces of real-valued continuous functions on ∂Ω and
Ω, respectively. An important problem of (real) potential theory is whether
every function f ∈ C(∂Ω) can be extended to a function u ∈ C(Ω) which is
harmonic on Ω. It is a classical fact that the function u, if it exists, can be
computed as follows:

u = uf,Ω := sup{v ∈ SH(Ω) : v
∗ ≤ f on ∂Ω},

where SH(Ω) denotes the cone of subharmonic functions on Ω and v∗ is
the upper regularization of v, which is defined on Ω. The function uf,Ω is
called the Perron envelope of f and it is easy to check that it is always
harmonic on Ω even if f is only assumed to be bounded. A beautiful result
of potential theory states that the Perron envelope solves the above problem
if and only if for each boundary point x ∈ ∂Ω there exists a barrier at x,
i.e. u ∈ SH(Ω) ∩ C(Ω) such that u(x) = 0 whereas u < 0 elsewhere. In
particular, this condition is satisfied if ∂Ω is smooth.

It is natural to consider a similar problem in the complex setting. Namely,
if Ω is a bounded domain in C

n, under what conditions can every f ∈
C(∂Ω) be extended to a maximal plurisubharmonic function u on Ω which
is continuous on Ω? Here we recall that a plurisubharmonic function u is
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maximal if for every relatively compact subdomain Ω′ of Ω and every pluri-
subharmonic function v on Ω′ such that v∗ ≤ u on ∂Ω′ we have v ≤ u on Ω′.
Using an argument analogous to the real case, Bremermann shows in [Br]
that such a function u, if it exists, can be written as

u = uf,Ω := sup{v ∈ PSH(Ω) : v
∗ ≤ f on ∂Ω},

where PSH(Ω) is the cone of plurisubharmonic functions on Ω. However,
here we encounter a difficulty as the Perron–Bremermann envelope uf,Ω
may not be upper semicontinuous on Ω. To check the continuity of uf,Ω
on Ω, according to a result of Walsh in [Wa], it suffices to verify that
limz→x uf,Ω(z) = f(x) for every boundary point x ∈ ∂Ω.
Building upon the work of Bremermann and Walsh, Sibony in [Si] has

given some characterizations of Ω so that the above mentioned problem
always has a solution (see also [Bl] and [Wi]). The goal of this note is to apply
the results and methods of [Si] to study B-regularity of some concrete classes
of domains in C

n. The first result of the paper gives a full description of
B-regularity for Reinhardt domains. Next, we give some sufficient conditions
for B-regularity of Hartogs domains and the inverse of B-regular domains.

Acknowledgments. We are indebted to the referee for his numerous
corrections and useful comments that helped to improve the paper. It will be
abundantly clear that the results, presentation and some proofs owe much
to the seminal paper [Si] of Sibony. This work is an extension of the notes
[Da] and [Ng] and is supported in part by the National Research Program
in Natural Sciences, Vietnam.

II. Preliminaries. We start off with a standard notion:

Definition 2.1. A bounded open set Ω in C
n is said to be hyperconvex

if there is a negative plurisubharmonic exhaustion function for Ω.

It is a well known result of Kerzman and Rosay (see [KR]) that every
bounded pseudoconvex open set with C1 smooth boundary in C

n is hyper-
convex. Moreover, they also prove that every hyperconvex open set in C

n

admits a negative C∞ smooth strictly plurisubharmonic exhaustion function.
For a more refined version of the latter result see Theorem 6.2 in [Bl].
The next concepts are crucial to our paper:

Definitions 2.2.

(a) A compact set K in C
n is called B-regular if every continuous func-

tion on K can be approximated uniformly on K by continuous pluri-
subharmonic functions on neighbourhoods of K. A locally closed set
K is said to be locally B-regular if for every a ∈ K there is a ball U
centred at a such that K ∩ U is B-regular,



B-regularity of certain domains in C
n 139

(b) A bounded open set Ω is called B-regular if every (real-valued)
continuous function on ∂Ω can be extended to a function pluri-
subharmonic on Ω and continuous on Ω.

Remarks 2.3. (i) These definitions are taken from [Si, p. 301] and [Bl,
p. 721] respectively. Notice that in [Si], Sibony mainly studies the class of
bounded pseudoconvex domains with C1 smooth and B-regular boundaries.
See Theorem 2.4 below for some connections between these domains and
B-regular ones.

(ii) It is immediate that every compact subset of a B-regular compact
set is also B-regular. Moreover by Proposition 1.4 in [Si], a compact set K
in C

n is B-regular if and only if it is locally B-regular.

(iii) By an analytic disk in Cn, we mean the image of a holomorphic
mapping from the open unit disk ∆ to C

n. Using the maximum principle,
we see that if a compact setK is B-regular thenK has no analytic structure,
i.e., contains no non-constant analytic disk. The converse is not true; indeed,
by Proposition 1.11 in [Si] we know that every compact set in C is B-regular
if and only if its fine interior is empty.

(iv) If Ω is a bounded open set such that there is a sequence of holomor-
phic mappings ϕj : ∆→ C

n such that ϕj(∆) ⊂ Ω and ϕj converges locally
uniformly on ∆ to a non-constant holomorphic mapping ϕ : ∆→ C

n satis-
fying ϕ(∆) ⊂ ∂Ω then Ω is not B-regular. Indeed, since ϕ is non-constant,
we can find 0 < r < 1 such that ϕ(0) 6= ϕ(z) for all z ∈ ∂∆r, where
∆r = {z : |z| < r}. Choose u ∈ C(∂Ω) such that (u ◦ ϕ)(0) = 1/2 and
(u ◦ ϕ)(z) = 0 if z ∈ ∂∆r. Assume that there is some ũ ∈ PSH(Ω) ∩ C(Ω)
such that ũ = u on ∂Ω. Then by applying the maximum principle to the
subharmonic functions ũ ◦ϕj we obtain (ũ ◦ϕj)(0) ≤ sup∂∆r ũ ◦ϕj . Letting
j tend to ∞ we get a contradiction to the choice of u. In particular, if Ω is
B-regular and if ∂Ω is C1 smooth then ∂Ω contains no non-constant analytic
disk, for otherwise, by translating the disk along some inward normal vector
and applying the above remark, we get a contradiction to the B-regularity
of Ω.

The next theorem of Sibony (see Theorem 2.1 in [Si] or Theorem 1.7 in
[Bl]) describes the main relationships between the concepts given in Defini-
tions 2.2.

Theorem 2.4. Let Ω be a bounded open set in C
n. If Ω is hyperconvex

and ∂Ω is B-regular then Ω is B-regular. Conversely, if Ω is B-regular then
Ω is hyperconvex , and if in addition ∂Ω is of class C1 then ∂Ω is B-regular.

Notice that the first assertion of the theorem was proven in [Si] under
the stronger assumption that Ω is a bounded pseudoconvex domain having
a smooth B-regular boundary. However, the proof given there works also for
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hyperconvex domains with B-regular boundary (see Remarks 2.10(ii)). In
Lemma 4.2 we will show that if ∂Ω is C1 smooth near a point a ∈ ∂Ω and
if there is a barrier at a (with respect to Ω) then Ja(∂Ω) = {δa} (for the
notation see Definition 2.6). The last assertion of Theorem 2.4 will follow
immediately from this result.

The most convenient tool in verifying B-regularity of bounded domains
in C

n is perhaps the following theorem.

Theorem 2.5. Let Ω be a bounded open set in C
n. Then the following

statements are equivalent.

(i) Ω is B-regular.

(ii) For each z0 ∈ ∂Ω there exists a barrier at z0 with respect to Ω, i.e.,
there is u ∈ PSH(Ω) ∩ C(Ω) such that u(z0) < 0 and u < 0 on
Ω \ {z0}.

(iii) For each z0 ∈ ∂Ω there exists a local barrier at z0, i.e., there exist
a neighbourhood U of z0 and ϕ ∈ PSH(Ω ∩U)∩ C(Ω ∩U) such that
ϕ(z0) = 0 and ϕ < 0 on Ω ∩ (U \ {z0}).

Proof. This theorem is implicitly contained in [Si]. For the sake of com-
pleteness we sketch a proof. It suffices to show (iii)⇒(i) since the other
implications are trivial. After shrinking U we can find ε > 0 so small that
ϕ ≤ −ε on Ω ∩ ∂U . Define

ϕ̃ =

{
max(ϕ,−ε) on Ω ∩ U ,
−ε on Ω \ U.

It is easy to see that ϕ̃ ∈ PSH(Ω)∩C(Ω), ϕ̃(z0) = 0 and ϕ̃ < 0 on Ω \ {z0}.
Applying Theorem 1.7 of [Bl] (see also Theorem 2.1 in [Si]) we conclude that
Ω is B-regular.

It follows easily from this theorem that every strictly pseudoconvex do-
main is B-regular. A useful approach to the existence of a barrier at a given
boundary point z0 ∈ ∂Ω of a bounded domain Ω is via the concept of Jensen
measures with barycentre at z0.

Definition 2.6. Let K be a compact set in C
n and z0 ∈ K. The set of

Jensen measures with barycentre at z0, denoted by Jz0(K), is the collection
of all positive, regular Borel measures µ supported in K such that µ(K) = 1
and for every plurisubharmonic function u on a neighbourhood of K we
have

(1) u(z0) ≤
\
K

u dµ.

Some remarks seem to be appropriate at this point.
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Remarks 2.7. (i) By a standard regularization, it is no difference to
require only that (1) holds for smooth plurisubharmonic functions on neigh-
bourhoods of K.

(ii) By Proposition 1.3 in [Si], K is B-regular if and only if Jz(K) = {δz}
for every z ∈ K, where δz is the Dirac mass at z.

(iii) In [Po, p. 416], another definition of Jz0(K) is given where the
inequality (1) is required to hold for all plurisubharmonic functions on K.
Here, by a plurisubharmonic function on K, Poletsky means, roughly speak-
ing, an upper semicontinuous function u on K satisfying the submean value
inequality on the cluster set of any sequence of uniformly bounded analytic
disks that “converge” towards K. For the precise definition, we refer to Sec-
tion 3 of [Po]. In Lemma 4.1 we will show that the two classes of Jensen
measures introduced by Sibony and Poletsky are the same. This fact will
enable us to use a basic theorem of Poletsky saying that every µ ∈ Jz0(K)
can be approximated in the weak-∗ topology by holomorphic measures.

(iv) In the case K = Ω, where Ω is a bounded domain in C
n, Wik-

ström introduces in [Wi] (see also Definition 2.1 in [CCW]) the class Jcz0(K)
of Jensen measures by requiring (1) to be true for the set of continu-
ous functions on Ω which are plurisubharmonic on Ω. Obviously we have
Jcz0(K) ⊂ Jz0(K). The inclusion might be strict; for instance, when Ω =
∆ \ [−1/2, 1/2], where ∆ is the unit disk in C, it is not hard to check that
Jc0(K) = {δ0} while J0(K) containsm, the normalized Lebesgue measure on
the unit circle. On the other hand, if ∂Ω is C1 smooth, then according to The-
orem 1 in [FW], every continuous function on Ω which is plurisubharmonic
on Ω can be approximated uniformly on Ω by continuous plurisubharmonic
functions on neighbourhoods of Ω. Therefore, in this case, Jcz0(K) = Jz0(K)
for every z0 ∈ K.

We also need the following fact which is probably known:

Lemma 2.8. Let Ω be a bounded hyperconvex domain in C
n and z0 ∈ ∂Ω.

Assume that Jz0(∂Ω) = {δz0}. Then there exists a barrier at z0, i.e., there
is a u ∈ PSH(Ω) ∩ C(Ω) so that u(z0) = 0 while u < 0 on Ω \ {z0}.

For the proof, we require

Lemma 2.9. Let Ω be a bounded hyperconvex open set in C
n and u be

a C2 smooth plurisubharmonic function on a neighbourhood U of ∂Ω. Then
there exists u′ ∈ PSH(Ω) ∩ C(Ω) such that u′ = u on ∂Ω.

Proof. Choose a negative C∞ smooth strictly plurisubharmonic exhaus-
tion function ϕ for Ω. Let θ be a C∞ smooth function with compact support
in U such that θ = 1 on a neighbourhood of ∂Ω. Then we can choose
u′ = Cϕ+ θu for some large constant C.
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Proof of Lemma 2.8. We set

(2) A = {f ∈ C(∂Ω) : there is u ∈ PSH(Ω) ∩ C(Ω) with u|∂Ω ≡ f}.

We are going to prove the four assertions below, where (iii) is used to prove
(iv).

(i) A is closed in C(∂Ω).
(ii) A is a convex cone that contains all constants.
(iii) If f, g ∈ A then max{f, g} ∈ A and χ ◦ f ∈ A for every increasing
convex function χ : R→ R.

(iv) For every neighbourhood U of z0 there exists ϕ ∈ A such that
ϕ(z0) = −1, ϕ ≤ −2 on (∂Ω) \ U and ϕ ≤ 0 on ∂Ω.

Assuming for the moment that (i), (ii), (iv) are proved, we can apply
the proof of Lemma 3.2 in [Po] to obtain ψ ∈ A such that ψ(z0) = 0 and
ψ < 0 elsewhere. Extend ψ to a function u ∈ PSH(Ω) ∩ C(Ω); by the
maximum principle we have u < 0 on Ω \ {z0} whereas u(z0) = 0. The
desired conclusion follows.

Now it remains to prove (i)–(iv). For (i) we just apply Corollary 3.9 of
[Wi], and (ii), (iii) follow immediately from (2). For (iv), we let J denote
the set of positive, regular Borel measures µ supported on ∂Ω satisfying

u(z0) ≤
\
∂Ω

u dµ for all u ∈ A.

By applying the Edwards duality theorem (see [Ed] or Theorem 2.1 in [Wi])
to the data (∂Ω,A,J ) we get for every h ∈ C(∂Ω),

(3) sup{ϕ(z0) : ϕ ∈ A, ϕ ≤ h} = inf
{ \
∂Ω

h dµ : µ ∈ J
}
.

We claim that J ⊂ Jz0(∂Ω). Indeed, let µ ∈ J and u be an arbitrary C
2

smooth plurisubharmonic function on a neighbourhood of ∂Ω. By Lemma
2.9 there is u′ ∈ PSH(Ω) ∩ C(Ω) such that u′ = u on ∂Ω. It follows that

u(z0) = u
′(z0) ≤

\
∂Ω

u′ dµ =
\
∂Ω

u dµ.

This proves the claim. Thus, by our assumption, J = {δz0}. Combining this
with (3) we get for every h ∈ C(∂Ω),

sup{ϕ(z0) : ϕ ∈ A, ϕ ≤ h} = h(z0).

Now let U be an arbitrary neighbourhood of z0 and h ∈ C(∂Ω) so that
h ≤ 2, h(z0) = 1 and h ≡ −1 on (∂Ω) \ U . Using the topological Choquet
lemma and (iii), we get an increasing sequence {ϕj} ⊂ A such that ϕj ≤ h
on ∂Ω and {ϕj(z0)} converges to 1. It follows that there is j0 large enough
such that ϕj0 ≤ 2 on ∂Ω, 2/3 < a := ϕj0(z0) < 3/2 and ϕj0 ≤ −1 on
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(∂Ω) \ U . Let χ : R→ R be the function

χ(x) =





x− a

a+ 1
, x < a,

x− 2

2− a
+ 1, x ≥ a.

Then χ(a) = 0, χ(2) = 1, χ(−1) = −1, and it is easy to see that χ is convex
and increasing; thus by (iii), χ ◦ ϕj0 ∈ A. Moreover, from the choice of ϕj0
we can check that the function ϕ := χ ◦ ϕj0 − 1 satisfies (iv). The proof is
complete.

Remarks 2.10. (i) In Theorem 2.1 of [Wi] the author works with a
slightly different notion of Jensen measures, namely he considers just posi-
tive measures (not necessarily Borel and regular). However, since the space
C
n is locally compact, by the Riesz representation theorem, the measure s
that appears in the proof of Theorem 2.1 in [Wi] can be chosen to be Borel
and regular. This justifies the use of Theorem 2.1 of [Wi] in our context. Ob-
serve that similar uses of the Edwards theorem have been made in Theorem
2.8 of [CCW] and Corollary 2.2 of [Wi].
(ii) It follows immediately from Lemma 2.8 that every hyperconvex

bounded domain with B-regular boundary is B-regular.

III. Results. We first discuss the B-regularity of Reinhardt domains
in C

n; a weaker version of the result below is stated in Proposition 2.4 of
[Si].

Proposition 3.1. Let Ω be a bounded Reinhardt domain in Cn. Then

Ω is B-regular if and only if Ω is hyperconvex and ∂Ω has no analytic
structure.

Recall that a domain Ω is called Reinhardt if for every (θ1, . . . , θn) ∈ R
n

and (z1, . . . , zn) ∈ Ω we have (e
iθ1z1, . . . , e

iθnzn) ∈ Ω. We also let

Vj = {(z1, . . . , zn) : zj = 0}, V =
⋃

1≤j≤n

Vj ,

logΩ∗ = {(log |z1|, . . . , log |zn|) : (z1, . . . , zn) ∈ Ω \ V }.

The following characterizations of pseudoconvexity and hyperconvexity of
bounded Reinhardt domains play essential roles in the proof of Proposition
3.1. It should be remarked that while Lemma 3.2 below is well known (see
[Zw1], [Zw2]), Lemma 3.3 is a recent result due to Zwonek (see [Zw2]).

Lemma 3.2. Let Ω be a bounded Reinhardt domain. Then Ω is pseudo-
convex if and only if the set logΩ∗ is convex in R

n and for each if Ω∩Vj 6= ∅
then the condition (z1, . . . , zj , . . . , zn) ∈ Ω implies (z1, . . . , λzj , zj+1, . . . , zn)
∈ Ω for all |λ| < 1.
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Lemma 3.3. Let Ω be a bounded pseudoconvex Reinhardt domain. Then
Ω is hyperconvex if and only if Ω ∩ Vj 6= ∅ implies Ω ∩ Vj 6= ∅.

Proof of Proposition 3.1. It is enough to prove the implication “⇐”.
Let a = (a1, . . . , an) be an arbitrary point in ∂Ω. According to Theorem
2.5 we need to show that there exists a local barrier at a. After a linear
change of coordinates, we may assume that a = (1, . . . , 1, 0, . . . , 0), where
there are k 1’s and 0 ≤ k ≤ n. Since Ω is hyperconvex, by Lemma 3.3 we
have 1 ≤ k ≤ n. There are two cases to be considered.

Case 1: k = n. Since Ω is Reinhardt and pseudoconvex, the domain
logΩ∗ is convex. Obviously the origin is in ∂(logΩ∗). So we can find a hy-
perplane passing through the origin and disjoint from logΩ∗. Hence there is
(α1, . . . , αn) ∈ R

n and a small neighbourhood U of a such that the function

ϕ(z) =
n∑

j=1

αj log |zj |

is plurisubharmonic on Ω ∩ U, continuous on Ω ∩ U and satisfies ϕ < 0 on
Ω ∩ U whereas ϕ(a) = 0.
Now we claim that ϕ < 0 on (∂Ω) ∩ (U \ {a}). Otherwise, there is some

b = (b1, . . . , bn) ∈ (∂Ω) \ V such that b 6= a and ϕ(b) = 0. Define the
holomorphic map

ψ : C→ C
n, z 7→ (elog |b1|z, . . . , elog |bn|z).

Since logΩ∗ is convex, the segment {(t log |b1|, . . . , t log |bn|) : 0 ≤ t ≤ 1}
is contained in ∂(logΩ∗). This implies that ψ(H) ⊂ ∂Ω, where H is the
strip {z : 0 < ℜz < 1}. Notice that ∂Ω has no analytic structure, so ψ is
constant, which is clearly absurd. The claim follows. It implies that ϕ is a
local barrier at a.

Case 2: 1 ≤ k < n. By Lemma 3.3 we have Ω ∩ Vj 6= ∅ for every
k + 1 ≤ j ≤ n. Let π denote the projection

π : Cn → C
k, (z1, . . . , zn) 7→ (z1, . . . , zk).

By Lemmas 3.2 and 3.3, π(Ω) is a bounded hyperconvex Reinhardt domain
in C

k.
Now we claim that ∂(π(Ω)) has no analytic structure. Otherwise we

can find a non-constant holomorphic mapping F : ∆ → C
k such that

F (∆) ⊂ ∂(π(Ω)). By Lemma 3.2 we infer that the non-constant holomor-

phic mapping F̃ = (F, 0, . . . , 0) satisfies F̃ (∆) ⊂ ∂Ω. This contradicts the
assumption on ∂Ω.
Since Ω is hyperconvex Reinhardt, using Lemma 3.3 we deduce that

π(a) 6∈ π(Ω). It follows that π(a) ∈ ∂(π(Ω)). From the result proven in
Case 1 we get a neighbourhood U (in C

k) of π(a) and a barrier u at π(a)
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with respect to U ∩ π(Ω). It is clear that u ◦ π is a barrier at a with respect
to π−1(U) ∩Ω.

Corollary 3.4. Let a1, . . . , an be positive numbers. Then the domain

Ω = {(z1, . . . , zn) : |z1|
a1 + · · ·+ |zn|

an < 1}

is B-regular.

Proof. Since ai > 0, from Lemmas 3.2 and 3.3 we infer that Ω is a
bounded hyperconvex Reinhardt domain in C

n.
We claim that ∂Ω has no analytic structure. Indeed, suppose Φ =

(ϕ1, . . . , ϕn) is a non-constant holomorphic mapping from ∆ to C
n such

that Φ(∆) ⊂ ∂Ω. We may assume that the first k components of Φ are non-
vanishing on some disk ∆′ ⊂ ∆ for some 1 ≤ k ≤ n. For each 1 ≤ j ≤ k, we
write ϕj = e

ψj where ψj is holomorphic on ∆
′. Then

k∑

j=1

eajℜψj = 1, ∀z ∈ ∆′.

Applying the operator ∂2/∂z∂z to both sides we get

k∑

j=1

a2j

∣∣∣∣
∂ψj
∂z

∣∣∣∣
2

eajℜψj = 0, ∀z ∈ ∆′.

This is clearly absurd. Thus ∂Ω has no analytic structure. This implies that
Ω is B-regular, in view of Proposition 3.1.

Before formulating the next result we recall that a plurisubharmonic
function u is called strictly plurisubharmonic at a point a if there is some
neighbourhood U of z and λ > 0 so that ϕ(z) − λ|z|2 is plurisubharmonic
on U . Observe that the set of points where u is strictly plurisubharmonic is
open.

Proposition 3.5. Let Ω be a bounded domain in C
n and ϕ be an up-

per semicontinuous function on Ω which is bounded from below. Let Ωϕ =
{(z, w) : z ∈ Ω, log |w|+ ϕ(z) < 0}.

(a) If Ωϕ is B-regular then

(i) Ω is B-regular.
(ii) ϕ ∈ PSH(Ω) ∩ C(Ω) and limz→ξ ϕ(z) =∞ for all ξ ∈ ∂Ω.
(iii) For every non-constant analytic disk S contained in Ω, the re-
striction of ϕ to S is not harmonic.

(b) If Ω and ϕ satisfy conditions (i), (ii) and if the set

X = {z ∈ Ω : ϕ is not strictly plurisubharmonic at z}

is locally connected and locally B-regular then Ωϕ is B-regular.
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We need some lemmas; the first two of them are rather elementary.

Lemma 3.6. Let θ, {θj}j≥1 be continuous mappings from an open set U
in C

n to C
p. Assume that {θj} converges to θ uniformly on U . Then for

every open set V ⊂ θ(U) and a ∈ θ−1(V ), there exist an open subset U ′ of
θ−1(V ) and j0 so large that a ∈ U

′ ⊂ θ−1j (V ) for all j ≥ j0.

Proof. Assume that the conclusion of the lemma is false; then we can
find a sequence {zj} ⊂ θ

−1(V ) with zj → a such that θj(zj) 6∈ V . It follows
that there exist ε > 0 and j0 ≥ 1 such that |θj(zj)− θ(a)| > ε for all j ≥ j0.
This is absurd since θj converges uniformly to θ on U .

Lemma 3.7. Let X be a connected compact set in C
n and ϕ ∈ C(X).

Then the compact set

Xϕ = {(z, w) : log |w|+ ϕ(z) = 0, z ∈ X}

is connected.

Proof. Assume that Xϕ is not connected. Then we can find non-empty
disjoint open subsets U1, U2 of C

n such that Xϕ = V1 ∪ V2, where ∅ 6= Vi :=
Xϕ ∩ Ui, i = 1, 2. Let π be the projection (z, w) 7→ z. Then X ⊂ π(V1) ∪
π(V2). Since X is connected, there exists z0 ∈ π(V1)∩π(V2). Observing that
π−1(z0) ∩Xϕ = {z0} × {w : |w| = e

−ϕ(z0)} is a connected compact set, we
get a contradiction.

The next lemma is of independent interest.

Lemma 3.8. Let X,Y be compact sets in C
n and C

p respectively. Assume

that θ is a holomorphic mapping from a neighbourhood U of X to C
p such

that

(i) Y = θ(X) is B-regular.
(ii) θ−1(z) ∩X is B-regular for every z ∈ Y .

Then X is B-regular if one of the following conditions holds:

(iii) X is connected and θ can be approximated uniformly on U by holo-
morphic mappings from C

n to C
p.

(iii′) X is locally connected.

Remarks 3.9. (i) A stronger version of the above result, where X is
neither supposed to be connected nor locally connected and θ ∈ C(X) is
merely assumed to be approximated uniformly on X by holomorphic func-
tions on neighbourhoods of X, was claimed in Proposition 1.10 of [Si]. The
proof of that result, in our opinion, contains a gap. Namely, we do not under-
stand why the B-regularity of Y implies the density of the set of continuous
plurisubharmonic function on neighbourhoods of X in the set of continuous
plurisubharmonic functions on neighbourhoods of θ−1(θ(x)) where x is some
point in X. By employing some deep results of Poletsky in [Po] we are able
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to give a proof of Lemma 3.8. It remains, however, an open problem whether
the above mentioned claim of Sibony is correct.
(ii) The image of a B-regular compact set under a holomorphic mapping

need not be B-regular. Indeed, letX be the compact set {(z, z) : |z| ≤ 1} and
π be the projection (z, w) 7→ z. By the Stone–Weierstrass theorem, every
continuous function on X can be approximated uniformly by polynomials
in C

2. This implies that X is B-regular. On the other hand, π(X) = {z :
|z| ≤ 1} is obviously not B-regular.

Proof of Lemma 3.8. We first show that X is B-regular under assump-
tion (iii). Let {θj} be a sequence of holomorphic mappings from C

n to C
p

such that {θj} converges uniformly to θ on U . Let ξ0 ∈ X and µ ∈ Jξ0(X).
According to Theorem 3.2 in [Po], we can approximate µ by holomorphic
measures in the following sense: There exists a sequence L = {fj} of uni-
formly bounded holomorphic mappings from ∆ to C

n such that

(4) (f∗j )∗m→ µ in the weak-∗ topology, where f∗j is the radial limit values
of fj , and (f

∗
j )∗m is the direct image of m under f

∗
j , i.e., for every

Borel set E ⊂ X, ((f∗j )∗m)(E) = m((f
∗
j )
−1(E)∩ ∂∆), where m is the

normalized Lebesgue measure on ∂∆.
(5) limj→∞ fj(0) = ξ0.
(6) clL ⊂ X, where clL is the set of points z in C

n such that every
neighbourhood of z intersects fj(∆) for infinitely many j.

(7) For every z ∈ clL and every neighbourhood V of z we have

lim sup
j→∞

ω(0, f−1j (V ), ∆) > 0,

where ω(·, E,∆) denotes the harmonic measure of the set E with
respect to ∆.

Next we set L′ = {θj ◦ fj}. Since θj is a holomorphic map from C
n

to C
p, we infer that L′ is also a sequence of uniformly bounded holomorphic

mappings from ∆ to C
p. Further, from (4)–(7) we get

(8) ((θj ◦ fj)
∗)∗m→ θ∗µ in the weak-∗ topology.

(9) limj→∞(θj ◦ fj)(0) = θ(ξ0).
(10) clL′ = π(clL) ⊂ Y .
(11) For every z′ ∈ clL′ and every neighbourhood V ′ of z′ we have

lim sup
j→∞

ω(0, (θj ◦ fj)
−1(V ′), ∆) > 0.

Notice that (11) follows from Lemma 3.6 and (7).
Now we claim that clL ⊂ θ−1(θ(ξ0)) ∩ X. Otherwise, there is some

point ξ′0 ∈ clL \ θ
−1(θ(ξ0)). It follows from (10) that θ(ξ

′
0) ∈ clL

′ and
θ(ξ′0) 6= θ(ξ0). Since the sequence L

′ satisfies (8)–(11), we may invoke Lemma
4.1 of [Po] to deduce that θ(ξ0) is not a plurisubharmonic peak point with
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respect to Y in the sense of Poletsky (see [Po, p. 416]). This contradicts the
B-regularity of Y .

Since the claim is valid, we have µ ∈ Jξ0(θ
−1(θ(ξ0)) ∩X). From (ii) we

infer that µ = δξ0 . Thus X is B-regular by Remarks 2.7(ii).

Now if X satisfies (iii′), then we let z0 be an arbitrary point in X, and
choose a small neighbourhood U of z0 such that X ∩ U is connected and
that θ can be approximated uniformly on U by holomorphic mappings from
C
n to C

p. It follows that X ∩ U satisfies (iii), so X ∩ U is B-regular. This
implies that X is locally B-regular, thus X is in fact B-regular.

Proof of Proposition 3.5. (a) If Ωϕ is B-regular then in particular it
is hyperconvex. It is well known that this is the case if and only if ϕ ∈
PSH(Ω)∩C(Ω). Now assume that there is some point ξ ∈ ∂Ω and a sequence
{zj} ⊂ Ω such that zj → ξ and limj→∞ ϕ(zj) = α <∞. Set S = {w : |w| <
e−α−1}. It is easy to check that {zj} × S ⊂ Ωϕ for j large enough and
{ξ} × {w : |w| < e−α−1} ⊂ ∂Ωϕ. This contradicts the B-regularity of Ωϕ,
by Remarks 2.3(iii). Thus (ii) follows.

Next we let f be an arbitrary real-valued continuous function on ∂Ωϕ.

Set f̃(z, 0) = f(z) for z ∈ ∂Ω. Then f̃ is continuous on a closed subset of

∂Ωϕ. Extend it to a continuous function, still denoted by f̃ , on ∂Ωϕ. Since

Ωϕ is B-regular there exists ũ ∈ PSH(Ωϕ)∩C(Ωϕ) such that ũ = f̃ on ∂Ωϕ.
Thus u(z) := ũ(z, 0) belongs to PSH(Ω) ∩ C(Ω) and satisfies u ≡ f on ∂Ω.
This proves (i).

It remains to prove (iii). Assume towards a contradiction that the re-
striction of ϕ to S is harmonic for some non-constant analytic disk S in Ω.
Then we can find a non-constant holomorphic mapping h from ∆ to Ω such
that ϕ ◦ h is harmonic on ∆. Choose a holomorphic function ϕ̃ on ∆ such
that ℜϕ̃ = −ϕ ◦ h. Consider the sequence {ϕj} of holomorphic mappings
from ∆ to C

n+1 defined by ϕj(ξ) = (h(ξ), (1−1/j)e
ϕ̃(ξ)). It is easy to check

that ϕj(∆) ⊂ Ωϕ and ϕj converges uniformly on ∆ to a non-constant holo-
morphic mapping with image in ∂Ωϕ. Using again Remarks 2.3(iv) we get
a contradiction to the B-regularity of Ωϕ.

(b) If Ω is B-regular and ϕ ∈ PSH(Ω) ∩ C(Ω) then it is easy to check
that Ωϕ is hyperconvex. Let p = (z0, w0) be an arbitrary point in ∂Ωϕ.
According to Theorem 2.5 it suffices to show that there exists a local barrier
at p. There are two cases to be considered.

Case 1: z0 ∈ ∂Ω. Since limξ→z0 ϕ(ξ) = ∞ we have w0 = 0. Since Ω is
B-regular, we can find a barrier u at z0 in Ω. It follows that v(z, w) = u(z)
is a barrier at p.

Case 2: z0 ∈ Ω. We claim that there exists a ballW centred at p so that
W ∩ ∂Ωϕ is B-regular. Indeed, choose a relatively compact neighbourhood
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U of z0 in Ω such that X ∩U is connected and B-regular. Let U
′ = U ×C.

Since ϕ ∈ C(Ω) we have

Ũ := U ′ ∩ ∂Ωϕ = {(z, w) : z ∈ U, log |w|+ ϕ(z) = 0}.

Let A be an arbitrary compact subset of Ũ with π(A) ∩X = ∅, where π is
the projection (z, w) 7→ z. Let (z′, w′) be any point in A. Then we can find
a small neighbourhood V of z′ and ψ ∈ PSH(V ), λ > 0 so that

ϕ(z) = λ|z|2 + ψ(z), ∀z ∈ V.

It follows that

0 = ϕ(z) + log |w| = ψ(z) + λ|z|2 + log |w|, ∀(z, w) ∈ A ∩ (V × C).

So −λ|z|2 = ψ(z) + log |w| for every (z, w) ∈ A ∩ (V × C). This implies
that the function −|z|2 is the restriction to the compact set A ∩ (V ×C) of
some plurisubharmonic function on a neighbourhood of it. So A is locally
B-regular, and by Remarks 2.3(ii) we conclude that the compact set A is
B-regular. Next we let

Ã = Ũ ∩ π−1(X) = {(z, w) : z ∈ X ∩ U, log |w|+ ϕ(z) = 0}.

Since X ∩U is connected, by Lemma 3.7 the set Ã is connected. Notice that
π(Ã) is B-regular. Lemma 3.8 shows that Ã is B-regular. It follows that Ũ

can be written as a countable union of compact sets of type A and Ã, so
using Proposition 1.9 in [Si] we deduce that Ũ is B-regular. Choose a ball

W centred at p such that W ⊂ U ′. Then W ∩ ∂Ωϕ, being contained in Ũ ,
is B-regular. This proves the claim.
Since ∂W is B-regular, so is ∂(W ∩Ωϕ). Finally, noticing that W ∩Ωϕ

is hyperconvex, by Theorem 2.4 we infer that W ∩ Ωϕ is B-regular. In
particular, there exists a local barrier at p with respect to W ∩ Ωϕ. The
theorem is proven.

Proposition 3.9. Let Ω be a domain in C
n and suppose that f : Ω →

C
n is a non-degenerate holomorphic mapping. Let Ω′, Ω′′ be bounded B-
regular subdomains of Ω, f(Ω) respectively. Set Ω′′′ = f−1(Ω′′) ∩Ω′ and

S(f) = {a ∈ Ω : a is not an isolated point of f−1(f(a))}.

Assume that there exist an open neighbourhood U of S(f) and a B-regular
compact set K of U ∩ ∂Ω′′′ such that

(i) S(f) ∩ U ∩ ∂Ω′′′ is B-regular.
(ii) ∂Ω′′′ is C1 smooth near every point of (U ∩ ∂Ω′′′) \ (K ∪ ∂Ω′).

Then Ω′′′ is B-regular.

Remarks 3.10. (i) Conditions (i) and (ii) of Proposition 3.9 are obvi-
ously satisfied when f is proper, since in this case S(f) = ∅.
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(ii) Condition (i) of Proposition 3.9 cannot be removed. Indeed, consider
Ω = C

2, Ω′ = {(z, w) : |z|2 + |w|2 < 10}, f(z, w) = (z, zw) and Ω′′ =
{(z, w) : |z|2 + |w − 1|2 < 1}. Notice that

Ω′′′ = {(z, w) : |z|2 + |w|2 < 10, |z|2 + |zw − 1|2 < 1}.

It is easy to check that ∂Ω′′′ \ ∂Ω′ is C1 smooth everywhere except at the
origin, so (ii) is satisfied. On the other hand, {(z, w) : z=1/n, w∈S, n≥10}
⊂ Ω′′′ where S = {w : ℜw > 1/2, |w| < 3}. It follows that S(f) ∩ ∂Ω′′′

contains the analytic disk 0 × S. Applying Remarks 2.3(iv) we conclude
that Ω′′′ is not B-regular. On the other hand, we do not know if condition
(ii) is really needed.

Proof of Proposition 3.9. Notice that Ω′′′ is hyperconvex. Let ξ0 be an
arbitrary point of ∂Ω′′′. According to Theorem 2.5 it suffices to check that
there is a local barrier at ξ0. There are some cases to be considered:

Case 1: ξ0 ∈ ∂Ω
′. Then since Ω′ is B-regular we can even find a barrier

at ξ0 with respect to Ω
′.

Case 2: ξ0 ∈ (∂Ω
′′′) \ (S(f) ∪ ∂Ω′). Then ξ0 ∈ Ω and we can find

a neighbourhood V of ξ0 such that f
−1(f(ξ0)) ∩ V = {ξ0} and f(V ) is a

neighbourhood of f(ξ0) ∈ ∂Ω
′. Since Ω′ is B-regular, there exists a barrier

u at f(ξ0). This implies that u ◦ f is a barrier at ξ0 with respect to V ∩Ω
′′′.

Case 3: ξ0 ∈ S(f)\∂Ω
′. Choose a small ball U ′ centred at ξ0 such that

U ′∩∂Ω′ = ∅ and U ′ ⊂ U . Set W = U ′∩Ω′′′. Let a ∈ L := ∂W \ (∂U ′∪K ∪
S(f)). Then by the result proven in Case 2, we can find a barrier at a with
respect to Ω′′′. Observe that ∂Ω′′′ is C1 smooth near a, so by Lemma 4.2
(see the appendix) we have Ja(∂Ω

′′′) = {δa} for every a ∈ L. It follows that
L is locally B-regular. Therefore L can be written as a countable union of
B-regular compact sets. Since K, S(f) ∩ U ′ ∩ ∂Ω′′′ and ∂U ′ are B-regular
compact sets, we deduce that ∂W is a countable union of B-regular compact
sets. Using Proposition 1.9 of [Si] we conclude that ∂W is B-regular. Notice
that W is hyperconvex, so by Theorem 2.4 it is B-regular.

IV. Appendix

Lemma 4.1. Let K be a compact set in C
n and u be a plurisubharmonic

function (in the sense of Poletsky) on K. Then for every µ ∈ Jz0(K) we
have u(z0) ≤

T
K
u dµ.

Proof. Let {ϕj} be a sequence in C(K) decreasing to u on K. Denote by
PSH(K) the cone of plurisubharmonic functions on K. Set

Eϕj = sup{v ∈ PSH(K) : v ≤ ϕj}.

Clearly u ≤ Eϕj ≤ ϕj on K. This implies that Eϕj ↓ u on K. Accord-
ing to Lemma 3.1 in [Po], Eϕj is the limit of an increasing sequence of
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continuous plurisubharmonic functions defined on neighbourhoods of K.
Since µ ∈ Jz0(K), by the monotone convergence theorem we deduce that
Eϕj(z0) ≤

T
K
Eϕj dµ. Applying again the monotone convergence theorem

we get the desired inequality.

Lemma 4.2. Let Ω be a bounded open set in C
n and a ∈ ∂Ω. Assume

that there is a barrier u at a with respect to Ω, and Ω is C1 smooth near a.
Then Ja(∂Ω) = {δa}.

Proof. Let U be a small ball around a such that U ∩ ∂Ω is C1 smooth.
Let n be the inward normal vector at a. Then we can find a small ball V
around a and ε0 > 0 such that V ∩ ∂Ω ⊂ U and (V ∩ ∂Ω) + εn ⊂ Ω for
ε ∈ (0, ε0). It follows that for ε ∈ (0, ε0), the function uε(z) = u(z + εn) is
plurisubharmonic on a neighbourhood of V ∩∂Ω. Fix µ ∈ Ja(∂Ω∩V ). Then

uε(a) ≤
\

V ∩∂Ω

uε dµ, ∀ε ∈ (0, ε0).

Letting ε tend to 0 we obtain u(a) ≤
T
V ∩∂Ω

u dµ. Since u is a barrier at a,
we must have µ = δa. By Proposition 1.4 in [Si] we have Ja(∂Ω) = {δa}.
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