An intermediate value theorem in ordered Banach spaces

by GERD HERZOG (Karlsruhe)

Abstract. We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.

1. Introduction. Let *E* be a real Banach space ordered by a cone *K*. A cone *K* is a nonempty closed convex subset of *E* such that $\lambda K \subseteq K$ $(\lambda \geq 0)$, and $K \cap (-K) = \{0\}$. As usual $x \leq y :\Leftrightarrow y - x \in K$. For $x \leq y$ let [x, y] denote the order interval of all *z* with $x \leq z \leq y$. Let K^* denote the dual wedge of *K*, that is, the set of all $\varphi \in E^*$ with $\varphi(x) \geq 0$ $(x \geq 0)$.

For $D \subseteq E$ a function $f: D \to E$ is called *quasimonotone increasing* (in the sense of Volkmann [19]) if

$$x, y \in D, x \leq y, \varphi \in K^*, \varphi(x) = \varphi(y) \Rightarrow \varphi(f(x)) \leq \varphi(f(y))$$

For quasimonotone increasing functions several intermediate value (or equivalently fixed point) theorems are known, for special spaces [4], [8], [14], [15], under order conditions [6], [18], and under compactness conditions [6], [9], [10], [13, VIII.6], [18]. For an application of such intermediate value theorems to boundary value problems see [7].

In this paper we will prove the following version under the assumption that the order defined by K (or K for short) has the following property:

(C) Each chain $C \subseteq E$, $C \neq \emptyset$, which is order bounded above has a supremum.

THEOREM 1. Let E be ordered by a cone K with property (C), let $D \subseteq E$ be open, and let $f: D \to E$ be locally Lipschitz continuous and quasimonotone increasing. Moreover let $a, b \in D$ satisfy

$$a \le b$$
, $[a,b] \subseteq D$, and $f(b) \le 0 \le f(a)$.

2010 Mathematics Subject Classification: 47H07, 47J20.

Key words and phrases: ordered Banach spaces, quasimonotone increasing functions, intermediate value property.

Then

$$\min f^{-1}(0) \cap [a, b]$$
 and $\max f^{-1}(0) \cap [a, b]$

exist.

REMARKS. 1. Condition (C) is valid in particular if K is regular (that is, each increasing and order bounded sequence in E is convergent; see [2, Lemma 2] or [11, Lemma 1]). For regular cones a related intermediate value theorem is valid (see [6]). On the other hand, condition (C) implies that K is normal (that is, $0 \le x \le y$ implies $||x|| \le \gamma ||y||$ for some constant $\gamma \ge 1$; see [1, Lemma 2]), but normality for itself is not sufficient to guarantee the intermediate value property. We repeat the following example from [6] for the convenience of the reader:

Let $E = c(\mathbb{N}, \mathbb{R})$ be the Banach space of all convergent real sequences $x = (x_k)_{k \in \mathbb{N}}$, endowed with the supremum norm and ordered by the cone K of all nonnegative sequences, which is normal. Let $f : E \to E$ be defined by

$$f(x) = (0, 1, x_1, x_2, x_3, \dots) - x.$$

Then f is Lipschitz continuous and quasimonotone increasing, and

$$f((1)_{k\in\mathbb{N}}) = (-1, 0, 0, 0, \dots) \le 0 \le (1, 2, 0, 0, 0, \dots) = f((-1)_{k\in\mathbb{N}}),$$

but f(z) = 0 is unsolvable in $c(\mathbb{N}, \mathbb{R})$, since the only coordinatewise solution is

$$z = (0, 1, 0, 1, 0, 1, \dots).$$

2. An example of a nonregular cone with property (C) is the cone of all nonnegative sequences in $l^{\infty}(\mathbb{N}, \mathbb{R})$. More generally, let J be a nonempty set and let $(F_j)_{j \in J}$ be a family of Banach spaces, each ordered by a regular cone K_j . Consider

$$E = \{ x = (x_j)_{j \in J} : x_j \in F_j \ (j \in J), \ \|x\| = \sup_{j \in J} \|x_j\| < \infty \}$$

ordered by the cone

 $K = \{ x \in E : x_j \in K_j \ (j \in J) \}.$

Then K has property (C) (see [11, Lemma 2]).

2. Preliminaries. To prove Theorem 1 we will make use of the following theorems. The first is a result on differential inequalities due to Volkmann [20, Satz 2], and two of its immediate consequences on dynamical systems:

THEOREM 2. Let E be ordered by a cone K, let $D \subseteq E$ be open, let $f: D \to E$ be locally Lipschitz continuous and quasimonotone increasing, and let $u(\cdot, x) : [0, T_x) \to D$ denote the solution of u'(t) = f(u(t)), u(0) = x (nonextendable to the right). Then:

- 1. If $v, w : [0, T) \to D$ satisfy $v'(t) f(v(t)) \le w'(t) f(w(t))$ $(t \in [0, T))$ and $v(0) \le w(0)$, then $v(t) \le w(t)$ $(t \in [0, T))$.
- 2. $x, y \in D, x \leq y \Rightarrow u(t, x) \leq u(t, y) \ (t \in [0, \min\{T_x, T_y\})).$
- 3. $x \in D$, $f(x) \ge 0 \le 0 \ge 0 \Rightarrow t \mapsto u(t,x)$ is increasing [decreasing] on $[0,T_x)$.

Second, we will use the following versions of Bourbaki's and Tarski's fixed point theorems (see [3], [5, Proposition 1], [12]). For a function $g: \Omega \to \Omega$ we set

$$\operatorname{Fix}(g) := \{ x \in \Omega : g(x) = x \}.$$

THEOREM 3. Let $\Omega \neq \emptyset$ be an ordered set such that each chain $\emptyset \neq C \subseteq \Omega$ has a supremum. Let $g : \Omega \to \Omega$ satisfy $x \leq g(x)$ $(x \in \Omega)$. Then $Fix(g) \neq \emptyset$.

THEOREM 4. Let $\Omega \neq \emptyset$ be an ordered set such that min Ω exists, and such that each chain $\emptyset \neq C \subseteq \Omega$ has a supremum. Let $g : \Omega \to \Omega$ be increasing. Then min Fix(g) exists.

3. Proof of Theorem 1. We consider the set

 $\Omega := \{ x \in [a, b] : f(x) \ge 0, \, x \le z \, (z \in f^{-1}(0) \cap [a, b]) \}.$

First, observe that $a \in \Omega$, so $\Omega \neq \emptyset$. Next, let $x \in [a, b]$. According to Theorem 2 we have

$$u(t,x) \in [a,b] \quad (t \in [0,T_x)).$$

If in addition $f(x) \ge 0$ then $t \mapsto u(t, x)$ is increasing on $[0, T_x)$, so

$$f(u(t,x)) \ge 0$$
 $(t \in [0,T_x)),$

and if in addition

$$x \le z \ (z \in f^{-1}(0) \cap [a, b])$$

then

$$u(t,x) \le u(t,z) = z$$
 $(t \in [0,T_x), z \in f^{-1}(0) \cap [a,b])$

Thus $x \in \Omega$ implies $u([0, T_x), x) \subseteq \Omega$. Note that $u([0, T_x), x)$ is a chain in Ω for each $x \in \Omega$.

Let $\emptyset \neq C \subseteq \Omega$ be a chain with $c := \sup C$. We prove $c \in \Omega$. Clearly $c \in [a, b]$. According to Theorem 2 we have

$$x \le u(t,c) \quad (t \in [0,T_c), x \in C),$$

and therefore

$$c \le u(t,c) \quad (t \in [0,T_c)).$$

Hence $u'(0,c) = f(c) \ge 0$. Moreover

 $x \le z$ $(x \in C, z \in f^{-1}(0) \cap [a, b]),$

thus

$$c \le z \quad (z \in f^{-1}(0) \cap [a, b]),$$

and summing up we have $c \in \Omega$.

We define

$$g: \Omega \to \Omega, \quad g(x) = \sup u([0, T_x), x).$$

Now, $x \leq g(x)$ $(x \in \Omega)$, and according to Theorem 3, g has a fixed point $z \in \Omega$. Since $t \mapsto u(t, \underline{z})$ is increasing on $[0, T_{\underline{z}})$ we conclude $T_{\underline{z}} = \infty$ and

$$u(t,\underline{z}) = \underline{z} \quad (t \in [0,\infty)),$$

hence $f(\underline{z}) = 0$. To prove the minimality of \underline{z} observe that $z \in [a, b]$, f(z) = 0 implies $\underline{z} \leq z$ by the definition of Ω . Thus $\underline{z} = \min f^{-1}(0) \cap [a, b]$.

To prove the existence of a greatest solution in [a, b] of f(z) = 0 we consider

$$h: -D \to E, \quad h(x) = -f(-x).$$

Now, h is locally Lipschitz continuous, quasimonotone increasing, and

$$h(-a) \le 0 \le h(-b).$$

Thus, in [-b, -a] the equation h(z) = 0 has a smallest solution w, and $\overline{z} := -w = \max f^{-1}(0) \cap [a, b]$.

REMARK. If it is assumed in addition that f(B) is bounded for each bounded subset $B \subseteq D$ then $T_x = \infty$ for each $x \in [a, b]$, and the proof above can be changed by applying Theorem 4 to $\Omega = \{x \in [a, b] : f(x) \ge 0\}$ and $g: \Omega \to \Omega$ defined by g(x) = u(T, x) for any fixed T > 0.

4. Discontinuous functions. Following the idea in [18] we can extend Theorem 1 the following way.

Let $D \subseteq E$ be open, let $a, b \in D$ satisfy $a \leq b, [a, b] \subseteq D$, and let

$$F: D \times [a, b] \to E, \quad f: [a, b] \to E$$

satisfy

- (a) $x \mapsto F(x, y)$ is locally Lipschitz continuous and quasimonotone increasing for each $y \in [a, b]$,
- (b) $y \mapsto F(x, y)$ is monotone increasing for each $x \in D$,

(c) f(x) = F(x, x) $(x \in [a, b])$, and $f(b) \le 0 \le f(a)$.

Under these assumptions f is quasimonotone increasing, and allows upward jumps (see [18]). We have

THEOREM 5. Let E be ordered by a cone K with property (C), let $D \subseteq E$ be open, let $a \leq b$ with $[a,b] \subseteq D$, and let $F : D \times [a,b] \to E$ and $f : [a,b] \to E$ E satisfy (a)–(c) above. Then

$$\min f^{-1}(0) \cap [a, b] \quad and \quad \max f^{-1}(0) \cap [a, b]$$

exist.

5. Proof of Theorem 5. Let $y \in [a, b]$. Then

$$F(b, y) \le f(b) \le 0 \le f(a) \le F(a, y).$$

According to Theorem 1 the mapping $x \mapsto F(x, y)$ has in [a, b] a smallest zero g(y). We obtain a function $g : [a, b] \to [a, b]$ and we prove that g is increasing. Indeed, let $y, z \in [a, b]$ with $y \leq z$. Now

$$F(g(z), y) \le F(g(z), z) = 0 \le F(a, y).$$

Thus $x \mapsto F(x, y)$ has in [a, g(z)] a zero v, which is a zero in [a, b]. Therefore

$$g(y) \le v \le g(z).$$

According to Theorem 4 (applied to $\Omega = [a, b]$) $\underline{z} := \min \operatorname{Fix}(g)$ exists, and clearly $f(\underline{z}) = 0$. Now, let $z \in [a, b]$ satisfy f(z) = 0. Then z is a zero of $x \mapsto F(x, z)$ in [a, b], hence $g(z) \leq z$. Thus $g([a, z]) \subseteq [a, z]$, and so g has a fixed point w in [a, z] which is a fixed point in [a, b]. Thus

$$\underline{z} = \min \operatorname{Fix}(g) \le w \le z.$$

Therefore $\underline{z} = \min f^{-1}(0) \cap [a, b]$.

Application of this state of knowledge to $H:(-D)\times [-b,-a]\to E$ and $h:[-b,-a]\to E$ defined by

$$H(x, y) = -F(-x, -y), \quad h(x) = H(x, x)$$

proves the existence of $\overline{z} = \max f^{-1}(0) \cap [a, b]$.

6. Example. Let F be a Banach space ordered by a regular cone K_F with nonempty interior, let $E = l^{\infty}(\mathbb{Z}, F)$ be ordered by the cone

$$K = \{ (x_n)_{n \in \mathbb{Z}} : x_n \in K_F \ (n \in \mathbb{Z}) \},\$$

and let $q: F \to F$ be locally Lipschitz continuous and quasimonotone increasing. We can apply Theorem 1 to prove

THEOREM 6. Let $(w_n)_{n \in \mathbb{Z}} \in E$, and let $a, b \in F$ be such that

$$a \le b$$
, $q(b) \le w_n \le q(a)$ $(n \in \mathbb{Z})$.

Then the second order difference equation

 $z_{n+1} - 2z_n + z_{n-1} + q(z_n) = w_n \quad (n \in \mathbb{Z})$

has in $[(a)_{n\in\mathbb{Z}}, (b)_{n\in\mathbb{Z}}]$ a smallest and a greatest solution.

Proof. According to Remark 2. the order on E defined by K has property (C). We consider $f: E \to E$ defined by

$$f((x_n)_{n \in \mathbb{Z}}) = (x_{n+1} - 2x_n + x_{n-1} + q(x_n) - w_n)_{n \in \mathbb{Z}}.$$

It is clear that f is locally Lipschitz continuous and, using Uhl's criterion for quasimonotonicity [17, Theorem 2], it is not hard to see that f is quasi-

monotone increasing. We have

 $f((b)_{n\in\mathbb{Z}}) = (q(b) - w_n)_{n\in\mathbb{Z}} \le (0)_{n\in\mathbb{Z}} \le (q(a) - w_n)_{n\in\mathbb{Z}} = f((a)_{n\in\mathbb{Z}}).$ Thus, according to Theorem 1, the maximum and the minimum of

$$f^{-1}((0)_{n\in\mathbb{Z}})\cap [(a)_{n\in\mathbb{Z}}, (b)_{n\in\mathbb{Z}}]$$

exist. \blacksquare

Consider for example $F = \mathbb{R}^3$ ordered by the ice-cream cone

$$K_F = \{x = (\xi, \eta, \zeta) : \zeta \ge \sqrt{\xi^2 + \eta^2}\},\$$

and $q: F \to F$ defined by

$$q(\xi,\eta,\zeta) = \begin{pmatrix} -\eta - 2\xi\zeta\\ \xi - 2\eta\zeta\\ -\xi^2 - \eta^2 - \zeta^2 \end{pmatrix}.$$

Obviously q is locally Lipschitz continuous, and q is quasimonotone increasing since $q'(\xi, \eta, \zeta) : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear quasimonotone increasing mapping for each $(\xi, \eta, \zeta) \in \mathbb{R}^3$ (see [16, Theorem 3.31]). Since $p = (0, 0, \lambda) \in \text{Int } K$ for each $\lambda > 0$, and since $q(0, 0, \lambda) = -(0, 0, \lambda^2)$ we can apply Theorem 6 if $(w_n)_{n \in \mathbb{Z}}$ is a bounded sequence in $-K_F$, by setting

$$a = (0, 0, 0), \quad b = (0, 0, \lambda),$$

with $\lambda > 0$ sufficiently large.

References

- T. Andô, On fundamental properties of a Banach space with a cone, Pacific J. Math. 12 (1962), 1163–1169.
- [2] V. A. Bondarenko, Integral inequalities for a Volterra equation in a Banach space with a cone, Mat. Zametki 9 (1971), 151–160 (in Russian).
- [3] N. Bourbaki, Sur le théorème de Zorn, Arch. Math. (Basel) 2 (1951), 434–437.
- [4] B. Choudhary and S. K. Mishra, A note on fixed points for discontinuous quasimonotone maps in sequence spaces, Indian J. Math. 37 (1995), 263–268.
- [5] M. Erné, W-completeness and fixpoint properties, Arch. Math. (Brno) 24 (1988), 147–155.
- [6] G. Herzog and R. Lemmert, Intermediate value theorems for quasimonotone increasing mappings, Numer. Funct. Anal. Optim. 20 (1999), 901–908.
- [7] —, —, Boundary value problems via an intermediate value theorem, Glasgow Math. J. 50 (2008), 531–537.
- [8] S. Hu, Fixed points for discontinuous quasi-monotone maps in Rⁿ, Proc. Amer. Math. Soc. 104 (1988), 1111–1114.
- [9] V. Lakshmikantham, Monotone flows and fixed points for dynamic systems on time scales in a Banach space, Appl. Anal. 56 (1995), 175–184.
- [10] V. Lakshmikantham and B. Kaymakalan, Monotone flows and fixed points for dynamic systems on time scales, in: Advances in Difference Equations, Comput. Math. Appl. 28 (1994), 185–189.

68

- [11] R. Lemmert, R. M. Redheffer and P. Volkmann, Ein Existenzsatz für gewöhnliche Differentialgleichungen in geordneten Banachräumen, in: General Inequalities, 5 (Oberwolfach, 1986), Int. Schriftenreihe Numer. Math. 80, Birkhäuser, Basel, 1987, 381–390.
- G. Markowsky, Chain-complete posets and directed sets with applications, Algebra Universalis 6 (1976), 53–68.
- [13] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Krieger, Malabar, 1987.
- [14] I. Redheffer und P. Volkmann, Ein Fixpunktsatz f
 ür quasimonoton wachsende Funktionen, Arch. Math. (Basel) 70 (1998), 307–312.
- S. Schmidt, Fixed points for discontinuous quasimonotone maps in sequence spaces, Proc. Amer. Math. Soc. 115 (1992), 361–363.
- [16] R. J. Stern and H. Wolkowicz, Exponential nonnegativity on the ice cream cone, SIAM J. Matrix Anal. Appl. 12 (1991), 160–165.
- [17] R. Uhl, Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces, Proc. Amer. Math. Soc. 126 (1998), 1999–2003.
- [18] —, Smallest and greatest fixed points of quasimonotone increasing mappings, Math. Nachr. 248–249 (2003), 204–210.
- [19] P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157–164.
- [20] —, Uber die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201–210.

Gerd Herzog Institut für Analysis Universität Karlsruhe D-76128 Karlsruhe, Germany E-mail: Gerd.Herzog@math.uni-karlsruhe.de

> Received 7.4.2009 and in final form 21.9.2009

(2002)