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Periodic solutions for some delay differential equations

appearing in models of power systems

by Bingwen Liu (Changde) and Lihong Huang (Changsha)

Abstract. The authors use coincidence degree theory to establish some new results
on the existence of T -periodic solutions for the delay differential equation

x
′′(t) + a1x

′(t) + a2(x
n(t))′ + a3x(t) + a4x(t− τ) + a5x

n(t) + a6x
n(t− τ) = f(t),

which appears in a model of a power system. These results are of practical significance.

1. Introduction. An excess voltage of ferro-resonance known as some
kind of nonlinear resonance enjoying long duration arises from magnetic
saturation of inductance in an oscillating circuit of a power system, and a
boosted excess voltage can give rise to some problems in relay protection. To
probe into its mechanism, the following mathematical model was proposed
in [8, 9]:

(1.1) x′′(t) + a1x
′(t) + a2(x

n(t))′ + a3x(t) + a4x(t− τ)
+ a5x

n(t) + a6x
n(t− τ) = f(t),

where a1, . . . , a6 are nonnegative constants, the delay τ > 0 is a constant,
n ≥ 3 is an odd integer, and f : R → R is a continuous periodic function
with period T > 0. Since a normally functioning power system is considered
to be a periodic or almost periodic motion (see [2, 9]), it is worth while to
study the existence of periodic solutions of equation (1.1).

In this paper, using the continuation theorem of coincidence degree the-
ory, we will give some results on the existence of a T -periodic solution to
equation (1.1), which are of practical significance.
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For ease of exposition, throughout this paper we will adopt the following
notations:

|x|k =
(

T\
0

|x(t)|k dt
)1/k
, |x|∞ = max

t∈[0,T ]
|x(t)|, F (t) =

t\
0

f(s) ds.

Let

X = {x ∈ C1(R,R) | x(t+ T ) = x(t) for all t ∈ R},
and

Y = {x ∈ C(R,R) | x(t+ T ) = x(t) for all t ∈ R}
be two Banach spaces with the norms

‖x‖X = max{|x|∞, |x′|∞} and ‖x‖Y = |x|∞.
Define a linear operator L : D(L) ⊂ X → Y by setting

D(L) = {x ∈ X | x′′ ∈ C(R,R)}
and for x ∈ D(L),
(1.2) Lx = x′′.

We also define a nonlinear operator N : X → Y by setting
Nx = − a1x′(t)− a2(xn(t))′ − a3x(t)− a4x(t− τ)(1.3)

− a5xn(t)− a6xn(t− τ) + f(t).
It is easy to see that

KerL = R, ImL =
{

x ∈ Y
∣

∣

∣

T\
0

x(s) ds = 0
}

.

Thus, L is a Fredholm operator with index zero.

Define continuous projectors P : X → KerL and Q : Y → Y/ ImL by
setting

Px(t) = x(0) = x(T ), Qx(t) =
1

T

T\
0

x(s) ds.

Hence, ImP = KerL and KerQ = ImL. Denoting by L−1P : ImL→ D(L)∩
KerP the inverse of L|D(L)∩KerP , we have

(1.4) L−1P y(t) = −
t

T

T\
0

(t− s)y(s) ds+
t\
0

(t− s)y(s) ds.

2. Preliminary results. In view of (1.2) and (1.3), the operator equa-
tion

Lx = λNx
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is equivalent to the equation

(2.1)λ x′′ + λ[a1x
′(t) + a2(x

n(t))′ + a3x(t)

+ a4x(t− τ) + a5xn(t) + a6xn(t− τ)] = λf(t),
where λ ∈ (0, 1).
For convenience, we introduce the Continuation Theorem [3] as follows.

Lemma 2.1. Let X and Y be two Banach spaces. Suppose that L :
D(L) ⊂ X → Y is a Fredholm operator of index zero, and N : Ω → Y
is L-compact on Ω, where Ω is an open bounded subset of X. Moreover ,
assume that the following conditions are satisfied :

(1) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2) Nx 6∈ ImL, ∀x ∈ ∂Ω ∩KerL;

(3) The Brouwer degree

deg{QN |N(L), Ω ∩KerL, 0} 6= 0.

Then the equation Lx = Nx has a solution in Ω ∩D(L).
The following lemmas will be useful to prove our main results in Sec-

tion 3.

Lemma 2.2. If x ∈ C2(R,R) with x(t+ T ) = x(t), then

(2.2) |x′(t)|22 ≤
(

T

2π

)2

|x′′(t)|22.

Proof. This is known as the Wirtinger inequality; see [14, 15] for the
proof.

Lemma 2.3. Let x(t) be a T -periodic solution of (2.1)λ. Suppose that
there exists a constant D > 0 such that

(2.3) |x(τ0)| < D, τ0 ∈ [0, T ].
Then

(2.4) |x|2 ≤
T

π
|x′|2 +

√
T D.

Proof. Let

y(t) =

{

x(t+ τ0 − T )− x(τ0), T − τ0 ≤ t ≤ T,
x(t+ τ0)− x(τ0), 0 ≤ t < T − τ0.

Then

(2.5) y(0) = y(T ) = 0, y′(t) = x′(t+ τ0) for all t ∈ [0, T ].
Thus, from Theorem 225 in [5], (2.5) implies that

(2.6) |y|2 ≤
T

π
|y′|2.
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In view of the Minkowski inequality, we have

|x|22 =
T\
τ0

|x(t)|2 dt+
τ0\
0

|x(t)|2 dt(2.7)

=

T−τ0\
0

|x(t+ τ0)|2 dt+
T\
T−τ0

|x(t+ τ0 − T )|2 dt

= |y(t) + x(τ0)|22 ≤ (|y|2 + |x(τ0)|2)2 ≤ (|y|2 +
√
T D)2.

Combining (2.6) and (2.7), we obtain

(2.8) |x|2 ≤ |y|2 +
√
T D ≤ T

π
|y′|2 +

√
T D =

T

π
|x′|2 +

√
T D.

3. Main results

Theorem 3.1. Let
TT
0 f(s)ds = 0. Suppose that one of the following

conditions holds:

(A1) a2(a5 + a6) >
1
2τ [(a5 + a6)

2 + a26];

a2(a5 + a6) =
1
2τ [(a5 + a6)

2 + a26],

(A2) a1(a5 + a6) + a2(a3 + a4) > τ [(a3 + a4)(a5 + a6) + a4a6].

Then equation (1.1) has at least one T -periodic solution.

Proof. We wish to apply Lemma 2.1. To do this, it suffices to prove that
the set of all possible T -periodic solutions of equation (2.1)λ is bounded.

Let x(t) be such a solution. Since
TT
0 f(s) ds = 0, it is easy to see that F (t)

is a T -periodic function. Let y(t) = x′(t) − λF (t). Then we can transform
(2.1)λ into

(3.1)























dx

dt
= y(t) + λF (t),

dy

dt
= −λ[(a1x(t) + a2xn(t))′ + (a3x(t) + a5xn(t))
+ (a4x(t− τ) + a6xn(t− τ))].

Set

V (t) =
[

y(t) + λ(a1x(t) + a2x
n(t))− λ

t\
t−τ

(a4x(s) + a6x
n(s)) ds

]2
(3.2)

+ 2λ

x\
0

(a3u+ a5u
n) du+ 2λ

x\
0

(a4u+ a6u
n) du

+ λ2
0\
−τ

t\
t+s

(a4x(u) + a6x
n(u))2 du ds.
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Since x(t) and y(t) are T -periodic, so is V (t). Calculating the derivative of
V along the system (3.1), we have

(3.3)
dV (t)

dt

∣

∣

∣

∣

(3.1)

= 2
[

y(t) + λ(a1x(t) + a2x
n(t))− λ

t\
t−τ

(a4x(s) + a6x
n(s)) ds

]

× [−λ(a3x(t) + a5xn(t))− λ(a4x(t) + a6xn(t))]

+ 2λ(a3x(t) + a5x
n(t))y(t) + 2λ2(a3x(t) + a5x

n(t))F (t)

+ 2λ(a4x(t) + a6x
n(t))y(t) + 2λ2(a4x(t) + a6x

n(t))F (t)

+ λ2τ(a4x(t) + a6x
n(t))2 − λ2

t\
t−τ

(a4x(u) + a6x
n(u))2 du

= − 2λ2(a1x(t) + a2xn(t))[(a3 + a4)x(t) + (a5 + a6)xn(t)]

+ 2λ2[(a3 + a4)x(t) + (a5 + a6)x
n(t)]

t\
t−τ

(a4x(s) + a6x
n(s)) ds

+ 2λ2[(a3 + a4)x(t) + (a5 + a6)x
n(t)]F (t)

+ λ2τ(a4x(t) + a6x
n(t))2 − λ2

t\
t−τ

(a4x(u) + a6x
n(u))2 du.

Integrating (3.3) from 0 to T , in view of V (0) = V (T ), we see that

2λ2
T\
0

(a1x(t) + a2x
n(t))[(a3 + a4)x(t) + (a5 + a6)x

n(t)] dt

= 2λ2
T\
0

[(a3 + a4)x(t) + (a5 + a6)x
n(t)]F (t) dt

+ 2λ2
T\
0

[

((a3 + a4)x(t) + (a5 + a6)x
n(t))

t\
t−τ

(a4x(s) + a6x
n(s)) ds

]

dt

+ λ2
T\
0

[

τ(a4x(t) + a6x
n(t))2 −

t\
t−τ

(a4x(u) + a6x
n(u))2 du

]

dt

≤ 2λ2
T\
0

[(a3 + a4)x(t) + (a5 + a6)x
n(t)]F (t) dt
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+ λ2
T\
0

[

t\
t−τ

(((a3 + a4)x(t) + (a5 + a6)x
n(t))2 + (a4x(s) + a6x

n(s))2) ds
]

dt

+ λ2
T\
0

[

τ(a4x(t) + a6x
n(t))2 −

t\
t−τ

(a4x(u) + a6x
n(u))2 du

]

dt,

which implies that

(3.4)

T\
0

(a1x(t) + a2x
n(t))[(a3 + a4)x(t) + (a5 + a6)x

n(t)] dt

≤ |F |∞
T\
0

|(a3 + a4)x(t) + (a5 + a6)xn(t)| dt

+ 12τ

T\
0

[((a3 + a4)x(t) + (a5 + a6)x
n(t))2 + (a4x(t) + a6x

n(t))2] dt.

Using (A1) (or (A2)), we find that there exist positive constants D1 and ε
such that

(3.5) (a1x+ a2x
n)[(a3 + a4)x+ (a5 + a6)x

n)]

= |(a1x+ a2xn)[(a3 + a4)x+ (a5 + a6)xn)]|
> |(a3 + a4)x+ (a5 + a6)xn|(|F |∞ + ε) + 12τ [((a3 + a4)x

+ (a5 + a6)x
n)2 + (a4x+ a6x

n)2] for all |x| ≥ D1.
Thus, there exists a positive constant D2 such that

(3.6) (a1x+ a2x
n)[(a3 + a4)x+ (a5 + a6)x

n)]

≥ |(a3 + a4)x+ (a5 + a6)xn|(|F |∞ + ε)
+ 12τ [((a3 + a4)x+ (a5 + a6)x

n)2 + (a4x+ a6x
n)2]−D2

for all x ∈ R. Integrating (3.6) from 0 to T , together with (3.4), we obtain

(3.7)

T\
0

|(a3 + a4)x(t) + (a5 + a6)xn(t)| dt ≤
D2T

ε
=: D3.

We claim that there must exist a constant ξ ∈ [0, T ] such that
(3.8) |x(ξ)| < D1.
Assume, by way of contradiction, that (3.8) does not hold. Then

(3.9) |x(t)| ≥ D1 for all t ∈ R.

From (3.3), (3.5) and (3.9), we have
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(3.10)
dV (t)

dt

∣

∣

∣

∣

(3.1)

≤ − 2λ2(a1x(t) + a2xn(t))[(a3x(t) + a5xn(t)) + (a4x(t) + a6xn(t))]

+ λ2τ [((a3 + a4)x(t) + (a5 + a6)x
n(t))2 + (a4x(t) + a6x

n(t))2]

+ 2λ2[(a3 + a4)x(t) + (a5 + a6)x
n(t)]F (t)

< 0 for all t ∈ [0, T ],
which contradicts the fact that V (0) = V (T ). This contradiction implies
that (3.8) holds true. Hence, using the Schwarz inequality and the relation

|x(t)| =
∣

∣

∣
x(ξ) +

t\
ξ

x′(s) ds
∣

∣

∣
≤ D1 +

T\
0

|x′(s)| ds, t ∈ [0, T ],

we have

(3.10) |x|∞ = max
t∈[0,T ]

|x(t)| ≤ D1 +
√
T |x′|2.

Now, multiplying equation (2.1)λ by −x(t) and integrating from 0 to T ,
taking into account that a1, . . . , a6 are nonnegative constants and n ≥ 3 is
odd, together with (3.7) and (3.10), we obtain

(3.11)

T\
0

|x′(t)|2 dt

= λ

T\
0

[a3x(t) + a4x(t− τ) + a5xn(t) + a6xn(t− τ)− f(t)]x(t) dt

≤ |x|∞
T\
0

[a3|x(t)|+ a4|x(t− τ)|+ a5|xn(t)|+ a6|xn(t− τ)|+ |f(t)|] dt

= |x|∞
T\
0

[(a3 + a4)|x(t)|+ (a5 + a6)|xn(t)|+ |f(t)|] dt

= |x|∞
T\
0

|(a3 + a4)x(t) + (a5 + a6)xn(t)| dt+ |x|∞|f(t)|1

< (D3 + |f(t)|1)|x|∞ ≤ (D3 + |f(t)|1)(D1 +
√
T |x′|2).

Hence, there exists a positive constant D4 such that

|x′|2 < D4 and |x|∞ < D4,
which, together with equation (2.1)λ, implies that
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|x′′(t)| ≤ a1|x′(t)|+ a2n|xn−1(t)| |x′(t)|+ a3|x(t)|+ a4|x(t− τ)|(3.12)

+ a5|xn(t)|+ a6|xn(t− τ)|+ |f(t)|
≤ a1|x′(t)|+ a2nDn−14 |x′(t)|+ (a3 + a4)D4
+ (a5 + a6)D

n
4 + |f |∞.

Thus,

T\
0

|x′′(t)| dt ≤ (a1 + a2nDn−14 )
√
T |x′(t)|2(3.13)

+ [(a3 + a4)D4 + (a5 + a6)D
n
4 + |f |∞]T

≤ (a1 + a2nDn−14 )
√
T D4

+ [(a3 + a4)D4 + (a5 + a6)D
n
4 + |f |∞]T.

Since x(0) = x(T ), there exists a constant ζ ∈ [0, T ] such that
x′(ζ) = 0,

and

|x′(t)| =
∣

∣

∣
x′(ζ) +

t\
ζ

x′′(s) ds
∣

∣

∣
≤
T\
0

|x′′(t)| dt.

Combining this and (3.13), we see that there exists a constantM1 such that

‖x‖X ≤ |x|∞ + |x′|∞ < M1.
If x ∈ Ω1 = {x ∈ KerL ∩X | Nx ∈ ImL}, then there exists a constant M2
such that

(3.14) x(t) ≡M2,
T\
0

[a3M2 + a4M2 + a5M
n
2 + a6M

n
2 − f(t)] dt = 0,

which, together with (A1) (or (A2)), implies that there exists a positive
constant D5 such that

(3.15) |x(t)| ≡ |M2| < D5 for all x(t) ∈ Ω1.
Since (A1) (or (A2)) holds, there exists a constant D > D5 such that

(3.16) x[a3x+ a4x+ a5x
n + a6x

n − f(t)] > 0 for all |x| ≥ D.
Let M =M1 +D. Set

Ω = {x ∈ X | |x|∞ < M, |x′|∞ < M}.
It is easy to see from (1.3) and (1.4) that N is L-compact on Ω. It follows
from (3.14), (3.15) and the fact that M > max{M1, D5} that conditions (1)
and (2) of Lemma 2.1 are satisfied.
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Furthermore, we define continuous functions H(x, µ) by setting

H(x, µ) = − (1− µ)x

− µ · 1
T

T\
0

[a3x+ a4x+ a5x
n + a6x

n − f(t)] dt, µ ∈ [0, 1].

In view of (3.16), we obtain

xH(x, µ) 6= 0 for all x ∈ ∂Ω ∩KerL, µ ∈ [0, 1].
Hence, using the homotopy invariance theorem, we have

deg{QN |N(L), Ω ∩KerL, 0}

= deg

{

− 1
T

T\
0

[a3x+ a4x+ a5x
n + a6x

n − f(t)] dt,Ω ∩KerL, 0
}

= deg{−x,Ω ∩KerL, 0} 6= 0.
In view of the above discussion, we conclude from Lemma 2.1 that The-

orem 3.1 holds.

Theorem 3.2. Suppose that one of the following conditions holds.

(A3) a1 > (T/π)a4, a3 + a4 + a5 > 0, a6 = 0;

(A4) a1 > 0, a3 + a4 + a5 + a6 > 0, τ = kT and k is an integer.

Then equation (1.1) has at least one T -periodic solution.

Proof. Let x(t) be a T -periodic solution of equation (2.1)λ. Integrating
(2.1)λ from 0 to T , we see that

T\
0

[(a3 + a4)x(t) + (a5 + a6)x
n(t)] dt

=

T\
0

[a3x(t) + a4x(t− τ) + a5xn(t) + a6xn(t− τ)] dt =
T\
0

f(t) dt.

Thus, there exists a constant η ∈ [0, T ] such that
(a3 + a4)|x(η)|+ (a5 + a6)|xn(η)| ≤ |f |∞.

From(A3) (or (A4)), it follows that there exists apositive constantN1 such that

(3.17) |x(η)| < N1.
Multiplying (2.1)λ by x

′(t) and integrating from 0 to T , we have

(3.18)

T\
0

a1|x′(t)|2 dt ≤
T\
0

(a1 + a2nx
n−1(t))|x′(t)|2 dt

= −
T\
0

[a3x(t) + a4x(t− τ) + a5xn(t) + a6xn(t− τ)− f(t)]x′(t) dt.
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If (A3) holds, then, by (2.4), (3.18) and the Schwarz inequality, we have

a1|x′(t)|22 ≤
T\
0

[a4|x(t− τ)|+ |f(t)|]|x′(t)| dt ≤ a4|x|2|x′|2 + |f |2|x′|2

≤ T
π
a4|x′|22 + (a4

√
T N1 + |f |2)|x′|2.

In view of (A3), there exists a positive constant N2 such that

(3.19) |x′|2 < N2.

If (A4) holds, (3.18) implies that

a1|x′(t)|22 ≤ |f |2|x′|2.
Therefore, (3.19) also holds.

Now the proof proceeds in the same way as in Theorem 3.1 and is therefore
omitted.

Theorem 3.3. Suppose that the following condition is satisfied :

(A5) (a3 + a4)
T 2

2π2
< 1, a2 = a5 = a6 = 0, a3 + a4 > 0.

Then equation (1.1) has at least one T -periodic solution.

Proof. Let x(t) be a T -periodic solution of (2.1)λ. In view of (A5), it is
easy to prove that (3.17) holds. Multiplying (2.1)λ by x

′′(t) and integrating
from 0 to T , by (2.2), (2.4), (3.17), (A5) and the Schwarz inequality, we have

|x′′|22 =
T\
0

|x′′(t)|2 dt(3.20)

= −λ
T\
0

[a1x
′(t) + a3x(t) + a4x(t− τ) + f(t)]x′′(t) dt

≤ (a3 + a4)|x|2|x′′|2 + |f |2|x′′|2

≤ (a3 + a4)
T 2

2π2
|x′′|22 + [(a3 + a4)

√
T N1 + |f |2]|x′′|2,

which, togetherwith (3.17)and(A5), implies that there existpositive constants
D1 and D2 such that

(3.21) |x′′|2 < D1,
(3.22) |x′|2 < D2, |x|∞ < D2.
Now the rest of the proof is similar to the proof of Theorem 3.1 and is therefore
omitted.
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4. Examples and remarks

Example 4.1. The Liénard equation

(4.1) x′′ + 20x′(t) + 100(x5(t))′ + 10x(t) + 20x(t− 28)
+ 4x5(t) + 2x5(t− 28) = cos t

has at least one 2π-periodic solution.

Proof. By (4.1), we have a1 = 20, a2 = 100, a3 = 10, a4 = 20, a5 = 4,
a6 = 2, the delay τ = 28, n = 5, and f = cos t is a continuous periodic
function with period 2π. It is straightforward to check that all conditions of
Theorem3.1 are satisfied.Therefore equation (4.1) has at least one 2π-periodic
solution.

Remark 4.1. Equation (4.1) is a very simple second order delay differ-
ential equation. However, it is easy to check that no results in [2, 4, 6–15]
and the references therein are applicable to (4.1). On the other hand, to the
best of our knowledge, the existence of periodic solutions of (1.1) with ai ≥ 0
(i = 1, 2, . . . , 6) has not been studied in previous works. This implies that the
results of this paper are essentially new.
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