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An intermediate value theorem in ordered Banach spaces

by Gerd Herzog (Karlsruhe)

Abstract. We prove an intermediate value theorem for certain quasimonotone in-
creasing functions in ordered Banach spaces, under the assumption that each nonempty
order bounded chain has a supremum.

1. Introduction. Let E be a real Banach space ordered by a cone K.
A cone K is a nonempty closed convex subset of E such that λK ⊆ K
(λ ≥ 0), and K ∩ (−K) = {0}. As usual x ≤ y :⇔ y − x ∈ K. For x ≤ y let
[x, y] denote the order interval of all z with x ≤ z ≤ y. Let K∗ denote the
dual wedge of K, that is, the set of all ϕ ∈ E∗ with ϕ(x) ≥ 0 (x ≥ 0).

For D ⊆ E a function f : D → E is called quasimonotone increasing (in
the sense of Volkmann [19]) if

x, y ∈ D, x ≤ y, ϕ ∈ K∗, ϕ(x) = ϕ(y) ⇒ ϕ(f(x)) ≤ ϕ(f(y)).

For quasimonotone increasing functions several intermediate value (or
equivalently fixed point) theorems are known, for special spaces [4], [8], [14],
[15], under order conditions [6], [18], and under compactness conditions [6],
[9], [10], [13, VIII.6], [18]. For an application of such intermediate value
theorems to boundary value problems see [7].

In this paper we will prove the following version under the assumption
that the order defined by K (or K for short) has the following property:

(C) Each chain C ⊆ E, C 6= ∅, which is order bounded above has a
supremum.

Theorem 1. Let E be ordered by a cone K with property (C), let D ⊆ E
be open, and let f : D → E be locally Lipschitz continuous and quasimono-
tone increasing. Moreover let a, b ∈ D satisfy

a ≤ b, [a, b] ⊆ D, and f(b) ≤ 0 ≤ f(a).
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Then
min f−1(0) ∩ [a, b] and max f−1(0) ∩ [a, b]

exist.

Remarks. 1. Condition (C) is valid in particular if K is regular (that
is, each increasing and order bounded sequence in E is convergent; see [2,
Lemma 2] or [11, Lemma 1]). For regular cones a related intermediate value
theorem is valid (see [6]). On the other hand, condition (C) implies that K
is normal (that is, 0 ≤ x ≤ y implies ‖x‖ ≤ γ‖y‖ for some constant γ ≥ 1;
see [1, Lemma 2]), but normality for itself is not sufficient to guarantee the
intermediate value property. We repeat the following example from [6] for
the convenience of the reader:

Let E = c(N,R) be the Banach space of all convergent real sequences
x = (xk)k∈N, endowed with the supremum norm and ordered by the cone K
of all nonnegative sequences, which is normal. Let f : E → E be defined by

f(x) = (0, 1, x1, x2, x3, . . . )− x.
Then f is Lipschitz continuous and quasimonotone increasing, and

f((1)k∈N) = (−1, 0, 0, 0, . . . ) ≤ 0 ≤ (1, 2, 0, 0, 0, . . . ) = f((−1)k∈N),

but f(z) = 0 is unsolvable in c(N,R), since the only coordinatewise solution
is

z = (0, 1, 0, 1, 0, 1, . . . ).

2. An example of a nonregular cone with property (C) is the cone of all
nonnegative sequences in l∞(N,R). More generally, let J be a nonempty set
and let (Fj)j∈J be a family of Banach spaces, each ordered by a regular cone
Kj . Consider

E = {x = (xj)j∈J : xj ∈ Fj (j ∈ J), ‖x‖ = sup
j∈J
‖xj‖ <∞}

ordered by the cone

K = {x ∈ E : xj ∈ Kj (j ∈ J)}.
Then K has property (C) (see [11, Lemma 2]).

2. Preliminaries. To prove Theorem 1 we will make use of the following
theorems. The first is a result on differential inequalities due to Volkmann
[20, Satz 2], and two of its immediate consequences on dynamical systems:

Theorem 2. Let E be ordered by a cone K, let D ⊆ E be open, let
f : D → E be locally Lipschitz continuous and quasimonotone increasing,
and let u(·, x) : [0, Tx)→ D denote the solution of u′(t) = f(u(t)), u(0) = x
(nonextendable to the right). Then:
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1. If v, w : [0, T )→ D satisfy v′(t)−f(v(t)) ≤ w′(t)−f(w(t)) (t ∈ [0, T ))
and v(0) ≤ w(0), then v(t) ≤ w(t) (t ∈ [0, T )).

2. x, y ∈ D, x ≤ y ⇒ u(t, x) ≤ u(t, y) (t ∈ [0,min{Tx, Ty})).
3. x ∈ D, f(x) ≥ 0 [≤ 0] ⇒ t 7→ u(t, x) is increasing [decreasing ] on

[0, Tx).

Second, we will use the following versions of Bourbaki’s and Tarski’s fixed
point theorems (see [3], [5, Proposition 1], [12]). For a function g : Ω → Ω
we set

Fix(g) := {x ∈ Ω : g(x) = x}.
Theorem 3. Let Ω 6= ∅ be an ordered set such that each chain ∅ 6=

C ⊆ Ω has a supremum. Let g : Ω → Ω satisfy x ≤ g(x) (x ∈ Ω). Then
Fix(g) 6= ∅.

Theorem 4. Let Ω 6= ∅ be an ordered set such that minΩ exists, and
such that each chain ∅ 6= C ⊆ Ω has a supremum. Let g : Ω → Ω be
increasing. Then min Fix(g) exists.

3. Proof of Theorem 1. We consider the set

Ω := {x ∈ [a, b] : f(x) ≥ 0, x ≤ z (z ∈ f−1(0) ∩ [a, b])}.
First, observe that a ∈ Ω, so Ω 6= ∅. Next, let x ∈ [a, b]. According to
Theorem 2 we have

u(t, x) ∈ [a, b] (t ∈ [0, Tx)).

If in addition f(x) ≥ 0 then t 7→ u(t, x) is increasing on [0, Tx), so

f(u(t, x)) ≥ 0 (t ∈ [0, Tx)),

and if in addition
x ≤ z (z ∈ f−1(0) ∩ [a, b])

then
u(t, x) ≤ u(t, z) = z (t ∈ [0, Tx), z ∈ f−1(0) ∩ [a, b]).

Thus x ∈ Ω implies u([0, Tx), x) ⊆ Ω. Note that u([0, Tx), x) is a chain in Ω
for each x ∈ Ω.

Let ∅ 6= C ⊆ Ω be a chain with c := supC. We prove c ∈ Ω. Clearly
c ∈ [a, b]. According to Theorem 2 we have

x ≤ u(t, c) (t ∈ [0, Tc), x ∈ C),

and therefore
c ≤ u(t, c) (t ∈ [0, Tc)).

Hence u′(0, c) = f(c) ≥ 0. Moreover

x ≤ z (x ∈ C, z ∈ f−1(0) ∩ [a, b]),

thus



66 G. Herzog

c ≤ z (z ∈ f−1(0) ∩ [a, b]),

and summing up we have c ∈ Ω.
We define

g : Ω → Ω, g(x) = supu([0, Tx), x).

Now, x ≤ g(x) (x ∈ Ω), and according to Theorem 3, g has a fixed point
z ∈ Ω. Since t 7→ u(t, z) is increasing on [0, Tz) we conclude Tz =∞ and

u(t, z) = z (t ∈ [0,∞)),

hence f(z) = 0. To prove the minimality of z observe that z ∈ [a, b], f(z) = 0
implies z ≤ z by the definition of Ω. Thus z = min f−1(0) ∩ [a, b].

To prove the existence of a greatest solution in [a, b] of f(z) = 0 we
consider

h : −D → E, h(x) = −f(−x).

Now, h is locally Lipschitz continuous, quasimonotone increasing, and

h(−a) ≤ 0 ≤ h(−b).
Thus, in [−b,−a] the equation h(z) = 0 has a smallest solution w, and
z := −w = max f−1(0) ∩ [a, b].

Remark. If it is assumed in addition that f(B) is bounded for each
bounded subset B ⊆ D then Tx =∞ for each x ∈ [a, b], and the proof above
can be changed by applying Theorem 4 to Ω = {x ∈ [a, b] : f(x) ≥ 0} and
g : Ω → Ω defined by g(x) = u(T, x) for any fixed T > 0.

4. Discontinuous functions. Following the idea in [18] we can extend
Theorem 1 the following way.

Let D ⊆ E be open, let a, b ∈ D satisfy a ≤ b, [a, b] ⊆ D, and let

F : D × [a, b]→ E, f : [a, b]→ E

satisfy

(a) x 7→ F (x, y) is locally Lipschitz continuous and quasimonotone in-
creasing for each y ∈ [a, b],

(b) y 7→ F (x, y) is monotone increasing for each x ∈ D,
(c) f(x) = F (x, x) (x ∈ [a, b]), and f(b) ≤ 0 ≤ f(a).

Under these assumptions f is quasimonotone increasing, and allows upward
jumps (see [18]). We have

Theorem 5. Let E be ordered by a cone K with property (C), let D ⊆ E
be open, let a ≤ b with [a, b] ⊆ D, and let F : D× [a, b]→ E and f : [a, b]→
E satisfy (a)–(c) above. Then

min f−1(0) ∩ [a, b] and max f−1(0) ∩ [a, b]

exist.



Intermediate value theorem 67

5. Proof of Theorem 5. Let y ∈ [a, b]. Then

F (b, y) ≤ f(b) ≤ 0 ≤ f(a) ≤ F (a, y).

According to Theorem 1 the mapping x 7→ F (x, y) has in [a, b] a smallest
zero g(y). We obtain a function g : [a, b] → [a, b] and we prove that g is
increasing. Indeed, let y, z ∈ [a, b] with y ≤ z. Now

F (g(z), y) ≤ F (g(z), z) = 0 ≤ F (a, y).

Thus x 7→ F (x, y) has in [a, g(z)] a zero v, which is a zero in [a, b]. Therefore

g(y) ≤ v ≤ g(z).

According to Theorem 4 (applied to Ω = [a, b]) z := min Fix(g) exists, and
clearly f(z) = 0. Now, let z ∈ [a, b] satisfy f(z) = 0. Then z is a zero of
x 7→ F (x, z) in [a, b], hence g(z) ≤ z. Thus g([a, z]) ⊆ [a, z], and so g has a
fixed point w in [a, z] which is a fixed point in [a, b]. Thus

z = min Fix(g) ≤ w ≤ z.
Therefore z = min f−1(0) ∩ [a, b].

Application of this state of knowledge to H : (−D)× [−b,−a]→ E and
h : [−b,−a]→ E defined by

H(x, y) = −F (−x,−y), h(x) = H(x, x)

proves the existence of z = max f−1(0) ∩ [a, b].

6. Example. Let F be a Banach space ordered by a regular cone KF

with nonempty interior, let E = l∞(Z, F ) be ordered by the cone

K = {(xn)n∈Z : xn ∈ KF (n ∈ Z)},
and let q : F → F be locally Lipschitz continuous and quasimonotone
increasing. We can apply Theorem 1 to prove

Theorem 6. Let (wn)n∈Z ∈ E, and let a, b ∈ F be such that

a ≤ b, q(b) ≤ wn ≤ q(a) (n ∈ Z).

Then the second order difference equation

zn+1 − 2zn + zn−1 + q(zn) = wn (n ∈ Z)

has in [(a)n∈Z, (b)n∈Z] a smallest and a greatest solution.

Proof. According to Remark 2. the order on E defined by K has prop-
erty (C). We consider f : E → E defined by

f((xn)n∈Z) = (xn+1 − 2xn + xn−1 + q(xn)− wn)n∈Z.

It is clear that f is locally Lipschitz continuous and, using Uhl’s criterion
for quasimonotonicity [17, Theorem 2], it is not hard to see that f is quasi-
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monotone increasing. We have

f((b)n∈Z) = (q(b)− wn)n∈Z ≤ (0)n∈Z ≤ (q(a)− wn)n∈Z = f((a)n∈Z).

Thus, according to Theorem 1, the maximum and the minimum of

f−1((0)n∈Z) ∩ [(a)n∈Z, (b)n∈Z]

exist.

Consider for example F = R3 ordered by the ice-cream cone

KF = {x = (ξ, η, ζ) : ζ ≥
√
ξ2 + η2},

and q : F → F defined by

q(ξ, η, ζ) =

 −η − 2ξζ
ξ − 2ηζ

−ξ2 − η2 − ζ2

 .

Obviously q is locally Lipschitz continuous, and q is quasimonotone increas-
ing since q′(ξ, η, ζ) : R3 → R3 is a linear quasimonotone increasing mapping
for each (ξ, η, ζ) ∈ R3 (see [16, Theorem 3.31]). Since p = (0, 0, λ) ∈ IntK
for each λ > 0, and since q(0, 0, λ) = −(0, 0, λ2) we can apply Theorem 6 if
(wn)n∈Z is a bounded sequence in −KF , by setting

a = (0, 0, 0), b = (0, 0, λ),

with λ > 0 sufficiently large.
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[3] N. Bourbaki, Sur le théorème de Zorn, Arch. Math. (Basel) 2 (1951), 434–437.
[4] B. Choudhary and S. K. Mishra, A note on fixed points for discontinuous quasi-

monotone maps in sequence spaces, Indian J. Math. 37 (1995), 263–268.
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