
ANNALESPOLONICI MATHEMATICI86.2 (2005)

On onvex and ∗-onave multifuntionsby Bożena Piątek (Gliwie)Abstrat. A ontinuous multifuntion F : [a, b] → clb(Y ) is ∗-onave if and only ifthe inlusion
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2holds for every s, t ∈ [a, b], s < t.1. It is known that a real onvex funtion f de�ned on [a, b] satis�es theHadamard inequality(1) f
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2(f. [5, pp. 196�197℄). The inequality was �rst shown by Ch. Hermite inMathesis in 1883. Independently it was proved by J. Hadamard in 1893, soit is usually alled the Hermite�Hadamard inequality. This inequality an beused to haraterize real onvex funtions. More exatly, we have
Theorem 0 (f. e.g. [9, p. 15℄). If f : [a, b] → R is ontinuous, then f isonvex if and only if
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for all a ≤ s < t ≤ b.It is not lear who presented it �rst. More information on the subjetmay be found in the paper of D. S. Mitrinovi¢ and I. B. Lakovi¢ [7℄.Our main goal is to give a similar haraterization of ∗-onave and on-vex multifuntions, ontinuous with respet to the Hausdor� metri. In thatharaterization the Riemann integral of multifuntions will be used. A mul-tivalued ounterpart of inequality (1) for onvex multifuntions and the Au-mann integral was studied by E. Sadowska [10, Theorem 1℄. In the proof of2000 Mathematis Subjet Classi�ation: 39B62, 26E25.Key words and phrases: Hadamard inequality, Separation Theorem, Hausdor� metri.[165℄



166 B. Pi¡tekthe inlusion
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the integral Jensen inequality for onvex multifuntions was applied. The lastresult is due to J. Matkowski and K. Nikodem (see [6, p. 350, Theorem℄).2. Let (Y, ‖ · ‖) be a real Banah spae. Denote by clb(Y ) the set of allnonempty onvex losed bounded subsets of Y . For given A, B ∈ clb(Y ), weset A + B = {a + b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A} for λ ≥ 0 and
A

∗

+B = cl(A+B) = cl(cl A+cl B), where clA means the losure of A in Y .It is easy to see that (clb(Y ),
∗

+, ·) has the following properties:
λ(A

∗

+ B) = λA
∗

+ λB, (λ + µ)A = λA
∗

+ µA, λ(µA) = (λµ)A, 1 · A = Afor any A, B ∈ clb(Y ) and λ, µ ≥ 0. If A, B, C ∈ clb(Y ), then the equality
A
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+ C = B
∗

+ C implies A = B (see e.g. [2, Theorem II-17, p. 48℄). Thus theanellation law holds in clb(Y ) for the operation ∗

+.The set clb(Y ) is a metri spae with the Hausdor� metri h de�ned by
h(A, B) = inf{t > 0 : A ⊂ B + tS, B ⊂ A + tS},where S denotes the losed unit ball in Y . The metri spae (clb(Y ), h)is omplete (see e.g. [2, Theorem II-3, p. 40℄). Moreover, h is translationinvariant sine
h(A

∗

+ C, B
∗

+ C) = h(A + C, B + C) = h(A, B),and positively homogeneous, i.e.,
h(λA, λB) = λh(A, B)for all λ ≥ 0 and A, B, C ∈ clb(Y ) (f. [1, Lemma 2.2℄).Let F be a multifuntion de�ned on an interval [a, b] with values in

clb(Y ). It is said to be ∗-onave (resp. onvex) if
F (λx + (1 − λ)y) ⊂ λF (x)

∗

+ (1 − λ)F (y)

(resp. λF (x) + (1 − λ)F (y) ⊂ F (λx + (1 − λ)y))for all x, y ∈ [a, b] and λ ∈ (0, 1).A set ∆ = {x0, x1, . . . , xn}, where a = x0 < x1 < · · · < xn = b, is said tobe a partition of [a, b]. For given partition ∆ we put δ(∆) := max{xi−xi−1 :
i ∈ {1, . . . , n}} and form the approximating sum

S(∆, τ) = (x1 − x0)F (τ1)
∗

+ · · ·
∗

+ (xn − xn−1)F (τn),where τ is a system (τ1, . . . , τn) of intermediate points (τi ∈ [xi−1, xi]).If for every sequene (∆ν , τν), ν ∈ N, where ∆ν are partitions of [a, b]



Convex and ∗-onave multifuntions 167and τν are systems of intermediate points, suh that limν→∞ δ(∆ν) = 0,the sequene (S(∆ν , τν)) of approximating sums always tends to the samelimit I ∈ clb(Y ), then F is said to be Riemann integrable over [a, b] andTb
a
F (x) dx := I.The Riemann integral for multifuntions with ompat onvex values wasinvestigated by A. Dinghas [3℄ and M. Hukuhara [4℄. In [8℄ the above integralwas introdued and its properties were studied for F : [a, b] → clb(Y ). Con-tinuous multifuntions (with respet to the Hausdor� metri) are Riemannintegrable.3. Let Y ∗ denote the spae of all ontinuous linear funtionals on Y . For

A ∈ clb(Y ) we de�ne Aξ by
Aξ = sup{ξ(a) : a ∈ A}.Of ourse the number Aξ an be de�ned for any bounded set A ⊂ Y and itis easily seen that Aξ = (clA)ξ.We note that

(λA)ξ = λAξ,(2)

(A
∗

+ B)ξ = Aξ + Bξ(3)for every λ ≥ 0, A, B ∈ clb(Y ) and ξ ∈ Y ∗. The �rst equality is lear. Toobtain the seond one we observe that
(A
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+ B)ξ = (A + B)ξ = sup
a∈A
b∈B

ξ(a + b) = sup
a∈A

ξ(a) + sup
b∈B

ξ(b) = Aξ + Bξ.

For given A, B ∈ clb(Y ) we have(4) A ⊂ B if and only if Aξ ≤ Bξ for all ξ ∈ Y ∗.To prove the �if� part assume that a ∈ A \ B. Then by the SeparationTheorem, there is a funtional ξ ∈ Y ∗ and a real number c suh that
Bξ = sup

b∈B

ξ(b) < c < ξ(a) ≤ Aξ.The �only if� part is obvious.For any multifuntion F : [a, b] → clb(Y ) and ξ ∈ Y ∗, a real funtion
F ξ : [a, b] → R is de�ned by

F ξ(x) = F (x)ξ, x ∈ [a, b].The �rst lemma below is an immediate onsequene of (2)�(4).Lemma 1. A multifuntion F : [a, b] → clb(Y ) is onave (resp. onvex )if and only if F ξ : [a, b] → R is onvex (resp. onave) for every ξ ∈ Y ∗.



168 B. Pi¡tekLemma 2. If F : [a, b] → clb(Y ) is ontinuous, then so is x 7→ F ξ(x)and(5) (
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F ξ(x) dx for all ξ ∈ Y ∗.Proof. First we note that the funtion(6) clb(Y ) ∋ A 7→ Aξ ∈ Ris a Lipshitzian funtional. Indeed, �x A, B ∈ clb(Y ), t > h(A, B) and
ξ ∈ Y ∗. Then

A ⊂ B + tS and B ⊂ A + tS.Aording to (2)�(4) we get
Aξ ≤ Bξ + t‖ξ‖ and Bξ ≤ Aξ + t‖ξ‖,where ‖ξ‖ is the norm of the funtional ξ. Hene

|Aξ − Bξ| ≤ t‖ξ‖.Letting t → h(A, B) we obtain
|Aξ − Bξ| ≤ ‖ξ‖h(A, B).Consequently, (6) is ontinuous and the funtion x 7→ F ξ(x) is also ontinu-ous, being the omposition of F and (6).To show (5) we �x n ∈ N and take the partition ∆ = {x0, . . . , xn} of

[a, b] with xi = a + (i/n)(b − a), i ∈ {0, 1, . . . , n}. Let τ = (x1, . . . , xn). Theontinuity of (6), F , F ξ and (2)�(4) yield
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F ξ(x) dx.This ompletes the proof.Theorem 0, Lemmas 1, 2 and relations (2)�(4) allow us to formulate twotheorems.Theorem 1. Let F : [a, b] → clb(Y ) be a ontinuous multifuntion.Then F is ∗-onave if and only if for any s, t ∈ [a, b] with s < t we havethe inlusion(7) 1
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Convex and ∗-onave multifuntions 169Theorem 2. Let F : [a, b] → clb(Y ) be a ontinuous multifuntion.Then F is onvex if and only if for any s, t ∈ [a, b] with s < t we have theinlusion(8) 1
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The proofs of both go in the same way. We prove the seond one.Proof of Theorem 2. By Lemma 1, F is onvex if and only if F ξ is onavefor all ξ ∈ Y ∗. Next
F ξ is onave ⇔ −F ξ is onvex ⇔

1

t − s

t\
s

F ξ(x) dx ≥
F ξ(s) + F ξ(t)

2
for all a ≤ s < t ≤ b.(9)The last equivalene follows from Theorem 0. By (2)�(5), the validity of (9)for every ξ ∈ Y ∗ is equivalent to (8). The proof of Theorem 2 is omplete.

Remark. It may be proved that ∗-onave (resp. onvex) multifun-tions F : [a, b] → clb(Y ) are ontinuous in the open interval (a, b). But theontinuity assumption is essential in the proof of ∗-onavity.
Example. Let F be de�ned as follows:

F (x) :=

{

{0}, x ∈ [0, 1/2) ∪ (1/2, 1],
[0, 1], x = 1/2.Clearly Tt

s
F (x) dx = {0} for any 0 ≤ s < t ≤ 1 and inlusion (7) holds true.Nevertheless F is not ∗-onave sine

[0, 1] = F
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)

6⊂
1

2
[F (0)
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+ F (1)] = {0}.Aknowledgements. The author wishes to express her appreiation tothe referee for his valuable suggestions whih allowed her to abbreviate andimprove this paper.
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