On convex and *-concave multifunctions

by Bożena Piątek (Gliwice)

Abstract

A continuous multifunction $F:[a, b] \rightarrow \operatorname{clb}(Y)$ is $*$-concave if and only if the inclusion $$
\frac{1}{t-s} \int_{s}^{t} F(x) d x \subset \frac{F(s) \stackrel{*}{+} F(t)}{2}
$$ holds for every $s, t \in[a, b], s<t$. 1. It is known that a real convex function f defined on $[a, b]$ satisfies the Hadamard inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

(cf. [5, pp. 196-197]). The inequality was first shown by Ch. Hermite in Mathesis in 1883. Independently it was proved by J. Hadamard in 1893, so it is usually called the Hermite-Hadamard inequality. This inequality can be used to characterize real convex functions. More exactly, we have

Theorem 0 (cf. e.g. [9, p. 15]). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is convex if and only if

$$
\frac{1}{t-s} \int_{s}^{t} f(x) d x \leq \frac{f(s)+f(t)}{2} \quad \text { for all } a \leq s<t \leq b
$$

It is not clear who presented it first. More information on the subject may be found in the paper of D. S. Mitrinović and I. B. Lacković [7].

Our main goal is to give a similar characterization of $*$-concave and convex multifunctions, continuous with respect to the Hausdorff metric. In that characterization the Riemann integral of multifunctions will be used. A multivalued counterpart of inequality (1) for convex multifunctions and the Aumann integral was studied by E. Sadowska [10, Theorem 1]. In the proof of

[^0]the inclusion
$$
\frac{1}{b-a} \int_{a}^{b} F(x) d x \subset F\left(\frac{a+b}{2}\right)
$$
the integral Jensen inequality for convex multifunctions was applied. The last result is due to J. Matkowski and K. Nikodem (see [6, p. 350, Theorem]).
2. Let $(Y,\|\cdot\|)$ be a real Banach space. Denote by $\operatorname{clb}(Y)$ the set of all nonempty convex closed bounded subsets of Y. For given $A, B \in \operatorname{clb}(Y)$, we set $A+B=\{a+b: a \in A, b \in B\}, \lambda A=\{\lambda a: a \in A\}$ for $\lambda \geq 0$ and $A \stackrel{*}{+} B=\operatorname{cl}(A+B)=\operatorname{cl}(\operatorname{cl} A+\operatorname{cl} B)$, where $\mathrm{cl} A$ means the closure of A in Y. It is easy to see that $(\operatorname{clb}(Y), \stackrel{*}{+}, \cdot)$ has the following properties:
$$
\lambda(A \stackrel{*}{+} B)=\lambda A \stackrel{*}{+} \lambda B,(\lambda+\mu) A=\lambda A \stackrel{*}{+} \mu A, \lambda(\mu A)=(\lambda \mu) A, 1 \cdot A=A
$$
for any $A, B \in \operatorname{clb}(Y)$ and $\lambda, \mu \geq 0$. If $A, B, C \in \operatorname{clb}(Y)$, then the equality $A \stackrel{*}{+} C=B \stackrel{*}{+} C$ implies $A=B$ (see e.g. [2, Theorem II-17, p. 48]). Thus the cancellation law holds in $\operatorname{clb}(Y)$ for the operation $\stackrel{*}{+}$.

The set $\operatorname{clb}(Y)$ is a metric space with the Hausdorff metric h defined by

$$
h(A, B)=\inf \{t>0: A \subset B+t S, B \subset A+t S\}
$$

where S denotes the closed unit ball in Y. The metric space $(\operatorname{clb}(Y), h)$ is complete (see e.g. [2, Theorem II-3, p. 40]). Moreover, h is translation invariant since

$$
h(A \stackrel{*}{+} C, B \stackrel{*}{+} C)=h(A+C, B+C)=h(A, B),
$$

and positively homogeneous, i.e.,

$$
h(\lambda A, \lambda B)=\lambda h(A, B)
$$

for all $\lambda \geq 0$ and $A, B, C \in \operatorname{clb}(Y)$ (cf. [1, Lemma 2.2]).
Let F be a multifunction defined on an interval $[a, b]$ with values in $\operatorname{clb}(Y)$. It is said to be $*$-concave (resp. convex) if

$$
\begin{gathered}
F(\lambda x+(1-\lambda) y) \subset \lambda F(x) \stackrel{*}{+}(1-\lambda) F(y) \\
(\operatorname{resp} . \lambda F(x)+(1-\lambda) F(y) \subset F(\lambda x+(1-\lambda) y))
\end{gathered}
$$

for all $x, y \in[a, b]$ and $\lambda \in(0,1)$.
A set $\Delta=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, where $a=x_{0}<x_{1}<\cdots<x_{n}=b$, is said to be a partition of $[a, b]$. For given partition Δ we put $\delta(\Delta):=\max \left\{x_{i}-x_{i-1}\right.$: $i \in\{1, \ldots, n\}\}$ and form the approximating sum

$$
S(\Delta, \tau)=\left(x_{1}-x_{0}\right) F\left(\tau_{1}\right) \stackrel{*}{+} \cdots \stackrel{*}{+}\left(x_{n}-x_{n-1}\right) F\left(\tau_{n}\right)
$$

where τ is a system $\left(\tau_{1}, \ldots, \tau_{n}\right)$ of intermediate points $\left(\tau_{i} \in\left[x_{i-1}, x_{i}\right]\right)$. If for every sequence $\left(\Delta^{\nu}, \tau^{\nu}\right), \nu \in \mathbb{N}$, where Δ^{ν} are partitions of $[a, b]$
and τ^{ν} are systems of intermediate points, such that $\lim _{\nu \rightarrow \infty} \delta\left(\Delta^{\nu}\right)=0$, the sequence $\left(S\left(\Delta^{\nu}, \tau^{\nu}\right)\right)$ of approximating sums always tends to the same limit $I \in \operatorname{clb}(Y)$, then F is said to be Riemann integrable over $[a, b]$ and $\int_{a}^{b} F(x) d x:=I$.

The Riemann integral for multifunctions with compact convex values was investigated by A. Dinghas [3] and M. Hukuhara [4]. In [8] the above integral was introduced and its properties were studied for $F:[a, b] \rightarrow \operatorname{clb}(Y)$. Continuous multifunctions (with respect to the Hausdorff metric) are Riemann integrable.
3. Let Y^{*} denote the space of all continuous linear functionals on Y. For $A \in \operatorname{clb}(Y)$ we define A^{ξ} by

$$
A^{\xi}=\sup \{\xi(a): a \in A\}
$$

Of course the number A^{ξ} can be defined for any bounded set $A \subset Y$ and it is easily seen that $A^{\xi}=(\mathrm{cl} A)^{\xi}$.

We note that

$$
\begin{align*}
(\lambda A)^{\xi} & =\lambda A^{\xi} \tag{2}\\
(A \stackrel{*}{+} B)^{\xi} & =A^{\xi}+B^{\xi} \tag{3}
\end{align*}
$$

for every $\lambda \geq 0, A, B \in \operatorname{clb}(Y)$ and $\xi \in Y^{*}$. The first equality is clear. To obtain the second one we observe that

$$
(A \stackrel{*}{+} B)^{\xi}=(A+B)^{\xi}=\sup _{\substack{a \in A \\ b \in B}} \xi(a+b)=\sup _{a \in A} \xi(a)+\sup _{b \in B} \xi(b)=A^{\xi}+B^{\xi}
$$

For given $A, B \in \operatorname{clb}(Y)$ we have

$$
\begin{equation*}
A \subset B \quad \text { if and only if } A^{\xi} \leq B^{\xi} \text { for all } \xi \in Y^{*} \tag{4}
\end{equation*}
$$

To prove the "if" part assume that $a \in A \backslash B$. Then by the Separation Theorem, there is a functional $\xi \in Y^{*}$ and a real number c such that

$$
B^{\xi}=\sup _{b \in B} \xi(b)<c<\xi(a) \leq A^{\xi} .
$$

The "only if" part is obvious.
For any multifunction $F:[a, b] \rightarrow \operatorname{clb}(Y)$ and $\xi \in Y^{*}$, a real function $F^{\xi}:[a, b] \rightarrow \mathbb{R}$ is defined by

$$
F^{\xi}(x)=F(x)^{\xi}, \quad x \in[a, b] .
$$

The first lemma below is an immediate consequence of (2)-(4).
Lemma 1. A multifunction $F:[a, b] \rightarrow \operatorname{clb}(Y)$ is concave (resp. convex) if and only if $F^{\xi}:[a, b] \rightarrow \mathbb{R}$ is convex (resp. concave) for every $\xi \in Y^{*}$.

Lemma 2. If $F:[a, b] \rightarrow \operatorname{clb}(Y)$ is continuous, then so is $x \mapsto F^{\xi}(x)$ and

$$
\begin{equation*}
\left(\int_{a}^{b} F(x) d x\right)^{\xi}=\int_{a}^{b} F^{\xi}(x) d x \quad \text { for all } \xi \in Y^{*} \tag{5}
\end{equation*}
$$

Proof. First we note that the function

$$
\begin{equation*}
\operatorname{clb}(Y) \ni A \mapsto A^{\xi} \in \mathbb{R} \tag{6}
\end{equation*}
$$

is a Lipschitzian functional. Indeed, fix $A, B \in \operatorname{clb}(Y), t>h(A, B)$ and $\xi \in Y^{*}$. Then

$$
A \subset B+t S \quad \text { and } \quad B \subset A+t S
$$

According to (2)-(4) we get

$$
A^{\xi} \leq B^{\xi}+t\|\xi\| \quad \text { and } \quad B^{\xi} \leq A^{\xi}+t\|\xi\|
$$

where $\|\xi\|$ is the norm of the functional ξ. Hence

$$
\left|A^{\xi}-B^{\xi}\right| \leq t\|\xi\|
$$

Letting $t \rightarrow h(A, B)$ we obtain

$$
\left|A^{\xi}-B^{\xi}\right| \leq\|\xi\| h(A, B)
$$

Consequently, (6) is continuous and the function $x \mapsto F^{\xi}(x)$ is also continuous, being the composition of F and (6).

To show (5) we fix $n \in \mathbb{N}$ and take the partition $\Delta=\left\{x_{0}, \ldots, x_{n}\right\}$ of $[a, b]$ with $x_{i}=a+(i / n)(b-a), i \in\{0,1, \ldots, n\}$. Let $\tau=\left(x_{1}, \ldots, x_{n}\right)$. The continuity of (6), F, F^{ξ} and (2)-(4) yield

$$
\begin{aligned}
& \left(\int_{a}^{b} F(x) d x\right)^{\xi}=\left(\lim _{n \rightarrow \infty}\left(x_{1}-x_{0}\right) F\left(x_{1}\right) \stackrel{*}{+} \cdots \stackrel{*}{+}\left(x_{n}-x_{n-1}\right) F\left(x_{n}\right)\right)^{\xi} \\
& \quad=\lim _{n \rightarrow \infty}\left[\left(x_{1}-x_{0}\right) F\left(x_{1}\right) \stackrel{*}{+} \cdots \stackrel{*}{+}\left(x_{n}-x_{n-1}\right) F\left(x_{n}\right)\right]^{\xi} \\
& \quad=\lim _{n \rightarrow \infty}\left[\left(x_{1}-x_{0}\right) F^{\xi}\left(x_{1}\right)+\cdots+\left(x_{n}-x_{n-1}\right) F^{\xi}\left(x_{n}\right)\right]=\int_{a}^{b} F^{\xi}(x) d x
\end{aligned}
$$

This completes the proof.
Theorem 0, Lemmas 1, 2 and relations (2)-(4) allow us to formulate two theorems.

THEOREM 1. Let $F:[a, b] \rightarrow \operatorname{clb}(Y)$ be a continuous multifunction. Then F is $*$-concave if and only if for any $s, t \in[a, b]$ with $s<t$ we have the inclusion

$$
\begin{equation*}
\frac{1}{t-s} \int_{s}^{t} F(x) d x \subset \frac{1}{2}[F(s) \stackrel{*}{+} F(t)] . \tag{7}
\end{equation*}
$$

Theorem 2. Let $F:[a, b] \rightarrow \operatorname{clb}(Y)$ be a continuous multifunction. Then F is convex if and only if for any $s, t \in[a, b]$ with $s<t$ we have the inclusion

$$
\begin{equation*}
\frac{1}{2}[F(s) \stackrel{*}{+} F(t)] \subset \frac{1}{t-s} \int_{s}^{t} F(x) d x . \tag{8}
\end{equation*}
$$

The proofs of both go in the same way. We prove the second one.
Proof of Theorem 2. By Lemma 1, F is convex if and only if F^{ξ} is concave for all $\xi \in Y^{*}$. Next

$$
\begin{align*}
& F^{\xi} \text { is concave } \Leftrightarrow-F^{\xi} \text { is convex } \Leftrightarrow \\
& \frac{1}{t-s} \int_{s}^{t} F^{\xi}(x) d x \geq \frac{F^{\xi}(s)+F^{\xi}(t)}{2} \quad \text { for all } a \leq s<t \leq b . \tag{9}
\end{align*}
$$

The last equivalence follows from Theorem 0 . By (2)-(5), the validity of (9) for every $\xi \in Y^{*}$ is equivalent to (8). The proof of Theorem 2 is complete.

Remark. It may be proved that *-concave (resp. convex) multifunctions $F:[a, b] \rightarrow \operatorname{clb}(Y)$ are continuous in the open interval (a, b). But the continuity assumption is essential in the proof of $*$-concavity.

Example. Let F be defined as follows:

$$
F(x):= \begin{cases}\{0\}, & x \in[0,1 / 2) \cup(1 / 2,1], \\ {[0,1],} & x=1 / 2 .\end{cases}
$$

Clearly $\int_{s}^{t} F(x) d x=\{0\}$ for any $0 \leq s<t \leq 1$ and inclusion (7) holds true. Nevertheless F is not $*$-concave since

$$
[0,1]=F\left(\frac{1}{2}\right) \not \subset \frac{1}{2}[F(0) \stackrel{*}{+} F(1)]=\{0\} .
$$

Acknowledgements. The author wishes to express her appreciation to the referee for his valuable suggestions which allowed her to abbreviate and improve this paper.

References

[1] F. S. de Blasi, On the differentiability of multifunctions, Pacific J. Math. 66 (1976), 67-81.
[2] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.
[3] A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Z. 66 (1956), 173-188.
[4] M. Hukuhara, Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.
[5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen Inequality, PWN-Polish Sci. Publ., Warszawa-Kraków-Katowice, and Uniwersytet Ślaski, 1985.
[6] J. Matkowski and K. Nikodem, An integral Jensen inequality for convex multifunctions, Results Math. 26 (1994), 348-353.
[7] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[8] B. Piątek, Riemann integral of functions with values in a complete metric cone, Demonstratio Math. 38, to appear.
[9] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
[10] E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for setvalued functions, Results Math. 32 (1997), 332-337.

Institute of Mathematics
Silesian University of Technology
Kaszubska 23
44-100 Gliwice, Poland
E-mail: b.piatek@polsl.pl

Reçu par la Rédaction le 9.5.2005
Révisé le 25.7.2005

[^0]: 2000 Mathematics Subject Classification: 39B62, 26E25.
 Key words and phrases: Hadamard inequality, Separation Theorem, Hausdorff metric.

