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Heights of squares of
Littlewood polynomials and infinite series

by Artūras Dubickas (Vilnius)

Abstract. Let P be a unimodular polynomial of degree d − 1. Then the height
H(P 2) of its square is at least

√
d/2 and the product L(P 2)H(P 2), where L denotes the

length of a polynomial, is at least d2. We show that for any ε > 0 and any d ≥ d(ε)
there exists a polynomial P with ±1 coefficients of degree d − 1 such that H(P 2) <
(2 + ε)

√
d log d and L(P 2)H(P 2) < (16/3 + ε)d2 log d. A similar result is obtained for

the series with ±1 coefficients. Let Am be the mth coefficient of the square f(x)2 of a
unimodular series f(x) =

∑∞
i=0 aix

i, where all ai ∈ C satisfy |ai| = 1. We show that then
lim supm→∞ |Am|/

√
m ≥ 1 and that there exist some infinite series with ±1 coefficients

and an integer m(ε) such that |Am| < (2 + ε)
√
m logm for each m ≥ m(ε).

1. Introduction. Let

P (x) = a0 + a1x+ · · ·+ ad−1x
d−1 ∈ C[x], ad−1 6= 0,

be a polynomial of degree d−1. Its height is defined by the formula H(P ) :=

max0≤i≤d−1 |ai| and its length by L(P ) :=
∑d−1

i=0 |ai|. A polynomial is called
unimodular if ai ∈ C and |ai| = 1 for each i = 0, . . . , d−1. We denote the set
of unimodular polynomials of degree d−1 by Ud. Its subset Ld of Littlewood
polynomials of degree d − 1 consists of polynomials with coefficients in the
set {−1, 1}.

An old conjecture of Littlewood [19] is that there exist two positive
constants c1, c2 and infinitely many d ∈ N such that for some P ∈ Ld we
have

(1) c1
√
d < |P (z)| < c2

√
d

for all z on the unit circle. Körner [18] proved that this is true for some
infinite sequence of P ∈ Ud and Kahane [17] showed that there exists P ∈ Ud
for which the above inequality holds with c1 = 1−ε and c2 = 1+ε provided
d is large enough. Some further results in this direction have been obtained
by Beck [1]. However, the conjecture of Erdős [11] that the constant c2
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cannot be arbitrarily close to 1 for P ∈ Ld remains open (see [22], but
also [23] for a disproof of the main result given in [22]). As for Littlewood’s
conjecture, the Rudin–Shapiro polynomials (whose coefficients satisfy a0 = 1,
a2n = an, a2n+1 = (−1)nan for n ≥ 0; see [7] and the sequence A020985 in
the Online Encyclopedia of Integer Sequences) satisfy the upper bound in
(1) with c2 =

√
2 when d is a power of 2. No infinite sequence of Littlewood

polynomials for which the lower bound (1) holds is known. In this direction,
Clunie [9] gave an example showing that the lower bound in (1) is satisfied

for some polynomial
∑d−1

i=0 aix
i with |ai| ≤ 1.

One can also investigate how flat a Littlewood polynomial on the unit
circle is with respect to other norms. Write

‖P‖s :=
( 1�

0

|P (e2πiθ)|s dθ
)1/s

for the Ls-norm of P over unit circle. Clearly, the function s 7→ ‖P‖s is
nondecreasing in s. In particular, ‖P‖0 is the Mahler measure of P , ‖P‖∞ =
sup|z|=1 |P (z)| and

M(P ) < ‖P‖2 < ‖P‖s < ‖P‖∞
for every P ∈ Ld with d ≥ 2, and every s satisfying 2 < s <∞. The problems
on whether the quotients ‖P‖2/‖P‖0 and ‖P‖4/‖P‖2 are bounded away
from 1 or not are known as Mahler’s problem and the merit factor problem
of Golay, respectively (see, e.g., [6] and [16] for two surveys describing the
current status of the merit factor problem).

Let us consider the squares of polynomials P from Ld and Ud. For any
given polynomial P (x) =

∑d−1
j=0 ajx

j , we shall write P (x)2 =
∑2d−2

j=0 Ajx
j .

With this notation, for each P ∈ Ud, by Parseval’s formula, we have

‖P‖22 =

1�

0

|P (e2πiθ)|2 dθ =
d−1∑
j=0

|aj |2 = d

and

‖P‖44 =

1�

0

|P (e2πiθ)|4 dθ =

1�

0

|P (e2πiθ)2|2 dθ =
2d−2∑
j=0

|Aj |2 ≤ L(P 2)H(P 2).

Hence

(2) L(P 2)H(P 2) ≥ (‖P‖4/‖P‖2)4d2.

The merit factor MF(P ) of a Littlewood polynomial can be defined by the
equality

‖P‖44 = ‖P‖42
(

1 +
1

MF(P )

)
= d2

(
1 +

1

MF(P )

)
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(see [6]). So (2) yields

L(P 2)H(P 2) ≥
(

1 +
1

MF(P )

)
d2.

It is known that lim supd→∞MF(P ), where P ∈ Ld, is at least 6 (see
[13], [15]). The conjecture in [15] that 6 is the optimal bound is still
open, although there is some computational evidence against it [4]. Of
course, if proved, this conjecture would give a better bound, but even if
lim supd→∞MF(P ) =∞, from ‖P‖4 > ‖P‖2 when d ≥ 2 and inequality (2)
we obtain

L(P 2)H(P 2) > d2

for each d ≥ 2. From L(P 2) ≤ (2d− 1)H(P 2) < 2dH(P 2) we further get

H(P 2) >
√
d/2

for d ≥ 1. By the same argument, L(P k)H(P k) ≥ (‖P‖2k/‖P‖2)2kdk for
each integer k ≥ 2 and each P ∈ Ud, d ≥ 2, hence

L(P k)H(P k) > dk and H(P k) >
√
dk−1/k.

How small can the quantities H(P 2) and L(P 2)H(P 2) (and more gener-
allyH(P k) and L(P k)H(P k)) be when P ∈ Ld? The question concerning the
size of H(P 2) for P ∈ Ld has been raised in [2]. The present author observed

that the Fekete type Littlewood polynomials P (x) =
∑d−1

i=0

(
i+1
p

)
xi ∈ Ld,

where p is a prime number satisfying 2d + 1 ≤ p < 4d + 2 and
(
i
p

)
is the

Legendre symbol, give the bound

H(P 2) < c
√
d log d

(see Theorem 2 in [10]). The next result improves this bound by a factor of√
log d, but still leaves the gap of order

√
log d between the lower and upper

bounds.

Theorem 1.1. For each ε > 0 there is a constant d(ε) such that for
every integer d ≥ d(ε) there is a Littlewood polynomial P ∈ Ld for which

H(P 2) < (2 + ε)
√
d log d and L(P 2)H(P 2) < (16/3 + ε)d2 log d.

Similar questions can also be asked for infinite series. Let U∞ be the col-
lection of all series

∑∞
i=0 aix

i, where ai, i = 0, 1, 2, . . . , are complex numbers
satisfying |ai| = 1, and let L∞ be the subset of U∞ consisting of the series∑∞

i=0 aix
i with ai ∈ {−1, 1} for i = 0, 1, 2, . . . .

Theorem 1.2. For f(x) =
∑∞

i=0 aix
i ∈ U∞, let f(x)2 =

∑∞
i=0Aix

i, i.e.,
Am =

∑m
j=0 ajam−j for m ≥ 0. Then

lim sup
m→∞

|Am|/
√
m ≥ 1
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for every f(x) ∈ U∞. On the other hand, for each ε > 0 there exist a
positive integer m(ε) and a series f(x) ∈ L∞ such that for every integer
m ≥ m(ε),

|Am| < (2 + ε)
√
m logm.

We prove Theorem 1.1 and obtain the upper bound in Theorem 1.2 by a
probabilistic method. In this context this approach goes back to Erdős. One
should also mention the paper [24] of Salem and Zygmund. More recently, the
behavior of various norms related to polynomials with coefficients restricted
on average has been investigated in [3], [5], [8], [20], [21].

In fact, although most of the Littlewood polynomials and series satisfy
the upper bounds given in Theorems 1.1 and 1.2, we cannot exhibit any
explicit polynomial or series, because the proof is probabilistic. So it would
be of interest to get bounds of the same order for some explicit polynomials
and series.

2. Proof of Theorem 1.1. Consider a random polynomial

P (x) =
d−1∑
i=0

Xix
i,

where X0, X1, . . . , Xd−1 are d independent random variables satisfying

P(Xi = 1) = P(Xi = −1) = 1/2

for each i = 0, . . . , d− 1. Then

P (x)2 =
( d−1∑
i=0

Xix
i
)2

=

2d−2∑
m=0

Zmx
m,

where

(3) Zm := 2
∑

0≤k<m/2

XkXm−k +X2
m/2

for 0 ≤ m ≤ d− 1 and Xm/2 = 0 for m odd. (Accordingly, X2
m/2 = 1 for m

even.) Similarly,

(4) Zm := 2
∑

m/2<k≤d−1

XkXm−k +X2
m/2

for d− 1 < m ≤ 2d− 2.
Let Y1, . . . , Ys be s independent random variables such that P(Yi ∈

[ai, bi]) = 1 for i = 1, . . . , s. Set Y := Y1 + · · · + Ys and write E(Y ) for
the expected value of Y . Then, by Hoeffding’s inequality (see [14]),

P(|Y − E(Y )| ≥ t) ≤ 2 exp

(
− 2t2∑s

i=1(bi − ai)2

)
.
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In particular, in case ai = −1, bi = 1 for i = 1, . . . , s and E(Y ) = 0, we have

(5) P(|Y | ≥ t) ≤ 2 exp

(
− t

2

2s

)
.

Applying inequality (5) to the sum Y :=
∑

0≤k<m/2XkXm−k for m > 0
even, we see that

P(|Zm − 1| ≥ 2t) ≤ 2 exp(−t2/m),

because, by (3), Y = (Zm − 1)/2 contains s = m/2 terms XkXm−k which
are independent random variables, and E(Y ) = 0, since E(XkXm−k) = 0
when 0 ≤ k < m/2. Similarly, for m odd we see that the sum Y = Zm/2
contains s = (m+ 1)/2 terms XkXm−k, thus

P(|Zm| ≥ 2t) ≤ 2 exp(−t2/(m+ 1)).

Combining both these inequalities we find that

(6) P(|Zm| ≥ 2t+ 1) ≤ 2 exp(−t2/(m+ 1))

for 1 ≤ m ≤ d− 1. By the same argument, from (4) and (5) we obtain

(7) P(|Z2d−2−m| ≥ 2t+ 1) ≤ 2 exp(−t2/(m+ 1))

for 1 ≤ m < d− 1.

Now, select

t := (1 + ε/2)
√
m logm− 1/2,

so that 2t+ 1 = (2 + ε)
√
m logm. Then t2 > (1 + ε)(m+ 1) logm for each m

in the range c1(ε) ≤ m ≤ d− 1, where c1(ε) is a positive integer depending
on ε only. Hence, by (6) and (7), the inequalities

P(|Zm| ≥ (2 + ε)
√
m logm) < 2m−1−ε,(8)

P(|Z2d−2−m| ≥ (2 + ε)
√
m logm) < 2m−1−ε

hold for every m in the interval c1(ε) ≤ m ≤ d−1. It follows that the reverse
inequalities

(9) |Zm| < (2 + ε)
√
m logm

for m from c1(ε) to d− 1 and

(10) |Z2d−2−m| < (2 + ε)
√
m logm

for m from c1(ε) to d− 2 hold with probability at least

(11) 1− 4

d−1∑
m=c1(ε)

m−1−ε > 1− 4

∞∑
m=c1(ε)

m−1−ε > 0.9

if c1(ε) is large enough.
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Hence, by increasing c1(ε) if necessary (to be sure that (11) is true), we
conclude that there is a positive constant M = M(ε) and some Littlewood

polynomial P of degree d− 1 such that P (x)2 =
∑2d−2

m=0 Zmx
m and inequali-

ties (9), (10) hold for its coefficients Zm when M ≤ m ≤ 2d− 2−M . (Here,
Zm are integers.) Obviously, as the moduli of the coefficients of P are at
most 1, we have |Zm| ≤ m + 1 for 0 ≤ m < M and |Z2d−2−m| ≤ m + 1 for
0 ≤ m < M . Therefore,

H(P 2) ≤ max(M, (2 + ε)
√

(d− 1) log(d− 1)) < (2 + ε)
√
d log d

for each sufficiently large d. This proves the first inequality of the theorem.

For the same polynomial P , in view of (9), (10), we also have

L(P 2) < 2(1 + 2 + · · ·+M) + 2(2 + ε)
d−1∑
m=M

√
m logm.

Hence

L(P 2) < (8/3 + 2ε)d3/2
√

log d

for each sufficiently large d. Multiplying this inequality with that for H(P 2)
we derive that

L(P 2)H(P 2) < (8/3 + 2ε)(2 + ε)d2 log d < (16/3 + 9ε)d2 log d

for 0 < ε < 1 and d large enough, which completes the proof of Theorem 1.1
(with the initial ε replaced by ε/9).

3. Proof of Theorem 1.2. The proof of the second statement of Theo-
rem 1.2 is essentially the same as that of the first statement of Theorem 1.1.
Consider the random series

f(x) =

∞∑
i=0

Xix
i,

where X0, X1, X2, . . . are independent random variables satisfying

P(Xi = 1) = P(Xi = −1) = 1/2

for each i = 0, 1, 2, . . . . Then

f(x)2 =
( ∞∑
i=0

Xix
i
)2

=
∞∑
m=0

Zmx
m,

where Zm are given in (3). As above, we find that inequality (8) holds for
each m ≥ c1(ε). So the series

∞∑
m=c1(ε)

P(|Zm| ≥ (2 + ε)
√
m logm) ≤ 2

∞∑
m=c1(ε)

m−1−ε



Squares of Littlewood polynomials 151

are convergent. By the Borel–Cantelli lemma, there is an integer m(ε) such
that the probability of the event that |Zm| < (2 + ε)

√
m logm for m =

m(ε),m(ε) + 1, . . . is equal to 1. In particular, there exists a series f(x) =∑∞
i=0 aix

i ∈ L∞ such that the coefficients of the series f(x)2 =
∑∞

i=0Aix
i

satisfy |Am| < (2 + ε)
√
m logm for every m ≥ m(ε).

To prove the first part of Theorem 1.2 we assume, for a contradiction,
that there exist a series f(x) =

∑∞
i=0 aix

i ∈ U∞, a positive number ε, and

an integer M such that f(x)2 =
∑∞

i=0Aix
i and

|Am| < (1− ε)
√
m

for each m ≥M . Note that |Am| = |
∑m

i=0 aiam−i| ≤
∑m

i=0 |aiam−i| = m+ 1
for every m ≥ 0, because |ai| = 1 for i ≥ 0. By Parseval’s formula, for every
r satisfying 0 < r < 1, so, in particular, for

(12) r =
√

1− ε/M,

we obtain
1�

0

|f(e2πiθr)|2 dθ =
∞∑
j=0

|aj |2r2j =
∞∑
j=0

r2j =
1

1− r2
.

This does not exceed( 1�

0

|f(e2πiθr)2|2 dθ
)1/2

=
( ∞∑
j=0

|Aj |2r2j
)1/2

.

Estimating |Aj |2 ≤ (1− ε)2(j + 1) for j ≥M and

|Aj |2 ≤ j + 1 < (1− ε)2(j + 1) + j + 1

for j = 0, 1, . . . ,M − 1, we find that
∞∑
j=0

|Aj |2r2j <
M(M + 1)

2
+
∞∑
j=0

(1− ε)2(j + 1)r2j

=
M(M + 1)

2
+

(1− ε)2

(1− r2)2
.

Consequently,

(13)
1

1− r2
<

(
M(M + 1)

2
+

(1− ε)2

(1− r2)2

)1/2

.

It is clear that M ≥ 1, thus
√
M(M + 1)/2 ≤ M . Hence, applying the

inequality
√
u2 + v2 ≤ u + v for u, v > 0, we see that the right hand side

of (13) does not exceed M + (1 − ε)/(1 − r2). This yields ε/(1 − r2) < M ,
contradicting (12).
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