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Multiple solutions for a class of p(x)-Laplacian equations
involving the critical exponent

by Xing Zhang, Xia Zhang and Yongqiang Fu (Harbin)

Abstract. We study the multiplicity of solutions for a class of p(x)-Laplacian equa-
tions involving the critical exponent. Under suitable assumptions, we obtain a sequence of
radially symmetric solutions associated with a sequence of positive energies going toward
infinity.

1. Introduction and main results. With the emergence of nonlinear
problems in natural science and engineering, the previous studies made in
Sobolev spaces demonstrate their limitations in applications. For example,
a class of nonlinear problems with variable exponential growth is a new
research field and reflects new kinds of physical phenomena. In the studies
of nonlinear problems, variable exponent Sobolev spaces play an important
role.

In recent years, differential equations and variational problems with p(x)-
growth conditions have been studied extensively (see for example [1, 2, 3,
6, 13, 15]). In [9], Fu established a principle of concentration compactness
in the Sobolev space W 1, p(x), which is a generalization of the corresponding
result in [12]; he also discussed the existence of solutions for a class of p(x)-
Laplacian equations with critical growth.

In this paper, we will consider multiple radial solutions for the following
kind of p(x)-Laplacian equations with critical exponent:{

−div(|∇u|p(x)−2∇u)+ |u|p(x)−2u = |u|p∗(x)−2u+f(x, u), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded, radially symmetric domain and 0 6∈ Ω̄, p is
Lipschitz continuous, radially symmetric on Ω̄ and satisfies 1 < p− ≤ p(x) ≤
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p+ < N, and p∗(x) = Np(x)/(N − p(x)). Here we denote

p+ = sup
x∈ Ω̄

p(x), p− = inf
x∈ Ω̄

p(x)

and write p1(x)� p2(x) whenever infx∈ Ω̄ (p2(x)− p1(x)) > 0. Throughout
this paper, we assume that f(x, t) satisfies the following conditions:

(H1) f ∈ C(Ω̄ × R,R) and there exists α ∈ C(Ω̄) with either 1 < α− ≤
α(x) ≤ p(x) for all x ∈ Ω̄, or p(x) ≤ α(x) � p∗(x) for all x ∈ Ω̄,
and a0, a1 > 0 such that for any (x, t) ∈ Ω × R,

|f(x, t)| ≤ a0 + a1|t|α(x)−1.

(H2) f(x, t) = −f(x,−t) for any (x, t) ∈ Ω × R.
(H3) f(x, t) = f(|x|, t) for any (x, t) ∈ Ω × R.

In this paper, we will prove the following result.

Theorem 1.1. Assume hypotheses (H1)–(H3) are fulfilled. Then prob-
lem (1.1) has a sequence {un} ⊂W 1, p(x)(Ω) of radially symmetric solutions
such that

ϕ(un) =
�

Ω

(
|∇un|p(x) + |un|p(x)

p(x)
− |un|

p∗(x)

p∗(x)
− F (x, un)

)
dx→∞

as n→∞, where F (x, t) =
	t
0 f(x, s) ds.

2. Preliminaries. First we recall some basic properties of variable ex-
ponent Lebesgue spaces Lp(x)(Ω) and variable exponent Sobolev spaces
W 1,p(x)(Ω), where Ω ⊂ RN is a domain. For a deeper treatment of these
spaces, we refer to [4, 5, 7, 8, 10].

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞)
and

|u|p(x) = inf
{
λ > 0 :

�

Ω

|u/λ|p(x) dx ≤ 1
}
. (2.1)

The variable exponent Lebesgue space Lp(x)(Ω) is the class of all functions
u such that

	
Ω |u(x)|p(x) dx < ∞. Under the assumption that 1 ≤ p− ≤ p+

<∞, Lp(x)(Ω) is a Banach space equipped with the norm (2.1).
The variable exponent Sobolev space W 1, p(x)(Ω) is the class of all func-

tions u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω) and it can be equipped with
the norm

‖u‖1, p(x) = |u|p(x) + |∇u|p(x). (2.2)

For u ∈W 1, p(x)(Ω), if we define

|||u||| = inf
{
λ > 0 :

�

Ω

|u|p(x) + |∇u|p(x)

λp(x)
dx ≤ 1

}
, (2.3)

then |||u||| and ‖u‖1,p(x) are equivalent norms on W 1, p(x)(Ω).
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By W 1, p(x)
0 (Ω) we denote the subspace of W 1, p(x)(Ω) which is the closure

of C∞0 (Ω) with respect to the norm (2.2). We know that if Ω ⊂ RN is a
bounded domain, ‖u‖1, p(x) and |∇u|p(x) are equivalent norms on W 1, p(x)

0 (Ω).
In this paper, we will discuss equation (1.1) when p(x) is radially sym-

metric. First of all, let us introduce some notation.
Let O(N) be the group of orthogonal linear transformations in RN , and

G be a subgroup of O(N). For x 6= 0, we denote the cardinality of Gx =
{gx : x ∈ G} by |Gx| and set |G| = infx∈RN , x 6=0 |Gx|. An open subset Ω of
RN is G-invariant if gΩ = Ω for any g ∈ G.

Definition 2.1. Let Ω be a G-invariant open subset of RN . The action
of G on W

1, p(x)
0 (Ω) is defined by

gu(x) = u(g−1x)

for any u ∈W 1, p(x)
0 (Ω). The subspace of invariant functions is defined by

W
1, p(x)
0, G (Ω) = {u ∈W 1, p(x)

0 (Ω) : gu = u,∀g ∈ G}.

A functional ϕ : W 1, p(x)
0 (Ω)→ R is G-invariant if ϕ ◦ g = ϕ for any g ∈ G.

Under the condition 1 < p− ≤ p+ < ∞, W 1,p(x)
0 (Ω) is a separable

and reflexive Banach space, so W 1,p(x)
0, G (Ω) is also a separable and reflexive

Banach space. Thus there exist {en}∞n=1 ⊂ W
1,p(x)
0, G (Ω) and {fm}∞m=1 ⊂

(W 1,p(x)
0, G (Ω))∗ such that

fm(en) =
{

1 if n = m,

0 if n 6= m,

and

W
1,p(x)
0, G (Ω) = span{ei : i = 1, 2, . . .},

(W 1,p(x)
0, G (Ω))∗ = span{fj : j = 1, 2, . . .},

where (W 1,p(x)
0, G (Ω))∗ is the dual of W 1,p(x)

0, G (Ω). In the following, we will
denote Yn = span{e1, . . . , en}, Zn = span{ek : k = n, · · · }, for any n ∈ N.

In order to find critical points of (1.1), we will need the following result
due to Fu [9]. Let M(Ω̄) denote the class of nonnegative Borel measures of
finite total mass and let µn ⇀ µ in M(Ω̄) be defined by

	
Ω̄ η dµn →

	
Ω̄ η dµ

for any η ∈ C∞(Ω) ∩ C(Ω̄).

Proposition 2.1. Let {un} be a sequence in W
1, p(x)
0 (Ω) with |∇un|p(x)

≤ 1 such that un ⇀ u weakly in W
1, p(x)
0 (Ω), |∇un|p(x) ⇀ µ, |un|p

∗(x) ⇀ ν
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in M(Ω̄). Then the limit measures are of the form

µ = |∇u|p(x) +
∑
j∈J

µjδxj + µ̃, µ(Ω̄) ≤ 1,

ν = |u|p∗(x) +
∑
j∈J

νjδxj , ν(Ω̄) ≤ C∗,

where C∗ = sup{
	
Ω |u|

p∗(x) dx : u ∈ W
1, p(x)
0 (Ω), |∇u|p(x) ≤ 1}, J is a

countable set, and µ̃ ∈ M(Ω̄) is a nonatomic positive measure. The atoms
and the regular part satisfy the generalized Sobolev inequality

ν(Ω̄) ≤ C∗max{µ(Ω̄)p
∗
+/p− , µ(Ω̄)p

∗
−/p+},

νj ≤ C∗max{µp
∗
+/p−
j , µ

p∗−/p+
j }.

Lemma 2.2. Set θn = supu∈Zn, |||u|||≤1

	
Ω |u|

p∗(x) dx. If |G| = ∞, then
θn → 0 as n→∞.

Proof. It is obvious that 0 ≤ θn+1 ≤ θn, so θn → θ ≥ 0 as n→∞. There
exist un ∈ Zn with |||un||| ≤ 1 such that

0 ≤ θn −
�

Ω

|un|p
∗(x) dx <

1
n

for each n = 1, 2, . . . . As W 1,p(x)
0, G (Ω) is reflexive, passing to a subsequence,

still denoted by un, we may assume that there exists u ∈ W 1,p(x)
0, G (Ω) such

that un → u weakly in W
1,p(x)
0, G (Ω), as n→∞.

(i) u = 0. In fact, for any fm ∈ {fn : n = 1, 2, . . .}, we have fm(un) = 0
when n > m, so fm(un)→ 0 as n→∞. It is immediate that fm(u) = 0 for
any m ∈ N. Since

(W 1,p(x)
0, G (Ω))∗ = span{fj : j = 1, 2, . . .},

it follows that u = 0.
By Proposition 2.1, there exist a finite measure ν and sequences {xj}

⊂ Ω̄ such that |un|p
∗(x) ⇀ ν =

∑
j∈J νjδxj in M(Ω̄), where J is a count-

able set.
(ii) We claim νj = 0 for any j ∈ J . Suppose that there exists j0 ∈ J such

that νj0 = ν({xj0}) > 0. As un ∈ W 1,p(x)
0, G (Ω), the measure ν is G-invariant.

For any g ∈ G, ν({gxj0}) = ν({xj0}) > 0. As |G| =∞, ν({gxj0 : g ∈ G}) =
∞. But we know the measure ν is finite, so that is a contradiction. Set η ≡ 1.
Then we get

	
Ω̄ |un|

p∗(x)η dx →
	
Ω̄ η dν = 0. Hence it is easy to deduce the

result.
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3. The proof of Theorem 1.1

Definition 3.1. We say that u0 ∈ W
1, p(x)
0 (Ω) is a weak solution of

problem (1.1) if for any u ∈W 1, p(x)
0 (Ω),

�

Ω

(
|∇u0|p(x)−2∇u0∇u+ |u0|p(x)−2u0u− |u0|p

∗(x)−2u0u− f(x, u0)u
)
dx = 0.

It is easy to check that ϕ ∈ C1(W 1, p(x)
0 (Ω), R) and the weak solutions

for problem (1.1) coincide with the critical points of ϕ.
In the following, we assume G = O(N). By condition (H3), it is imme-

diate to see that ϕ is O(N)-invariant. Then, by the principle of symmetric
criticality of Krawcewicz and Marzantowicz [11], we know that u0 is a crit-
ical point of ϕ if and only if u0 is a critical point of ϕ̃ = ϕ|

W
1,p(x)
0, O(N)

(Ω)
.

Therefore, it suffices to prove the existence of a sequence of critical points
of ϕ̃ on W

1,p(x)
0, O(N)(Ω).

Lemma 3.1. Any (PS) sequence {un} ⊂ W
1,p(x)
0, O(N)(Ω), i.e. |ϕ̃(un)| ≤ c

and ϕ̃ ′(un)→ 0, as n→∞, is bounded.

Proof. Let µ(x) = (p(x) + p∗(x))/2. Denote

l1 = inf
x∈ Ω̄

(
1

p(x)
− 1
µ(x)

)
> 0, l2 = inf

x∈ Ω̄

(
1

µ(x)
− 1
p∗(x)

)
> 0.

Then we get

ϕ̃(un)− 〈ϕ̃ ′(un), un/µ〉

=
�

Ω

((
1

p(x)
− 1
µ(x)

)
(|∇un|p(x) + |un|p(x)) +

un
µ(x)2

|∇un|p(x)−2∇un∇µ

+
(

1
µ(x)

− 1
p∗(x)

)
|un|p

∗(x) +
1

µ(x)
f(x, un)un − F (x, un)

)
dx

≥
�

Ω

(
l1|∇un|p(x) + l2|un|p

∗(x) +
un
µ(x)2

|∇un|p(x)−2∇un∇µ

+
1

µ(x)
f(x, un)un − F (x, un)

)
dx.

By condition (H1), for any (x, t) ∈ Ω × R,

|F (x, t)| ≤ a0|t|+ a1
|t|α(x)

α(x)
.

Hence there exist c0, c1 > 0 such that∣∣∣∣ 1
µ(x)

f(x, un)un − F (x, un)
∣∣∣∣ ≤ c0|un|+ c1|un|α(x).
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As µ(x) is Lipschitz continuous on Ω̄, the Young inequality implies that
for any ε1 ∈ (0, 1),∣∣∣∣ un
µ(x)2

|∇un|p(x)−2∇un∇µ
∣∣∣∣ ≤ c2|∇un|p(x)−1|un|

≤ c2

(
ε1(p(x)−1)

p(x)
|∇un|p(x) +

ε
1−p(x)
1

p(x)
|un|p(x)

)
≤ c2(ε1|∇un|p(x) + ε

1−p+
1 |un|p(x)).

Let ε1 be so small that c2ε1 ≤ l1/2. Then

ϕ̃(un)− 〈ϕ̃ ′(un), un/µ(x)〉

≥
�

Ω

(
l1
2
|∇un|p(x) + l2|un|p

∗(x) − c0|un| − c1|un|α(x) − c2ε
1−p+
1 |un|p(x)

)
dx.

Noting that α(x) � p∗(x), p(x) � p∗(x), by the Young inequality, for any
ε2, ε3, ε4 ∈ (0, 1), we get

|un| ≤
ε2|un|p

∗(x)

p∗(x)
+
p∗(x)− 1
p∗(x)

ε
1

1−p∗(x)
2

≤ ε2|un|p
∗(x) + ε

− 1
p∗−−1

2 ,

|un|α(x) ≤ ε3α(x)|un|p
∗(x)

p∗(x)
+
p∗(x)− α(x)

p∗(x)
ε

α(x)
α(x)−p∗(x)
3

≤ ε3|un|p
∗(x) + ε

− α+
(p∗−α)−

3 ,

|un|p(x) ≤ ε4p(x)
p∗(x)

|un|p
∗(x) +

p∗(x)− p(x)
p∗(x)

ε
p(x)

p(x)−p∗(x)
4

≤ ε4|un|p
∗(x) + ε

− p+
(p∗−p)−

4 .

Let ε2, ε3, ε4 be so small that c0ε2 + c1ε3 + c2ε
1−p+
1 ε4 ≤ l2. Then

ϕ̃(un)−
〈
ϕ̃ ′(un), un/µ

〉
≥

�

Ω

(
l1
2
|∇un|p(x) − c3

)
dx.

Note that

|〈ϕ̃′(un), un/µ〉| ≤ ‖ϕ̃ ′(un)‖ · |||un/µ|||
≤ c4‖ϕ̃ ′(un)‖ · |∇(un/µ)|p(x) ≤ c5‖ϕ̃ ′(un)‖ · |∇un|p(x),

and for n ∈ N large enough, we have c5‖ϕ′(un)‖ ≤ l1/4. It is easy to show
that if |∇un|p(x) ≥ 1, then

|∇un|p(x) ≤
�

Ω

|∇un|p(x) dx,
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and thus we get

ϕ(un) ≥
�

Ω

(
l1
4
|∇un|p(x) − c3

)
dx.

Hence |∇un|p(x) is bounded. If |∇un|p(x) < 1, it is immediate that {un} is
bounded. Thus we get the result.

Lemma 3.2. Any (PS) sequence contains a convergent subsequence.

Proof. Let {un} ⊂ W
1,p(x)
0, O(N)(Ω) be a (PS) sequence. By Lemma 3.1,

{un} is bounded. As W 1,p(x)
0, O(N)(Ω) is reflexive, passing to a subsequence, still

denoted by {un}, we may assume that there exists u ∈ W
1,p(x)
0, O(N)(Ω) such

that un → u weakly in W 1,p(x)
0, O(N)(Ω). We can also achieve that un → u weakly

in W
1,p(x)
0 (Ω). Then un → u in Lp(x)(Ω) and in Lα(x)(Ω), as n→∞.

Note that

〈ϕ̃ ′(un)− ϕ̃ ′(u), un − u〉
=

�

Ω

(
(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)∇(un − u)

+ (|un|p(x)−2un − |u|p(x)−2u)(un − u)

− (|un|p
∗(x)−2un−|u|p

∗(x)−2u)(un−u)− (f(x, un)−f(x, u))(un−u)
)
dx.

It is easy to deduce that

〈ϕ̃ ′(un)− ϕ̃ ′(u), un − u〉 → 0,�

Ω

(|un|p(x)−2un − |u|p(x)−2u)(un − u) dx→ 0.

By Proposition 2.1, there exist a finite measure ν and a sequence {xj}⊂Ω̄
such that |un − u|p

∗(x) ⇀ ν =
∑

j∈J νjδxj in M(Ω̄), where J is a countable
set. Note that |O(N)| = ∞, so as in (ii) of the proof of Lemma 2.2, we get
ν = 0. Set η ≡ 1, so that�

Ω̄

|un − u|p
∗(x)η dx→

�

Ω̄

η dν = 0,

i.e. un → u in Lp
∗(x)(Ω), as n→∞. Then�

Ω

(|un|p
∗(x)−2un − |u|p

∗(x)−2u)(un − u) dx→ 0

as n→∞. By condition (H1), we obtain�

Ω

|f(x, un)(un − u)| dx ≤
�

Ω

(a0 + a1|un|α(x)−1)|un − u| dx

≤ a0|un − u|1 + c6

∣∣ |un|α(x)−1
∣∣
α′(x)

· |un − u|α(x).
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It is immediate that |un − u|1 → 0, that
∣∣ |un|α(x)−1

∣∣
α′(x)

is bounded and
that |un − u|α(x) → 0. Hence

�

Ω

f(x, un)(un − u) dx→ 0.

Similarly, �

Ω

f(x, u)(un − u) dx→ 0.

Thus �

Ω

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)∇(un − u) dx→ 0

as n→∞. Similar to Theorem 3.1 in [3], we divide Ω into two parts:

Ω1 = {x ∈ Ω : p(x) < 2}, Ω2 = {x ∈ Ω : p(x) ≥ 2}.
On Ω1, we have�

Ω1

|∇un −∇u|p(x) dx

≤ c7

�

Ω1

((|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u))p(x)/2

× (|∇un|p(x) + |∇u|p(x))(2−p(x))/2 dx

≤ c8|((|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u))p(x)/2|2/p(x),Ω1

× |(|∇un|p(x) + |∇u|p(x))(2−p(x))/2|2/(2−p(x)), Ω1
.

Noting that�

Ω1

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)∇(un − u) dx→ 0

implies

|((|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u))p(x)/2|2/p(x),Ω1
→ 0,

we have
	
Ω1
|∇un −∇u|p(x) dx→ 0. On Ω2, we have

�

Ω2

|∇un −∇u|p(x) dx

≤ c9

�

Ω2

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u) dx→ 0.

Thus
	
Ω |∇un−∇u|

p(x) dx→ 0. Now it is easy to get un → u in W 1, p(x)
0, G (Ω)

as n→∞.

Lemma 3.3. There exists Rn > 0 such that ϕ̃(u) ≤ 0 for any u ∈ Yn
with |||u||| ≥ Rn.
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Proof. For any u ∈ Yn, we have

ϕ̃(u) =
�

Ω

(
|∇u|p(x) + |u|p(x)

p(x)
− |u|

p∗(x)

p∗(x)
− F (x, u)

)
dx

≤
�

Ω

(
|∇u|p(x) + |u|p(x)

p−
− |u|

p∗(x)

p∗+
+ a0|u|+ a1

|u|α(x)

α(x)

)
dx.

Noting that α(x) � p∗(x), by the Young inequality, for any ε5 ∈ (0, 1),
we get

a0|u|+ a1
|u|α(x)

α(x)
≤ ε5|u|p

∗(x) + c10.

Let ε5 be so small that ε5 ≤ 1/2p∗+. Then

ϕ̃(u) ≤
�

Ω

(
|∇u|p(x) + |u|p(x)

p−
− |u|

p∗(x)

2p∗+
+ c10

)
dx.

In the following, we will consider
	
Ω

( |∇u|p(x)+|u|p(x)
p−

− |u|
p∗(x)

2p∗+

)
dx.

Let |||u||| > 1. Note that p, p∗ ∈ C(Ω̄) and p(x)� p∗(x). For any x ∈ Ω̄,
there exists an open subset Q(x) of Ω̄ such that

px = sup
y∈Q(x)

p(y) < p∗x = inf
y∈Q(x)

p∗(y).

Then {Q(x)}x∈ Ω̄ is an open covering of Ω̄. As Ω̄ is compact, there is a finite
subcovering {Q(xi)}ki=1. We can use all the hyperplanes, for each of which
there exists at least one hypersurface of some {Q(xi)} lying on it, to divide⋃k
i=1Q(xi) into finitely many open hypercubes {Ωi}mi=1 which are pairwise

disjoint. It is obvious that Ω̄ =
⋃m
i=1 Ω̄i and

pi+ = sup
x∈Ωi

p(x) < p∗i− = inf
x∈Ωi

p∗(x)

for i = 1, . . . ,m. Denote ri = |||u|||Ωi . Then

�

Ω

(
|∇u|p(x) + |u|p(x)

p−
− |u|

p∗(x)

2p∗+

)
dx

=
m∑
i=1

�

Ωi

(
|∇u|p(x) + |u|p(x)

p−
− |u|

p∗(x)

2p∗+

)
dx

=
∑
ri>1

�

Ωi

(
|∇u|p(x) + |u|p(x)

p−
− |u|

p∗(x)

2p∗+

)
dx
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+
∑
ri≤1

�

Ωi

(
|∇u|p(x) + |u|p(x)

p−
− |u|

p∗(x)

2p∗+

)
dx

≤
∑
ri>1

( |||u|||pi+Ωi
p−

− kni
2p∗+
|||u|||p

∗
i−
Ωi

)
+
m

p−
,

where kni = infu∈Yn|Ωi , |||u|||Ωi=1

	
Ωi
|u|p∗(x) dx. As Yn|Ωi is a finite-dimensional

space, we have kni > 0 for i = 1, . . . ,m.
We denote by si the maximum of the polynomial t

pi+

p−
− kni

2p∗+
tp
∗
i− on [0,∞)

for i = 1, . . . ,m. Then there exists t0 > 1 such that
tpi+

p−
− kni

2p∗+
tp
∗
i− + c11 ≤ 0

for t > t0 and i = 1, . . . ,m, where c11 =
∑m

i=1 si +m/p− + c10 measΩ.
Let Rn ≥ m2t0. If |||u||| ≥ Rn, then |||u||| ≥ m2t0 > 1. It is easy to verify

that there exists at least one i0 such that |||u|||Ωi0 ≥ t0 > 1, thus

ϕ̃(u) ≤
|||u|||pi0+

Ωi0

p−
−
kni0
2p∗+
|||u|||

p∗i0−
Ωi0

+ c11 ≤ 0.

Now we get the result.

Lemma 3.4. There exist rn > 0 and an → ∞ (n → ∞) such that
ϕ̃(u) ≥ an for any u ∈ Zn with |||u||| = rn.

Proof. For u ∈ Zn. Let |||u||| > 1, By condition (H1), we get

ϕ̃(u) =
�

Ω

(
|∇u|p(x) + |u|p(x)

p(x)
− |u|

p∗(x)

p∗(x)
− F (x, u)

)
dx

≥
�

Ω

(
|∇u|p(x) + |u|p(x)

p+
− |u|

p∗(x)

p∗(x)
− a0|u| − a1

|u|α(x)

α(x)

)
dx

≥
�

Ω

(
|∇u|p(x) + |u|p(x)

p+
− c12|u|p

∗(x)

)
dx− c13.

Denote
θn = sup

u∈Zn, |||u|||≤1

�

Ω

|u|p∗(x) dx,

thus

ϕ̃(u) ≥ |||u|||
p−

p+
− c12θn|||u|||p

∗
+ − c13.

Let

rn = max
{

1,
(

p−
c12p+p∗+θn

) 1
p∗+−p−

,

(
2c13p+p

∗
+

p∗+ − p−

) 1
p−
}
.
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By Lemma 2.2, we deduce that θn → 0 as n→∞; then

ϕ̃(u) ≥ rp−n
p∗+ − p−
p+p∗+

− c13 , an,

when n is sufficiently large and |||u||| = rn. It is easy to conclude that an →∞
as n→∞.

Proof of Theorem 1.1. By condition (H2), ϕ̃ is an even functional on
W

1, p(x)
0, O(N)(Ω). By Lemmas 3.1–3.4 and the fountain theorem in [14], we know

that the functional ϕ̃ has a sequence of critical points uk ⊂ W
1, p(x)
0, O(N)(Ω)

such that ϕ(uk) = ϕ̃(uk) = ck →∞ as k →∞. This completes the proof.
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