
ANNALES
POLONICI MATHEMATICI

105.2 (2012)

Weighted Bernstein–Markov property in Cn

by Nguyen Quang Dieu and Pham Hoang Hiep (Ha Noi)

Abstract. We study the weighted Bernstein–Markov property for subsets in Cn
which might not be bounded. An application concerning approximation of the weighted
Green function using Bergman kernels is also given.

1. Introduction. Let E be a Borel (not necessarily bounded) non-
pluripolar subset of Cn, ω ≥ 0 be an upper semicontinuous (usc for short)
function defined on E and µ be a positive Borel measure on E. We say that
ω is an admissible weight if:

(i) {ω > 0} is non-pluripolar.
(ii) supz∈E |z|ω(z) <∞.

The aim of this article is to study conditions guaranteeing that the triple
(E,µ, ω) has the Bernstein–Markov property. Recall that (E,µ, ω) is said to
have the Bernstein–Markov property if there is strong comparability between
L2 and L∞ norms of weighted polynomials on E. More precisely, for every
ε > 0, there exists Cε > 0 such that for every P ∈ C[z1, . . . , zn], the ring of
polynomials of n complex variables,

‖ωdegPP‖E ≤ Cε(1 + ε)d‖ωdegPP‖L2(E,µ).

Here ‖ωdP‖E and ‖ωdP‖L2(E,µ) denote the sup norm and the L2 norm with
respect to dµ of the weighted polynomial ωdP .

In the previous papers of Bloom and Levenberg ([BL2], [Le]), the Bern-
stein–Markov property has already been considered for unbounded sets.
However, in addition to (i), the following conditions are assumed in their work:

(ii′) lim|z|→∞ zω(z) = 0.

(iii) There exists d0 ≥ 1 such that
	
E |pd|

2ω2d dµ < ∞ for every d > d0

and all pd ∈ Pd, the set of polynomials of degree d in Cn.

2010 Mathematics Subject Classification: Primary 32U20, 32U35.
Key words and phrases: Bernstein–Markov property, Lelong class, pluripolar sets, weighted
Green function, Bernstein–Walsh inequality.

DOI: 10.4064/ap105-2-1 [101] c© Instytut Matematyczny PAN, 2012



102 N. Q. Dieu and P. H. Hiep

Note that (ii′) is much stronger than (ii). Thus the main point in our work
is that we only require ω to satisfy the mild estimate (ii) in the case E is
unbounded.

Now we describe in more detail the content of the paper. In Section 3, we
apply Bloom’s results [Bl3] to connect the Bernstein–Markov property for
(E,µ, ω) to that for (Z, ν) where Z is a bounded circular set in Cn+1 and ν is
a positive Borel measure on Z. In the main theorem of that section, Theorem
3.3, we translate the mass density condition in Bloom–Levenberg’s theorem
(e.g. Theorem 2.4) from the pair (Z, ν) to the original triple (E,µ, ω). We
also indicate in Proposition 3.5 a simpler situation when the Bernstein–
Markov property for (E,µ, ω) with unbounded E might be reduced, after
taking inversion maps, to the case when E is bounded. Next, we start Sec-
tion 4 by considering the situation when ω is supposed to satisfy (ii)′. A
sufficient condition for the Bernstein–Markov property in this special case
is given in Corollary 4.2, which is based on Proposition 4.1. We also apply
this result to provide a Bernstein–Markov type estimate in the case where
E = Cn, µ = λ2n (the Lebesgue measure) and ω is just an admissible weight
in our sense. The main result of that section is Theorem 4.5. More explicitly,
by embedding E into the projective space CPn, we deal with the Bernstein–
Markov property of (E,µ, ω) when E is assumed to be locally regular in CPn.
Theorem 4.5 implies, in particular, that (E,µ, ω) has the Bernstein–Markov
property if E is locally regular in CPn and µ is, roughly speaking, determin-
ing on a subset of E. For the notion of determining measures, see the next
section. We also give a version of the Bernstein–Markov property in the case
where µ is determining but E is not assumed to be regular (see Proposition
4.8). In the final result of the section, following the work of Bloom and Shiff-
man [BSh], we give an application of the Bernstein–Markov property to the
convergence of certain Bergman kernels to weighted Green functions. This
problem was studied earlier in [BSh] when E is bounded.

2. Preliminaries. We first recall the definition of Lelong classes in Cn.
The set of plurisubharmonic functions with logarithmic growth is given by

L(Cn) = {u plurisubharmonic on Cn : u(z) ≤ log+ |z|+ C},
where C is a constant depending on u, but not on z. Similarly,

L+(Cn) = {u ∈ L(Cn) : u(z) ≥ log+ |z| − C},
where again C may depend on u. For brevity, we write L (resp. L+) for L(Cn)
(resp. L+(Cn)). Lelong classes are used to define global extremal functions
associated to E,Q. More precisely, the weighted Green function of E with
weight ω is defined as

VE,Q(z) := sup{u(z) : u ∈ L, u|E ≤ Q},
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where Q := − logω. We will use Q and ω alternatively. In the unweighted
case (i.e., Q = 0), VE,Q becomes Siciak’s extremal function VE .

For a subset G of Cn and a function f : G→ [−∞,∞), we let f∗ denote
its usc regularization, defined by

f∗(ξ) = lim
z→ξ, z∈G

f(z), ∀ξ ∈ Ḡ.

It is easy to see that if E is non-pluripolar and ω is an admissible weight
then V ∗E,Q ∈ L+. We will sometimes use the following weighted version of
the classical Bernstein–Walsh inequality: For every Borel set F ⊂ E,

‖ωdP‖E ≤ ‖ωdP‖F esupE VF,Q .

We say that a Borel set E is regular if VE is continuous on Cn, and E is
locally regular at the point a ∈ Ē if for every r > 0 small enough, the function
VE∩B(a,r) is continuous at a, where B(a, r) is the ball centered at a and of
radius r. The set E is locally regular if it is locally regular at every point
a ∈ Ē. It is known that E is regular if and only if V ∗E = 0 on E. Moreover,
if E is locally regular and compact then, by a result of Siciak [Sic1], VE,Q is
continuous for every continuous function Q.

Now, we recall some facts about the connection between quasi-plurisub-
harmonic functions on the projective space CPn and functions in the Lelong
class L. More explicitly, let θ := 1

2dd
c log(1 + |z|2) be the Fubini–Study

Kähler form on CPn. Denote by PSH(CPn, θ) the set of upper semicontinuous
functions ϕ : X → [−∞,+∞) such that θ + ddcϕ ≥ 0 on CPn. Then there
exists a one-to-one correspondence between L and PSH(CPn, θ) induced by
the natural mapping

ϕ ∈ L 7→ ϕ(z) =

 ϕ(z)− 1
2 log(1 + |z|2) if z ∈ Cn,

lim
Cn3w→z

[ϕ(w)− 1
2 log(1 + |w|2))] if z ∈ H∞,

where H∞ = CPn\Cn denotes the hyperplane at infinity. One can easily see
that

ϕ ∈ L+ if only if ϕ ∈ PSH ∩ L∞(CPn, θ).
It is also not hard to check that

V ∗E,Q = (sup{ψ(z) : ψ ∈ PSH(CPn, θ), ψ ≤ Q on E})∗,

where Q(z) = Q(z)− 1
2 log(1 + |z|2).

Next, given E ⊂ Cn and a real valued function Q defined on E, we define
the closure of E in CPn as follows:

ECPn := {z ∈ CPn : ∃{wj} ⊂ E such that wj → z in CPn},
and we set

Q∗(z) = lim
w→z

Q(w), Q
∗
(z) = lim

w→z
Q(w).
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For more background on the above material, we refer the reader to [GZ],
[BSt] and [BT].

Next, we recall some facts about pluripolar sets. A subset X in Cn is
said to be pluripolar if for every a ∈ X, there exist a neighbourhood U
of a and a plurisubharmonic function u with u 6≡ −∞ on U such that
u ≡ −∞ on X ∩ U . An important theorem of Josefson asserts that it is
possible to choose U = Cn. Later on, Siciak [Sic1] improved this result by
proving that u can be taken in the class L. The usage of pluripolar sets
arises naturally from Bedford–Taylor’s theorem on negligible sets which says
that for every family {uα}α∈I of plurisubharmonic functions locally bounded
from above on an open set Ω, the set {z ∈ Ω : u(z) < u∗(z)} is pluripolar,
where u(z) := supα∈I uα(z). Using this result, it is proved in [CKL] that for
every sequence Ej of Borel sets that increase to a bounded set E, we have
V ∗Ej ↓ V

∗
E . A generalization of this fact to weighted Green functions is given

in Lemma 4.6. See also Proposition 3 in [BSt] for an analogous result when
Cn is replaced by a compact Kähler manifold.

A property P is said to hold quasi everywhere (q.e. for short) on a set E
if P is true outside a pluripolar subset of E. For a comprehensive discussion
of pluripolar sets, we refer the reader to the monograph [Kl].

Now, we deal with notions which are relevant to the Bernstein–Markov
property. The following kind of measures was introduced by Siciak [Sic2].

Definition 2.1. Let E be Borel, non-pluripolar subset of Cn and ω be
an admissible weight on E. We say that a positive Borel measure µ on E is
(E,ω)-determining if for every Borel subset F of E such that µ(E \ F ) = 0
we have V ∗F,Q = V ∗E,Q.

The role of determining measures is highlighted in the following impor-
tant result.

Theorem 2.2. Let E be a compact non-pluripolar subset of Cn and ω
be an admissible weight on E. Assume that ω > 0 on E and V ∗E,Q ≤ Q on
E. Then for every (E,ω)-determining measure µ, the triple (E,µ, ω) has the
Bernstein–Markov property.

The above theorem was proved by Siciak [Sic2] (see also [Le, Proposition
2.5]) under the stronger assumption that Q is continuous on E. However, the
proof given there works equally well in our case. Later on, we will provide
a generalization of Theorem 2.2 in the case where E is unbounded and µ is
determining on a subset of E.

It is easy to see that if µ is a determining measure for (E,ω) then so
is fµ for every positive continuous function f . Let E = D̄, where D is
an open set (possibly unbounded) in Cn such that ∂D is C1 smooth. Then
for every admissible weight function ω, the Lebesgue measure dλ2n and the
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surface measure dV∂D are determining for (E,ω). More subtle examples of
determining measures are provided by the following well known fact.

Proposition 2.3. Let E be a closed, non-pluripolar subset of Cn and ω
be an admissible weight on E. Then the measure µ := (ddcV ∗E,Q)n is (E,ω)-
determining.

Proof. Since µ(E \ F ) = 0 and E is non-pluripolar, we infer that F is
also non-pluripolar. On the other hand, since V ∗E,Q ≤ V ∗F,Q on Cn, we see
that V ∗F,Q ∈ L+. Note that V ∗F,Q = V ∗E,Q a.e. on E = supp µ with respect
to the measure µ. Thus by Lemma 6.5 in [BT] we get V ∗F,Q ≤ V ∗E,Q on Cn.
Hence equality holds everywhere on Cn.

It is of interest to find a mass density condition on µ implying that
(E,µ, ω) has the Bernstein–Markov property. In the unweighted case (ω= 1),
an efficient condition is provided by the following result due to Bloom and
Levenberg [BL1].

Theorem 2.4 (Bloom–Levenberg’s theorem). Let E be a regular com-
pact set in Cn and µ be a positive Borel measure on E. Assume that there
exists a constant T > 0 such that V ∗Er goes to 0 q.e. on E when r → 0+,
where

Er := {z ∈ E : µ(E ∩ B(z, r)) ≥ rT }.

Then (E,µ) has the Bernstein–Markov property.

Proof. For the reader’s convenience, we indicate briefly how Theorem 2.4
follows from Theorems 1.1 and 2.1 of [BL1]. Assume that Ē ⊂ B, the unit
ball in Cn. By step VI in the proof of Theorem 1.1 of [BL1], ur → u pointwise
on B, where ur (resp. u) is the relative extremal function of Er (resp. E).
Using again Theorem 1.1 of [BL1] we obtain limj→∞C(Er) = C(E), where
C(F ) is the relative capacity of the Borel set F ⊂ B. It now follows from
the proof of Theorem 2.1 of [BL1] that (E,µ) has the Bernstein–Markov
property.

Remarks. (a) Theorem 2.4 generalizes Theorem 4.1 of [Bl1]. In the
latter theorem, the measure µ is assumed to be sufficiently dense on a set of
full relative capacity. The essence of Theorem 2.4 is that, in fact, one only
needs a type of denseness in the mean.

(b) By making the constant T larger, we can see that Theorem 2.4 still
holds if we replace the balls B(z, r) by the polydisks ∆(z, r).

(c) According to Theorem 4.2 in [Bl1] every determining measure µ (in
the sense of Definition 2.1) on a regular compact set E satisfies the mass
density condition of [Bl1, Theorem 4.1]. Thus (E,µ) has the Bernstein–
Markov property. We recover the unweighted case of Theorem 2.2.
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(d) Bloom constructed a discrete measure (a countable linear combina-
tion of Dirac measures) µ such that (E,µ) has the Bernstein–Markov prop-
erty ([Bl1, Example 4.1]). Note that, being a measure carried by a pluripolar
set, µ cannot be determining for E.

Before closing this section, we remark that in previous work of Bloom
and Levenberg (e.g., [BL2] and [Le]), when E is unbounded, the weight ω is
supposed to decrease fast enough, i.e., lim|z|→∞ zω(z) = 0. Under this strong
growth condition, VE,Q = VE∩B(0,r),Q for r large enough. Thus we return to
the bounded case.

3. Reductions to the bounded case. We start with the following ba-
sic result, due in essence to Bloom, relating the Bernstein–Markov property
of unbounded sets to bounded ones.

Theorem 3.1. Let ω be an admissible usc weight on E. Define

Z := {(tz1, . . . , tzn, t) ∈ Cn+1 : (z1, . . . , zn) ∈ E, t ∈ C, |t| = ω(z)}.

Let ν be a measure on Z defined by dν := dmt ⊗ dµ, where dmt is the
normalized Lebesgue measure on the circle {|t| = ω(z)}. Then the following
assertions are equivalent:

(a) (E,µ, ω) has the Bernstein–Markov property (in Cn).
(b) (Z, ν) has the Bernstein–Markov property (in Cn+1).

The definition of ν means that for every continuous function ϕ with
compact support in Cn+1 \ {t = 0},

�

Cn+1

ϕdν =
�

E

( �

|t|=ω(z)

ϕdmt

)
dµ(z).

Notice that Z is always bounded since supz∈E |z|ω(z) < ∞. Thus it makes
sense to talk about the Bernstein–Markov property of (Z, ν).

Proof. The above theorem is essentially Theorem 3.1 in [Bl3]. For the
reader’s convenience, we sketch some details. For a polynomial P of degree d
in C[z1, · · · , zn], we define the following homogeneous polynomial of degree
d in C[z1, · · · , zn, t]:

P̃ (z1, · · · , zn, t) := tdP (z/t).

It is not hard to show the following facts ([Bl3, Lemmas 3.1 and 2.1]):

(i) ‖P̃‖L2(Z,ν) = ‖ωdP‖L2(E,µ).

(ii) ‖P̃ (z, t)‖Z = ‖ωdP‖E .

From the above relations, we can prove the equivalence of (a) and (b).
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To utilize the above result, the first problem is to decide when Z̄ is
regular. We will give a characterization of regularity of Z̄ in Proposition 4.4.
For the moment, we are content with the following simple observations:

Proposition 3.2. Let E, ω, µ and Z be as in Theorem 3.1. Suppose
that E is closed and Z̄ is regular in Cn+1. Then:

(a) VZ = VZ̄ on Cn+1.
(b) VE,Q is continuous on Cn.

Proof. (a) For E bounded, the formula below follows from Theorem 2.1
and Proposition 2.2 of [Bl3]:

(1) VZ(tz, t) = max{VE,Q(z) + log |t|, 0}, ∀z ∈ Cn, ∀t ∈ C.
However, (1) also holds in our context. This is a consequence of a more
general result due to Branker and Stawiska (see [BSt, Theorem 2]). For the
reader’s convenience, we give a direct proof of this crucial formula. Since Z
is circular and bounded, we need only consider homogeneous polynomials in
the definition of VZ : if we write a polynomial p of degree d as p =

∑
0≤j≤d pj

where pj is a homogeneous polynomial of degree j then by the Cauchy in-
equalities we obtain

‖pj‖Z ≤ ‖p‖Z , ∀0 ≤ j ≤ d.
Next it suffices to apply Siciak’s H-principle ([BL2, p. 61]) to obtain (1).
Returning to our setup, since E is closed, Z̄ \ Z ⊂ Cn × {0} is pluripolar in
Cn+1. Therefore VZ̄ = V ∗

Z̄
= V ∗Z on Cn+1. In particular V ∗Z = 0 on Z and

VZ̄ = V ∗Z = VZ is continuous on Cn+1.
(b) We just apply Bloom’s formula (1) and (a) to get continuity of VE,Q.

Remarks. (i) Let E be a closed, locally regular subset of Cn and ω > 0
a continuous admissible weight on E. Assume that for every ξ ∈ Z̄ \(Z∪{0})
there exists a complex line l passing through ξ such that l ∩ Z̄ contains a
continuous curve γ([0, 1]) with γ(0) = ξ and γ((0, 1]) ⊂ l ∩ Z. Then Z̄ is
regular. Indeed, since E is closed and locally regular, by a result of Siciak we
have V ∗E,Q ≤ Q on E. Combining this with Bloom’s formula (1), we obtain
V ∗Z = 0 on Z. By Proposition 3.2(a) we have V ∗

Z̄
= 0 on Z. Next, we fix

ξ ∈ Z̄ \ (Z ∪ {0}). Choose a complex line l as in the assumption. Denote
by u the restriction of V ∗

Z̄
to l. We may regard u as a subharmonic function

on C. By the above reasoning u(z) = 0 for every z ∈ l ∩ Z. According to a
classical result of potential theory saying that a continuous curve is non-thin
at every point (see [Ra, Theorem 3.8.3]) we have

V ∗Z̄ (ξ) = u(ξ) = 0.

Finally, we consider the case ξ = 0. Fix z∗ ∈ E and define v(t) = V ∗
Z̄

(tz∗, t).
Then v ≥ 0 is subharmonic on C, and v = 0 on the circle |t| = ω(z∗). So by



108 N. Q. Dieu and P. H. Hiep

the maximum principle,
V ∗Z̄ (0) = v(0) = 0.

Thus V ∗
Z̄

= 0 on Z̄ and hence Z̄ is regular as claimed.
(ii) We construct below an explicit example of a pair (E,ω) satisfying

the assumptions given in (a). Let E = C. We choose a continuous function
ω > 0 on E satisfying ω(z) = |Re(1/z)| for |z| ≥ 1 and 0 ≤ ω(z) ≤ 1 for
|z| ≤ 1. This is possible, because by Tietze’s extension theorem, we may
extend continuously, preserving the norm, the function |Re(1/z)| from the
unit circle |z| = 1 to the closed unit disk |z| ≤ 1. Note that |z|ω(z) ≤ 1 for
all z ∈ C. Thus ω is a continuous admissible weight on E. We claim that the
pair (E,ω) satisfies the assumptions in (a). Fix ξ := (α, 0) ∈ Z̄ \ (Z ∪ {0}).
Then 0 < |α| ≤ 1. Let l be the complex line {(α, t) : t ∈ C}. It is easy to see
that

{(α, t) : |t| = ω(α/t) = |Re(t/α)|, 0 < |t| < |α|} ⊂ l ∩ Z.

It follows easily from the above relation and from the properties of α that
l ∩ Z̄ contains a segment γ([0, 1]) with γ((0, 1]) ⊂ l ∩ Z and γ(0) = ξ. The
claim now follows.

We now apply Theorem 3.1 in conjunction with Theorem 2.4 to obtain
a certain sufficient condition for the Bernstein–Markov property of (E,µ, ω)
in terms of convergence of sequences of weighted Green functions.

Theorem 3.3. Under the notation of Theorem 3.1, assume that Z̄ is
regular (in Cn+1). Denote by α the function

α(z) := 1 + |z|+ ‖ω‖E , z ∈ Cn.

Assume that V ∗Er,Q → V ∗E,Q pointwise on E as r → 0+, where

Er :=

{
z0 ∈ E :

1

α(z0)
√
ω(z0)

�

E∩∆ω(z0,r/α(z0))

dµ(z)√
ω(z)

≥ rT
}
,

and ∆ω(z0, r) := {z ∈ ∆(z0, r) : |ω(z) − ω(z0)| < r/2}. Then (E,µ, ω) has
the Bernstein–Markov property.

Proof. For r > 0 we set

Zr := {z̃ ∈ Z : ν(Z̄ ∩ ∆̃(z̃, r)) ≥ rT+2},

where ∆̃(z̃, r) is the polydisks in Cn+1, centred at z̃ and radius r. We will
show that V ∗Zr → 0 pointwise on Z as r → 0+. Granted this, we conclude
the proof as follows. Since Z̄ \ Z ⊂ Cn × {0} is pluripolar we have V ∗Zr → 0

q.e. on Z̄. Thus V ∗Z′r → 0 q.e. on Z̄ where

Z ′r := {z̃ ∈ Z̄ : ν(Z̄ ∩ ∆̃(z̃, r)) ≥ rT+2}.
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By Bloom–Levenberg’s theorem (see the remark following Theorem 2.4),
(Z̄, ν) has the Bernstein–Markov property. Using Theorem 3.1 we find that
(E,µ, ω) also has the Bernstein–Markov property.

Thus, the key point is to check that V ∗Zr → 0 on Z as r → 0+. Let
π : Cn+1 \ {zn+1 = 0} → Cn be defined by

π(z1, . . . , zn+1) := (z1/zn+1, . . . , zn/zn+1).

Since Z is circular, we can easily check by the definition of ν that Zr is also
circular. Then it follows from Bloom’s formula (1) that

V ∗Zr(tz, t) = max{V ∗π(Zr),Q
(z) + log |t|, 0}, ∀z ∈ Cn, ∀t ∈ C.

Thus it suffices to check that V ∗π(Zr),Q
goes pointwise to V ∗E,Q on E. For this,

we first claim that given z̃0 = (t0z0, t0) ∈ Z, where z0 = (z0
1 , . . . , z

0
n) ∈ Z

and |t0| = ω(z0), for every 0 < r < 1 we have

Xr(z̃
0) := {(tz, t) : z ∈ E ∩∆(z0, r/α(z0)), |t− t0| < r/α(z0)}(2)

⊂ ∆̃(z̃0, r).

Indeed, if |zj − z0
j | < r/α(z0) and |t− t0| < r/α(z0) then

|tzj − t0z0
j | ≤ |t0| |zj − z0

j |+ |zj | |t− t0| < α(z0)
r

α(z0)
= r.

This proves (2). Thus for every z̃0 ∈ Z we have

ν(Z ∩Xr(z̃
0)) ≤ ν(Z̄ ∩ ∆̃(z̃0, r)), ∀0 < r < 1.

It follows that

Yr := {z̃0 ∈ Z : ν(Z ∩Xr(z̃
0)) ≥ rT+2} ⊂ Zr.

Hence
V ∗E,Q ≤ V ∗π(Zr),Q

≤ V ∗π(Yr),Q
.

On the other hand, by definition of ν we have

(3) ν(Z ∩Xr(z̃
0)) =

�

E∩∆(z0,r/α(z0))

ϕ(z) dµ(z),

where ϕ(z) := m{t : |t| = ω(z), |t− t0| < r/α(z0)}. We need a lower bound
for ϕ(z). After a rotation, we may assume t0 = ω(z0). We note the following
elementary fact: if t = eiθω(z) then

|t− t0| < r/α(z0) ⇔ |ω(z)− ω(z0)| < r/α(z0),

and
ω(z)2 + ω(z0)2 − r2/α(z0)2

2ω(z)ω(z0)
< cos θ.
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Since cos θ ≥ 1− θ2/2 we infer that for |ω(z)− ω(z0)| < r/α(z0),

|θ| ≤
{ r2

α(z0)2
− (ω(z)− ω(z0))2

ω(z)ω(z0)

}1/2
⇒

ω(z)2 + ω(z0)2 − r2

α(z0)2

2ω(z)ω(z0)
< cos θ.

This implies that for z ∈ ∆ω(z0, r/α(z0)) we have

ϕ(z) ≥
√

3

2

r

α(z0)
√
ω(z)ω(z0)

.

Now we apply this lower bound for ϕ to get from (3) the estimate

ν(Z ∩Xr(z̃
0)) ≥

√
3r

2α(z0)
√
ω(z0)

�

E∩∆ω(z0, r/α(z0))

dµ(z)√
ω(z)

.

Therefore{
z̃0 ∈ Z :

1

α(z0)
√
ω(z0)

�

E∩∆ω(z0, r/α(z0))

dµ(z)√
ω(z)

≥ 2rT+1

√
3

}
⊂ Yr.

So Er ⊂ π(Yr) for 0 < r <
√

3/2. By the assumptions we get V ∗π(Yr),Q
→ V ∗E,Q

on E. The proof is complete.

The following result is an almost immediate consequence of Theorem 3.3.
In the case ω = 1, it is just Bloom–Levenberg’s theorem (see e.g. Theo-
rem 2.4).

Corollary 3.4. Let E be a compact, locally regular set in Cn and ω > 0
be a continuous weight on E. Assume that there exists a constant T > 0 such
that V ∗Er,Q converges pointwise to V ∗E,Q, where

Er := {z0 ∈ E : µ(E ∩∆ω(z0, r/T )) ≥ rT }.
Then (E,µ, ω) has the Bernstein–Markov property.

Proof. Since E is compact, we have ‖α‖E < ∞. Thus we can choose T
large enough such that ∆ω(z0, r/T ) ⊂ ∆ω(z0, r/α(z0)) for every z0 ∈ E.
Furthermore, by considering T + 1 instead of T we have

{z0 ∈ E : µ(E ∩∆ω(z0, r/T )) ≥ rT }

⊂
{
z0 ∈ E :

1

α(z0)
√
ω(z0)

�

E∩∆ω(z0,r/α(z0))

dµ(z)√
ω(z)

≥ rT
}
.

The proof is complete.

In the same spirit as in Theorem 3.1, we deal with another situation
when E can be transformed to bounded sets by “invertible” maps. We need
a piece of notation: for 1 ≤ j ≤ n, denote by πj the projection πj : Cn → C,
πj(z) := zj .
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Proposition 3.5. Let E be a closed, unbounded subset of Cn. Assume
that there exists 1 ≤ k ≤ n satisfying the following conditions:

(a) πj(E) is unbounded for every 1 ≤ j ≤ k and bounded for every j > k.
(b) 0 6∈ πj(E) for every 1 ≤ j ≤ k.
(c) supE |z1 · · · zk|ω(z) := M <∞.

Let Ẽ := {(1/z1, . . . , 1/zk, zk+1, . . . , zn) : (z1, . . . , zn) ∈ E}. Define the fol-
lowing function on ¯̃E:

ω̃(z) :=


ω(1/z1, . . . , 1/zk, zk+1, . . . , zn)

z1 · · · zk
, (z1, . . . , zn) ∈ Ẽ,

M, z ∈ ¯̃E \ Ẽ.

Suppose that ( ¯̃E, µ̃, ω̃) has the Bernstein–Markov property, where µ̃ is the
push-forward measure of µ under ω̃, i.e., µ̃(A) := µ(ω̃−1(A ∩ Ẽ)) for every
A ⊂ ¯̃E. Then (E,µ, ω) also has the Bernstein–Markov property.

Proof. For a polynomial of P of degree d in C[z1, . . . , zn], we set

P̃ (z1, · · · , zn) := (z1 · · · zk)dP (1/z1, . . . , 1/zk, zk+1, . . . , zn).

Note that P is a polynomial of degree ≤ (k + 1)d. Furthermore

(4) ‖ωdP‖E = ‖ω̃dP̃‖Ẽ , ‖ω
dP‖L2(E,µ) = ‖ω̃dP̃‖L2(Ẽ,µ̃) = ‖ω̃dP̃‖

L2( ¯̃E,µ̃)
.

Given ε > 0, by the assumption, we can find Cε > 0 such that

(5) ‖ω̃dP̃‖ ¯̃E
≤ Cε(1 + ε)(k+1)d‖ω̃dP̃‖

L2( ¯̃E,µ̃)
.

Putting (4) and (5) together we obtain

‖ωdP‖E ≤ Cε(1 + ε)(k+1)d‖ωdP‖L2(E,µ).

The proof is complete.

The result below is a simple consequence of the above proposition.

Corollary 3.6. Let E ⊂ C be a closed, unbounded, locally regular
set such that 0 6∈ E, ω > 0 a continuous admissible weight on E, and µ
a determining measure for (E,ω). Suppose that there exists a continuous
map γ : [0, 1) → E satisfying limt→1 |γ(t)| = ∞. Then (E,µ, ω) has the
Bernstein–Markov property.

Proof. Set Ẽ := {1/z : z ∈ E}. Then Ẽ is locally regular. We note that
there exists R > 0 such that for every r > R we have

∅ 6= {|z| = r} ∩ γ[0, 1) ⊂ {|z| = r} ∩ Ẽ.
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This implies that 0 is not a thin point for Ẽ. Now we define

ω̃(z) :=


1

z
ω

(
1

z

)
, z ∈ Ẽ,

sup
ξ∈E
|ξω(ξ)|, z = 0.

Since Ẽ is locally regular, not thin at 0 and ω̃ > 0 is continuous on Ẽ, by
the choice of ω̃, we have V ∗¯̃E,Q̃ ≤ Q̃ on ¯̃E. Next, observe that ¯̃E \ Ẽ = {0} is
polar in C, so

V ∗¯̃E,ω̃
(z) = V ∗

Ẽ,ω̃
(z) = V ∗E,ω(1/z), ∀z 6= 0.

By the assumption on µ we infer that the measure µ̃ is ( ¯̃E, ω̃)-determining.
Thus ( ¯̃E, µ̃, ω̃) has the Bernstein–Markov property. Applying Proposition 3.5
we reach the desired conclusion.

4. Bernstein–Markov property and weighted Green functions.
This section is devoted to some sufficient conditions for (E,µ, ω) to have
the Bernstein–Markov property in terms of behaviour of weighted Green
functions.

Proposition 4.1. Let ω be an admissible weight on E, and µ be a pos-
itive Borel measure on E. Assume that for every ε > 0, there exists a Borel,
non-pluripolar subset Eε of E satisfying the following conditions:

(a) (Eε, µ, ω) has the Bernstein–Markov property.
(b) VEε,Q ≤ Q+ log(1 + ε) on E \ Eε.

Then (E,µ, ω) also has the Bernstein–Markov property.

Proof. We define

F := {P ∈ C[z1, · · · , zn] : ‖ωdegPP‖L2(E,µ) ≤ 1}.

Given ε > 0, it suffices to prove that there exists Cε > 0 such that

‖ωdegPP‖E ≤ Cε(1 + ε)degP , ∀P ∈ F .

Fix P ∈ F and choose ε′ > 0 such that (1 + ε′)2 < 1 + ε. By assumption
we can choose a closed subset Eε′ ⊂ E satisfying (a)–(c). Thus, there exists
Cε′ > 0 such that

(6) ‖ωdegPP‖Eε′ ≤ Cε′(1 + ε′)degP ‖ωP‖Eε′ ≤ Cε′(1 + ε′)degP .

It follows that
1

degP
log
|P |
Cε′
≤ Q+ log(1 + ε′) on Eε′ .
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This implies
1

degP
log
|P |
Cε′
≤ VEε′ ,Q + log(1 + ε′) on Cn.

Therefore

|ω(z)degPP (z)| ≤ Cε′(ω(z)e
VEε′ ,Q

(z)
)degP (1 + ε′)degP , ∀z ∈ Cn.

In particular, in view of (b),

(7) |ω(z)degPP (z)| ≤ Cε′(1 + ε′)2 degP = Cε′(1 + ε)degP , ∀z ∈ E \ Eε′ .
Combining (6) and (7) we complete the proof.

Using the above result, we deal with the case where ω is assumed to
satisfy the strong growth condition of Bloom and Levenberg.

Corollary 4.2. Suppose that there exists a sequence rj ↑ ∞ such that
(E ∩B(0, rj), µ, ω) has the Bernstein–Markov property for every j and

lim
|z|→∞

|z|ω(z) = 0.

Then (E,µ, ω) has the Bernstein–Markov property.

Proof. Fix ε > 0.We can choose a > 0 large enough such that E∩B(0, a)
is non-pluripolar. Then for every r > a we have

V ∗E∩B(0,r),Q(z) ≤ V ∗E∩B̄(0,a),Q(z) ≤ log+ |z|+M on Cn,

where M > 0 is a constant independent of r. Note that, by assumption,

lim
|z|→∞

(Q(z)− log |z|) = +∞.

Therefore, we may choose j large enough such that

VE∩B(0,rj),Q(z) ≤ Q(z) + log(1 + ε), ∀|z| > rj .

By Proposition 4.1 we get the desired conclusion.

We have the following simple consequence.

Corollary 4.3. Let ω be an admissible weight on Cn. Let ω′ > 0 be
a usc function on Cn satisfying lim|z′|→∞ ω

′(z) = 0. Then for every ε > 0,
there exists a constant Cε > 0 such that for every polynomial P of degree d,

|ω(z)dP (z)| ≤ Cε(1 + ε)d
‖ω′d‖L2(Cn,dλ2n)

ω′(z)d
‖ωdP‖L2(Cn,dλ2n), ∀z ∈ Cn,

where dλ2n is the Lebesgue measure on Cn.
Proof. We set ω′′ := ωω′. Then ω′′ is an admissible weight on Cn and

lim
|z|→∞

|z|ω′′(z) = 0.

By Theorem 2.2, the triple (B(0, j), dλ2n, ω
′′) has the Bernstein–Markov

property for every j. Thus, by Corollary 4.2, so does (Cn, dλ2n, ω
′′). Hence
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there exists a constant Cε > 0 such that for every polynomial P of degree d
we have

‖ω′′dP‖Cn ≤ Cε(1 + ε)d‖ω′′P‖L2(Cn,dλ2n)

≤ Cε(1 + ε)d‖ω′d‖L2(Cn,dλ2n)‖ωdP‖L2(Cn,dλ2n).

Here we use the Cauchy–Schwarz inequality in the last line. After rearrang-
ing, the desired estimate follows.

We now give a characterization for the regularity of the compact set Z̄
defined in Theorem 3.1.

Proposition 4.4. Let E be a closed, non-pluripolar subset in Cn, and
ω be an admissible weight on E. Then the following two assertions are equiv-
alent:

(a) V ∗E,Q ≤ Q∗ on ECPn .

(b) Z̄ is regular.

Proof. (a)⇒(b). Since V ∗
Z̄

= V ∗Z , it is enough to prove V ∗Z = 0 on Z̄.
Take (w, ξ) ∈ Z and an arbitrary sequence (tkzk, tk)→ (w, ξ). According to
Bloom’s formula (1), it suffices to prove that

lim
k→∞

[V ∗E,Q(zk) + log |tk|] ≤ 0.

For this, choose a sequence (t′kz
′
k, t
′
k) ∈ Z such that (t′kz

′
k, t
′
k)→ (w, ξ). There

are two cases to be considered.

Case 1: ξ 6= 0. We have z′k → w/ξ, zk → w/ξ, t′k → ξ, tk → ξ. It follows
that

lim
k→∞

[V ∗E,Q(zk)+log |tk|] = lim
k→∞

[V ∗E,Q(zk) + log |t′k|]

= lim
k→∞

[V ∗E,Q(zk)−Q(z′k)]≤V ∗E,Q(w/ξ)−Q∗(w/ξ)≤0.

Case 2: ξ = 0. If w = 0 we have limk→∞[ln+ |zk|+ ln |tk|] = −∞. Since
V ∗E,Q ∈ L+, there exists a constant C such that V ∗E,Q(z) ≤ log+ |z| + C. It
follows that

lim
k→∞

[V ∗E,Q(zk) + log |tk|] ≤ lim
k→∞

[log+ |zk|+ C + log |tk|] = −∞.

Now we consider the case w 6= 0. We may assume that w1 6= 0. Write
zk = (zk,1, . . . , zk,n) and z′k = (z′k,1, . . . , z

′
k,n). Since (t′kz

′
k, t
′
k) → (w, 0) and

(tkzk, tk)→ (w, 0) we obtain

[1 : z′k,1 : . . . : z′k,n]→ [0 : w1 : . . . : wn] ∈ ECPn ,

[1 : zk,1 : . . . : zk,n]→ [0 : w1 : . . . : wn],

and
lim
k→∞

[log |z′k|+ log |tk|] = lim
k→∞

[log |zk|+ log |tk|] = log |w|.
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Thus we get the following string of estimates:

lim
k→∞

[V ∗E,Q(zk) + log |tk|] ≤ lim
k→∞

[V ∗E,Q(zk) + 1
2 log(1 + |zk|2) + log |tk|]

≤ lim
k→∞

[V ∗E,Q(zk) + log |w|]

≤ lim
k→∞

[V ∗E,Q(zk) + 1
2 log(1 + |z′k|2) + log |t′k|]

≤ lim
k→∞

[V ∗E,Q(zk)−Q(z′k)]

≤ VE,Q
∗
([0 : w])−Q∗([0 : w]) ≤ 0.

(b)⇒(a). This can be proved by reversing the above reasoning. The de-
tails are omitted.

We come to the main result of the section.

Theorem 4.5. Let E be a closed, non-pluripolar subset of Cn and ω be
an admissible weight on E. Assume that:

(a) ω(z) > 0 for every z ∈ E.
(b) V ∗E,Q ≤ Q∗ on ECPn.
(c) There exists a constant T > 0 such that for every ε > 0 and every

Borel set X such that µ(X) = 0 and

X ⊂
{
z ∈ E : lim

r→0+

µ({w ∈E ∩ B(z, r) : (1+ε)ω(w) > ω(z)})
rT

= 0

}
we have V ∗E,Q = V ∗E\X,Q.

Then the triple (E,µ, ω) has the Bernstein–Markov property.

Remarks. (i) We do not assume continuity of ω on E.
(ii) It follows from Proposition 4.4 that (b) is equivalent to regularity of

the compact set Z̄ defined in Theorem 3.1.
(iii) According to the auxiliary Lemma 4.6 below, if a set X as in (c) is

pluripolar then V ∗E,Q = V ∗E\X,Q.

Lemma 4.6. Let E be a non-pluripolar, Borel subset of Cn and ω be an
admissible weight on E. Then:

(a) If F2 ⊂ F1 and F1 \ F2 is pluripolar then V ∗F1,Q
= V ∗F2,Q

.
(b) For every sequence Fk ↑ F such that F is not pluripolar we have

V ∗Fk,Q ↓ V
∗
F,Q.

The proof that follows is inspired by [CKL, pp. 265–266].

Proof. (a) By Siciak’s theorem (Theorem 5.2.4 in [Kl]), we can find ϕ ∈ L
such that ϕ = −∞ on F1 \ F2. By subtracting a large constant from ϕ we
may achieve further that ϕ ≤ Q on F1. Let u ∈ L be such that u ≤ Q on F2.
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Fix ε > 0. Then
(1− ε)u+ εϕ ≤ Q on F1.

This implies that

(1− ε)u(z) + εϕ(z) ≤ V ∗F1,Q(z), ∀z ∈ Cn.

By letting ε→ 0 we obtain

u ≤ V ∗F1,Q on Cn \ {z : ϕ(z) = −∞}.

It follows that u ≤ V ∗F1,Q
everywhere on Cn. Therefore V ∗F2,Q

≤ V ∗F1,Q
. Since

the reverse inequality is trivial, the proof is complete.
(b) Set u := limk→∞ V

∗
Fk,Q

. Clearly u ∈ L+ and u ≥ V ∗F,Q. By Bedford–
Taylor’s theorem on negligible sets, we can find pluripolar sets Xk such that

V ∗Fk,Q = VFk,Q ≤ Q on Fk \Xk.

Set X :=
⋃
Xk. Then X is pluripolar and u ≤ Q on F \X. By (a) we have

u ≤ V ∗F\X,Q = V ∗F,Q.

Thus u = V ∗F,Q. The proof is complete.

Proof of Theorem 4.5. In view of assumption (c), by replacing T by T+1,
we may achieve that for every ε > 0 and a Borel set X ⊂ E \ G such that
µ(X) = 0, where

G :=

{
z ∈ E : lim

r→0+

µ({w ∈ E ∩ B(z, r) : (1 + ε)ω(w) > ω(z)})
rT

≥ 2

}
,

we have V ∗E,Q = V ∗E\X,Q. Now assume that (E,µ, ω) does not have the
Bernstein–Markov property. Then we can find ε0 > 0 and a sequence of
polynomials {Pj} with deg Pj = dj such that

‖ωdjPj‖E ≥ j2(1 + ε0)(T+2)dj‖ωdjPj‖L2(E,µ).

Define

Qj :=
Pj

j‖ωdjPj‖L2(E,µ)

.

It follows that

‖ωdjQj‖E ≥ j(1 + ε0)(T+2)dj , ‖ωdjQj‖L2(E,µ) = 1/j.

We define
Fk :=

{
z ∈ E : sup

j≥1
|ω(z)djQj(z)| ≤ k

}
.

Note that Fk is a sequence of Borel sets increasing to

F :=
{
z ∈ E : sup

j≥1
|ω(z)djQj(z)| <∞

}
.
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Since E is non-pluripolar, we infer V ∗E,Q ∈ L+. Next, we observe that for
every k ≥ 1,

µ(E \ F ) ≤ µ(E \ Fk) ≤
∑
j≥1

µ(z : |ωdjQj | ≥ k) ≤ 1

k2

∑
j≥1

1

j2
.

It follows that µ(E \ F ) = 0. Next, we define

Gk = {z ∈ E ∩B(0, k) : µ({w ∈ E ∩B(z, r) : (1 + ε0)ω(w)/ω(z) > 1}) ≥ rT ,
∀0 < r ≤ 1/k}.

Then {Gk} is an increasing family of Borel sets satisfying G ⊂
⋃
k≥1Gk.

Combining this inclusion with Lemma 4.6(b), from assumption (c) we obtain

V ∗Fk∪Gk,Q ↓ V
∗
F∪G,Q = V ∗E,Q.

It follows that
V ∗Fk∪Gk,Q ↓ V

∗
E,Q.

Moreover, from assumption (b) and Dini’s theorem, there exists k0 such that

V ∗Fk0∪Gk0 ,Q
≤ Q∗ + log(1 + ε0)

on ECPn . In particular,

(8) V ∗Fk0∪Gk0 ,Q
(z) ≤ Q(z) + log(1 + ε0), ∀z ∈ E.

By the weighted Bernstein–Walsh inequality we get, for every polynomial P
with d = degP ,

‖ωdP‖E ≤ (1 + ε0)d‖ωdP‖Fk0∪Gk0 .

Since ‖ωdjQj‖Fk0 ≤ k0, by the choice of Qj we obtain, for every j ≥ k0,

j(1 + ε0)(T+2)dj ≤ ‖ωdjQj‖E ≤ (1 + ε0)dj‖ωdjQj‖Gk0 .
It follows that for j ≥ k0,

‖ωdjQj‖Fk0 ≤ ‖ω
djQj‖Gk0 .

Next, we claim that there exist δ0 > 0 such that for every z ∈ Gk0 ,
(9) sup

B(z,δ0)
V ∗Fk0∪Gk0 ,Q

≤ Q(z) + 2 log(1 + ε0).

Assume otherwise; then we can find sequences {zj} ⊂ Gk0 and {wj} ⊂
B(zj , 1/j) such that zj → a ∈ E and

V ∗Fk0∪Gk0 ,Q
(wj) > Q(zj) + 2 log(1 + ε0).

Letting j → ∞ we get V ∗Fk0∪Gk0 ,Q(a) ≥ Q(a) + 2 log(1 + ε0). This is a
contradiction to (8).

Given a polynomial Qj and distinct points z ∈ Gk0 , w ∈ B(z, δ0/2), fol-
lowing the argument in [Bl1], we will estimate the quantity |Qj(z)−Qj(w)|.
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Let e = (e1, . . . , en) := (w − z)/|w − z| and
Q̃j(t) = Qj(z1 + e1t, . . . , zn + ent).

Then Q̃j is a polynomial on C. By the infinitesimal increment theorem we get

|Qj(w)−Qj(z)| = |Q̃j(|w − z|)− Q̃j(0)| ≤ |w − z| ‖Q̃′j‖|t|≤δ0/2.
Moreover, by Cauchy’s inequality for derivative, we have

‖Q̃′j‖|t|≤δ0/2 ≤
2

δ0
‖Qj‖|t|≤δ0 ≤

2

δ0
‖Qj‖B(z,δ0).

Putting these together we obtain

|Qj(w)−Qj(z)| ≤
2

δ0
|w − z| ‖Qj‖B(z,δ0).

Using again the weighted Bernstein-Walsh inequality and (9), we get for
every z ∈ Gk0 and j ≥ k0 the estimates

‖Qj‖B(z,δ0)≤‖ωdjQj‖Fk0∪Gk0e
dj supB(z,δ0) VFk0∪Gk0 ,Q≤ (1 + ε0)2dj

ω(z)dj
‖ωdjQj‖Gk0 .

This implies that for every z ∈ Gk0 and w ∈ B(z, δ0/2),

(10) |Qj(w)−Qj(z)| ≤
2(1 + ε0)2dj

δ0ω(z)dj
|w − z| ‖ωdjQj‖Gk0 .

For j ≥ k0, we set rj := δ0/(8(1 + ε0)2dj ). By shrinking δ0, we may obtain
rj < 1/k0. Choose ξj ∈ Gk0 such that

(11) ω(ξj)
dj |Qj(ξj)| ≥ 1

2‖ω
djQj‖Gk0 .

For j ≥ 1 we set
Zj := {w ∈ E ∩ B(ξj , rj) : (1 + ε0)ω(w) > ω(ξj)}.

Then µ(Zj) ≥ rTj for every j ≥ 1. Combining (10) and (11), we have
1

j2
=

�

E

ω2dj (w)|Qj(w)|2 dµ(w) ≥
�

Zj

ω(w)2dj |Qj(w)|2 dµ(w)

≥ ω(ξj)
2dj

(1 + ε0)2dj

�

Zj

[
|Qj(ξj)|2

2
− |Qj(w)−Qj(ξj)|2

]
dµ(w)

≥ ‖ωdjQj‖2Gk0

(
1

8(1 + ε0)2dj
− 4

δ2
0

r2
j (1 + ε0)2dj

)
µ(Zj)

= ‖ωdjQj‖2Gk0
µ(Zj)

16(1 + ε0)2dj
≥ ‖ωdjQj‖2Gk0

rTj

16(1 + ε0)2dj

= ‖ωdjQj‖2Gk0
δT0

16 · 8T (1 + ε0)2(T+1)dj
≥ j2 δT0

16 · 8T
.

By letting j →∞ we get a contradiction. The proof is complete.
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By specifying to the case of ω continuous, we have the following conse-
quence of Theorem 4.5.

Corollary 4.7. Let E be a closed, non-pluripolar subset of Cn, ω be an
admissible weight on E, and µ be a positive Borel measure on E. Assume
that:

(a) ECPn is locally regular.
(b) Q is continuous on E and the limit limw→z[Q(w) − 1

2 log(1 + |w|2)]

exists for all z ∈ ECPn\E.
(c) There exists a constant T > 0 such that for every Borel set X such

that

X ⊂ F :=

{
z ∈ E : lim

r→+0

µ(E ∩ B(z, r))

rT
= 0

}
and µ(X) = 0 we have V ∗E,Q = V ∗E\X,Q.

Then the triple (E,µ, ω) has the Bernstein–Markov property.

Proof. From (b) it follows that Q is continuous on ECPn . We have

V ∗E,Q = (sup{ψ(z) : ψ ∈ PSH(CPn, θ), ψ ≤ Q on ECPn})∗.

From (a) we get V ∗E,Q ≤ Q on ECPn . Finally, since ω is continuous on E we
deduce that for every ε > 0 and z ∈ E,

(1 + ε)ω(w) > ω(z), ∀w ∈ E ∩ B(z, r)

for r small enough. This implies that µ satisfies condition (c) of Theorem
4.4. By invoking that result, we conclude the proof.

Remark. Condition (c) holds if either µ is determining for (E,ω) or the
set F is pluripolar.

In the result below, we deal with the case where E is not assumed to be
regular. For simplicity, we only consider the case of w = 1 and E compact.

Proposition 4.8. Let E be a non-pluripolar compact subset of Cn, and
µ be a determining measure for E. Let M := e‖V

∗
E‖E . Then for every λ > M ,

there exists a constant C(λ) > 0 such that for every polynomial P of degree d,

‖P‖E ≤ C(λ)λd‖P‖L2(E,µ).

Proof. By Bedford–Taylor’s theorem on negligible sets, the set F :=
{z ∈ E : V ∗E > 0} is pluripolar. Thus there exists a plurisubharmonic func-
tion ϕ on Cn such that

F ⊂ F ′ := {z ∈ E : ϕ = −∞}.
Let Ej := {z ∈ E : ϕ(z) ≥ −j} and

ε := λe−M − 1, ε′ :=
√

1 + ε− 1.
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Observe that
V ∗Ej ↓ V

∗
E\F ′ = V ∗E .

Thus we can find j(ε) large enough such that

(12) V ∗Ej(ε)(z) ≤M + log(1 + ε′), ∀z ∈ E.

We claim that there exists a constant C > 0 such that for every polyno-
mial P of degree d we have

(13) ‖P‖Ej(ε) ≤ C(1 + ε′)d‖P‖L2(E,µ).

Suppose the above claim is false. Then there exists a sequence of polynomials
{Pk} with deg Pk = dk such that

(14) ‖Pk‖Ej(ε) ≥ k(1 + ε′)dk , ‖Pk‖L2(E,µ) = 1/k.

By a measure-theoretic argument as in the proof of Theorem 4.4 we have
µ(E \ E′) = 0, where

E′ =
⋃
m≥1

Em, Em := {z ∈ E : sup
k≥1
|Pk(z)| ≤ m}.

Since µ is determining we get V ∗E = V ∗E′ . It follows that

V ∗Em ↓ V
∗
E′ = V ∗E = 0 on Ej(ε).

Thus, by Dini’s theorem, we can find m0 such that V ∗Em0
≤ log(1 + ε′) on

Ej(ε). This implies that

1

dk
log
|Pk(z)|
m0

≤ log(1 + ε′), ∀k,∀z ∈ Ej(ε).

By letting k →∞ we get a contradiction to (14).
Finally, we combine (12), (13) and use Bernstein-Walsh’s inequality to

obtain, for a polynomial P of degree d, a string of inequalities

‖P‖E ≤ eM (1+ε′)d‖P‖E(j(ε) ≤ C[eM (1+ε′)2]d‖P‖L2(E,µ) = Cλd‖P‖L2(E,µ).

Here we use the choice of ε and ε′ in the last identity. The proof is complete.

In the rest of this section, following the work of Bloom and Shiffman
[BSh], we give an application of the weighted Bernstein–Walsh property to
Bergman kernels. We assume that E is a closed, non-pluripolar subset of Cn,
µ is a finite positive Borel measure on E and ω > 0 is a continuous admissible
weight on E such that Z̄ is regular in Cn+1, where

Z := {(tz, t) : z ∈ E, |t| = ω(z)}.
For d ≥ 1, we let Pd be the linear space of homogeneous polynomials
of degree ≤ d in Cn. Then Pd ⊂ L2(E,µ). We also note that dimPd =

(n+ d)!/(n!d!) := Nd. Let {q
(d)
j }1≤j≤Nd be an orthonormal basis of Pd with
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respect to the weighted inner product

〈p, q〉 :=
�

E

ω2dpq̄ dµ, ∀p, q ∈ Pd.

Define
Kµ,ω
d (z, z) :=

∑
1≤j≤Nd

|q(d)
j (z)|2.

We cannot claim much originality for the next result.

Theorem 4.9. Assume that (E,µ, ω) has the Bernstein–Markov prop-
erty. Then

lim
d→∞

1

2d
logKµ,ω

d (z, z) = VE,Q(z)

locally uniformly on Cn.

The proof of the above theorem is completely similar to that of Lemma
3.4 in [BSh] provided that the following extension of Lemma 3.2 of [BSh] is
true.

Lemma 4.10. The sequence 1
d logΦE,Q,d converges to VE,Q locally uni-

formly on Cn, where

ΦE,Q,d(z) := sup{|P (z)| : ‖ωdegPP‖E ≤ 1, P ∈ Pd}.

Proof. The above lemma was proved in [BSt] in a much more general
setting. For the reader’s convenience we give a more elementary proof. First,
we apply a result of Siciak (see [Kl, Theorem 5.1.7]) to obtain

VZ̄(z̃) = sup

{
1

deg P̃
log |P̃ (z̃)| : ‖P̃‖Z̄ ≤ 1, P ∈ C[z1, . . . , zn+1]

}
for all z̃ ∈ Cn+1. Since Z̄ is circular, by the argument in the proof of Propo-
sition 3.2, we get

VZ̄(z̃) = sup

{
1

d
log |P̃ (z)| : ‖P̃‖Z̄ ≤ 1, P̃ ∈ P̃d

}
,

where P̃d is the set of homogeneous polynomials of degree ≤ d on Cn+1. Let

ΨZ̄,d(z̃) := sup{|P̃ (z̃)| : ‖P̃‖Z̄ ≤ 1, P̃ ∈ P̃d}.

Since Z̄ is regular, by the proof of Theorem 3.2 of [BSh] and Proposition
3.2(b) we have 1

d logΨZ̄,d → VZ̄ = VZ locally uniformly on Cn+1.
Now assume the conclusion of the lemma is false. Then, since 1

d logΦE,Q,d
≤ VE,Q on Cn there exist ε0 > 0, a sequence of points zk → ξ ∈ Cn, and a
sequence of positive integers dk ↑ ∞ such that

(15) ΦE,Q,dk(zk) < edk(VE,Q(zk)−ε0).
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We choose t0 > 1 such that

log t0 + VE,Q(zk) > 0, ∀k ≥ 1.

By Bloom’s formula (1) we have

VZ(t0zk, t0) = max{VE,Q(zk) + log t0, 0} = VE,Q(zk) + log t0.

Then we have
1

d
logΨZ̄,d → VE,Q(z) + log t0 uniformly on K ′ := {(t0zk, t0) : k ≥ 1}.

Thus for k large enough we have

(16)
1

dk
logΨZ̄,dk(t0zk, t0) ≥ VE,Q(zk) + log t0 − ε0/2.

It follows from (15) that

ΨZ̄,dk(t0zk, t0) = sup{|t0|degP |P (zk)| : ‖ωdegPP‖E ≤ 1, P ∈ Pdk}

≤ |t0|dkedk(VE,Q(zk)−ε0).

We get a contradiction to (16) for k large enough. The proof is complete.
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