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On Borel summable solutions of the
multidimensional heat equation

by Sławomir Michalik (Warszawa)

Abstract. We give a new characterisation of Borel summability of formal power
series solutions to the n-dimensional heat equation in terms of holomorphic properties of
the integral means of the Cauchy data. We also derive the Borel sum for the summable
formal solutions.

1. Introduction. We consider the initial value problem for the complex
n-dimensional heat equation

∂tu = ∆u, u(0, z) = ϕ(z),(1.1)

where t ∈ C, z ∈ Cn, ∆ =
∑n

i=1 ∂
2
zi is the complex Laplace operator and ϕ

is holomorphic in a complex neighbourhood of the origin. The unique formal
power series solution of (1.1) is given by

(1.2) û(t, z) =
∞∑
k=0

∆kϕ(z)

k!
tk.

In dimension n = 1 the problem of convergence of the formal solution
(1.2) was already solved by Kovalevskaya [7]. She showed that û is convergent
if and only if the Cauchy data ϕ is an entire function of exponential order at
most 2. In the multidimensional case Aronszajn et al. [1] solved the problem
of convergence of û in terms of the growth of ∆kϕ(z) as k → ∞. Another
approach was given by Łysik [10]. He proved that û is convergent if and only
if the integral mean of ϕ over the closed ball B(x, r), or the sphere S(x, r),
as a function of the radius r extends to an entire function of exponential
order at most 2.

If û diverges, it is natural to ask when it is Borel summable (see Def-
inition 2.2). In the one-dimensional case the answer was given by Lutz et
al. [8]. They proved that û is Borel summable in a direction d if and only
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if ϕ can be analytically continued to infinity in sectors bisected by d/2 and
π + d/2, and the continuation is of exponential order at most 2. This re-
sult has been generalised in various ways. Balser [2] characterised the Borel
summable solutions of (1.1) for the initial data in Gevrey classes. Balser and
Loday-Richaud [5] studied summability properties of formal solutions of the
inhomogeneous heat equation with variable coefficients. The result of Lutz
et al. [8] was extended to quasi-homogeneous equations by Ichinobe [6] and
to general linear partial differential equations in two variables with constant
coefficients by Balser [4] and the author [12]. Moreover, Łysik [9] applied the
result given by Lutz et al. [8] to study summability properties of solutions
of the Burgers equation.

In the case of the multidimensional heat equation, the author [11] proved
that û is Borel summable in a direction d if and only if the function

Φn(t, z) =



�

S(0,1)

ϕ(z + tx) dS(x) if n is odd,

�

B(0,1)

ϕ(z + tx) dx√
1− |x|2

if n is even,

is analytic with respect to z in some complex disc centred at the origin and
can be analytically continued to infinity with respect to t in sectors bisected
by d/2 and π + d/2, and this continuation is of exponential order at most 2
as t→∞.

In the present paper we show that for an arbitrary dimension n, we may
replace the function Φn(t, z) in the above characterisation by the holomor-
phic extension of the integral mean of ϕ over the closed ball B(x, r) or the
sphere S(x, r). The result is based upon mean-value formulas for analytic
functions (see [10, Theorem 3.1]). As an application, we use the procedure
of Borel summability to find the Borel sum u of the formal solution û. As
a result we obtain the representation of the solution u of the problem (1.1)
given by a complex version of the convolution of the initial data ϕ with the
heat kernel.

2. Preliminaries. In the paper we use the following notation. The real
closed ball (sphere, respectively) with centre at x ∈ Rn and radius r > 0 is
denoted by B(x, r) (S(x, r), respectively). Moreover, the complex disc in Cn
with centre at the origin and radius r > 0 is denoted by Dn

r := {z ∈ Cn :
|z| < r}. If the radius r is not essential, then we denote it briefly by Dn.

The Pochhammer symbol is defined for non-negative integers k and com-
plex numbers a as (a)0 := 1 and (a)k := a(a+ 1) · · · (a+ k − 1) for k ∈ N.
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A sector in a direction d ∈ R with an opening ε > 0 in the universal
covering space C̃ of C \ {0} is defined by

S(d, ε) := {z ∈ C̃ : z = reiθ, d− ε/2 < θ < d+ ε/2, r > 0}.
If the value of the opening angle ε is not essential, then we write briefly Sd.
We denote by Ŝ(d, ε) (Ŝd, respectively) the set S(d, ε)∪D1 (Sd∪D1, respec-
tively). Let O(G) denote the space of holomorphic functions on a domain
G ⊆ Cn.

Let us also recall some definitions and fundamental facts about Borel
summability. For more details we refer the reader to [3].

Definition 2.1. A function u(t, z) ∈ O(S(d, ε) ×Dn
r ) is of exponential

growth of order at most s > 0 as t → ∞ in S(d, ε) if and only if for every
r1 ∈ (0, r) and every ε1 ∈ (0, ε) there exist A,B <∞ such that

max
|z|≤r1

|u(t, z)| ≤ AeB|t|s for t ∈ S(d, ε1).

The space of such functions is denoted by Os(S(d, ε) ×Dn
r ). We also write

Os(Ŝ(d, ε) × Dn) (Os(Ŝd × Dn), respectively) for Os(S(d, ε) × Dn) ∩
O(Ŝ(d, ε)×Dn) (Os(Sd ×Dn) ∩ O(Ŝd ×Dn), respectively).

Analogously, a function ϕ ∈ O(S(d, ε)) is of exponential growth of order
at most s > 0 as z → ∞ in S(d, ε) if and only if for every ε1 ∈ (0, ε) there
exist A,B <∞ such that

|ϕ(z)| ≤ AeB|z|s for z ∈ S(d, ε1).

The space of such functions is denoted by Os(S(d, ε)). We also set Os(Ŝd) :=
Os(Sd) ∩ O(Ŝd).

Definition 2.2. Let d ∈ R. A formal series

û(t, z) =

∞∑
j=0

uj(z)

j!
tj with uj ∈ O(Dn)(2.1)

is called Borel summable in the direction d if and only if its Borel transform
B̂û satisfies

(B̂û)(s, z) :=
∞∑
j=0

uj(z)

(j!)2
sj ∈ O1(Ŝ(d, ε)×Dn) for some ε > 0.

The Borel sum uθ of û in the direction d is represented by the Laplace
transform of v(s, z) := (B̂û)(s, z),

uθ(t, z) :=
1

t

∞(θ)�

0

e−s/tv(s, z) ds,

where the integration is taken over any ray eiθR+ := {reiθ : r ≥ 0} with
θ ∈ (d− ε/2, d+ ε/2).
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According to the general theory of moment summability (see [3, Section
6.5]), a formal series (2.1) is Borel summable in a direction d if and only if
the same holds for the series

∞∑
j=0

uj(z)
j!

(2j)!
tj .

Consequently, we obtain a characterisation of Borel summability which is
analogous to Definition 2.2 (see also [3, Theorem 38 and Section 11]).

Proposition 2.3. Let d ∈ R. A formal series (2.1) is Borel summable
in the direction d if and only if its modified Borel transform B̃û satisfies

(B̃û)(s, z) =
∞∑
j=0

uj(z)

(2j)!
sj ∈ O1(Ŝ(d, ε)×Dn) for some ε > 0.

The Borel sum uθ of û in the direction d is represented by the Ecalle accel-
eration operator acting on ṽ(s, z) := (B̃û)(s, z) as follows:

uθ(t, z) =
1√
t

∞(θ)�

0

ṽ(s, z)C2(
√
s/t) d

√
s

with θ ∈ (d− ε/2, d+ ε/2). Here integration is taken over the ray eiθR+ and
C2 is defined by

(2.2) C2(ζ) :=
1

2πi

�

γ

eu−ζ
√
u

√
u

du

with a path of integration γ as in the Hankel integral for the inverse gamma
function (from ∞ along arg u = −π to some u0 < 0, then along the circle
|u| = |u0| to arg u = π, and back to ∞ along this ray).

3. Integral means. In this section we recall the notion of integral
means. To this end we take a continuous function ϕ on a domain Ω ⊂ Rn,
x ∈ Ω and 0 < r < dist(x, ∂Ω). We denote by M(ϕ; r, x) and N(ϕ; r, x)
the integral means of ϕ over the closed ball B(x, r) and the sphere S(x, r),
respectively, i.e.,

M(ϕ; r, x) =
�

B(x,r)

ϕ(y) dy :=
1

α(n)rn

�

B(x,r)

ϕ(y) dy

N(ϕ; r, x) =
�

S(x,r)

ϕ(y) dS(y) :=
1

nα(n)rn−1

�

S(x,r)

ϕ(y) dS(y),
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where α(n) := πn/2/Γ (1+n/2) is the volume of the n-dimensional unit ball
B(0, 1). Moreover, since

M(ϕ; r, x) =
�

B(0,1)

ϕ(x+ ry) dy and N(ϕ; r, x) =
�

S(0,1)

ϕ(x+ ry) dS(y),

we may also consider M(ϕ; t, z) and N(ϕ; t, z) for complex variables t ∈ C
and z ∈ Cn. Hence, according to mean-value properties for analytic functions
we have

Proposition 3.1 ([10, Theorem 3.1]). Let G be a domain in Cn, ϕ ∈
O(G) and z ∈ G. Then M(ϕ; t, z) and N(ϕ; t, z) are holomorphic functions
at the origin as functions of t, and for t small enough,

(3.1) M(ϕ; t, z) =
∞∑
k=0

∆kϕ(z)

4k(n/2 + 1)kk!
t2k, N(ϕ; t, z) =

∞∑
k=0

∆kϕ(z)

4k(n/2)kk!
t2k.

Using the above proposition we find a relation between the two series∑∞
k=0

∆kϕ(z)
(2k)! t

2k and
∑∞

k=0
∆kϕ(z)
(k!)2

t2k and the integral means M(ϕ; t, z) and
N(ϕ; t, z):

Lemma 3.2. Assume that G is a domain in Cn, ϕ ∈ O(G), z ∈ G and t
is small enough. Then

∞∑
k=0

∆kϕ(z)

(2k)!
t2k =

1

n!!
∂t(t

−1∂t)
(n−1)/2tnM(ϕ; t, z)

=
1

(n− 2)!!
∂t(t

−1∂t)
(n−3)/2tn−2N(ϕ; t, z)

for n odd (with (−1)!! = 1 and (t−1∂t)
−1 = ∂−1t t for n = 1); and

∞∑
k=0

∆kϕ(z)

(k!)2
t2k =

1

n!!
(t−1∂t)

n/2tnM(ϕ; 2t, z)

=
1

(n− 2)!!
(t−1∂t)

(n−2)/2tn−2N(ϕ; 2t, z)

for n even.

Proof. First, note that

4k
(
n

2
+ 1

)
k

k! = (2k)!!
(n+ 2k)!!

n!!
, 4k

(
n

2

)
k

k! = (2k)!!
(n+ 2k − 2)!!

(n− 2)!!
.

(3.2)
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If n is odd, then by (3.1) and (3.2) we obtain

1

n!!
∂t(t

−1∂t)
(n−1)/2tnM(ϕ; t, z)=

1

n!!
∂t(t

−1∂t)
(n−1)/2

∞∑
k=0

∆kϕ(z)

4k(n/2+1)kk!
t2k+n

=
1

n!!

∞∑
k=0

(2k + n)(2k + n− 2) · · · (2k + 1)∆kϕ(z)
(2k)!!(2k+n)!!

n!!

t2k =

∞∑
k=0

∆kϕ(z)

(2k)!
t2k

and

1

(n− 2)!!
∂t(t

−1∂t)
(n−3)/2tn−2N(ϕ; t, z)

=
1

(n− 2)!!
∂t(t

−1∂t)
(n−3)/2

∞∑
k=0

∆kϕ(z)

4k(n/2 + 1)kk!
t2k+n−2

=
1

(n− 2)!!

∞∑
k=0

(2k + n− 2)(2k + n− 4) · · · (2k + 1)∆kϕ(z)
(2k)!!(2k+n−2)!!

(n−2)!!

t2k

=
∞∑
k=0

∆kϕ(z)

(2k)!
t2k,

which proves the first part of the lemma.
Analogously, if n is even, then by (3.1) and (3.2) we have

1

n!!
(t−1∂t)

n/2tnM(ϕ; 2t, z) =
1

n!!
(t−1∂t)

n/2
∞∑
k=0

∆kϕ(z)4k

4k(n/2 + 1)kk!
t2k+n

=
1

n!!

∞∑
k=0

(2k + n)(2k + n− 2) · · · (2k + 2)∆kϕ(z)4k

(2k)!!(2k+n)!!
n!!

t2k =
∞∑
k=0

∆kϕ(z)

(k!)2
t2k

and

1

(n− 2)!!
(t−1∂t)

(n−2)/2tn−2N(ϕ; 2t, z)

=
1

(n− 2)!!
(t−1∂t)

(n−2)/2
∞∑
k=0

∆kϕ(z)4k

4k(n/2)kk!
t2k+n−2

=
1

(n− 2)!!

∞∑
k=0

(2k + n− 2)(2k + n− 4) · · · (2k + 2)∆kϕ(z)4k

(2k)!!(2k+n−2)!!
(n−2)!!

t2k

=

∞∑
k=0

∆kϕ(z)

(k!)2
t2k,

which proves the second part of the lemma.
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4. Summability of formal solutions. Now we are ready to state the
main result of the paper.

Main Theorem 4.1. Let d ∈ R and û be the formal solution (1.2) of
the n-dimensional complex heat equation

(4.1) ∂tu = ∆u, u(0, z) = ϕ(z) ∈ O(Dn).

Then the following conditions are equivalent:

(i) û is Borel summable in the direction d,
(ii) M(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn),
(iii) N(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn).

Proof. We first assume that the dimension n is odd. Applying the mod-
ified Borel transform B̃ to the formal solution û of (4.1) given by (1.2) and
replacing s by t2, we have

(B̃û)(t2, z) =
∞∑
k=0

∆kϕ(z)

(2k)!
t2k.

Moreover, by Proposition 2.3 the formal solution û is Borel summable in
the direction d if and only if (B̃û)(t2, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π) × Dn). If
we combine this with Lemma 3.2 and with the uniqueness of the analytic
continuation of

∑∞
k=0

∆kϕ(z)
(2k)! t

2k with respect to t, we conclude that û is Borel
summable in the direction d if and only if

(4.2)
1

n!!
∂t(t

−1∂t)
(n−1)/2tnM(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn),

or equivalently, if and only if

(4.3)
1

(n− 2)!!
∂t(t

−1∂t)
(n−3)/2tn−2N(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn).

Since the space O2((Ŝd/2 ∪ Ŝd/2+π) ×Dn) is closed under differentiation ∂t
and multiplication by t, we see that (4.2) ((4.3), respectively) is equivalent to
M(ϕ; t, z) ∈ O2((Ŝd/2∪Ŝd/2+π)×Dn) (N(ϕ; t, z) ∈ O2((Ŝd/2∪Ŝd/2+π)×Dn),
respectively), which proves the theorem for n odd.

The proof for n even is similar. Namely, by Definition 2.2 the formal
solution û is Borel summable in the direction d if and only if

(B̂û)(t2, z) =
∞∑
k=0

∆kϕ(z)

(k!)2
t2k ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn).

Hence, by Lemma 3.2 and the uniqueness of the analytic continuation of∑∞
k=0

∆kϕ(z)
(k!)2

t2k with respect to t, we conclude that û is Borel summable in
the direction d if and only if

(4.4)
1

n!!
(t−1∂t)

n/2tnM(ϕ; 2t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn),
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or equivalently, if and only if

(4.5)
1

(n− 2)!!
(t−1∂t)

(n−2)/2tn−2N(ϕ; 2t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn).

As in the previous case, (4.4) ((4.5), respectively) is equivalent toM(ϕ; t, z) ∈
O2((Ŝd/2 ∪ Ŝd/2+π) × Dn) (N(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π) × Dn), respec-
tively), which completes the proof.

Using the representation of the Borel transform B̂ and the modified Borel
transform B̃ of û, we derive the Borel sum u for the Borel summable for-
mal solution û. To this end, we calculate the function C2 defined by (2.2).
Applying the power series expansion (see [3, p. 175]) of C2, we have

C2(ζ) =

∞∑
n=0

(−ζ)n

n!Γ (1− (n+ 1)/2)
.

Since the gamma function Γ (z) has simple poles at z = 0,−1,−2, . . . and

Γ (−k + 1/2) =
(−1)kk!4k

√
π

(2k)!
for k ∈ N0,

we obtain

C2(ζ) =
∞∑
k=0

ζ2k

(2k)!Γ (−k + 1/2)
(4.6)

=
1√
π

∞∑
k=0

(−1)kζ2k

4kk!
=

1√
π
e−ζ

2/4.

Now we are ready to prove that the procedure of Borel summability gives
us the solution u of the heat equation as the convolution of the initial data
with the heat kernel.

Theorem 4.2. Let d ∈ R and assume that the formal solution û of (4.1)
is Borel summable in the direction d (i.e. there exists ε > 0 such that Bû(s, z)
and B̃û(s, z) belong to O1(S(d, ε) × Dn)). Then the Borel sum of û in the
direction d is given by

uθ(t, z) =
nα(n)

(4πt)n/2

∞(θ/2)�

0

e−τ
2/(4t)τn−1N(ϕ; τ, z) dτ

for every θ ∈ (d−ε/2, d+ε/2). Moreover, if additionally ϕ ∈ O2((S(d/2, ε/2)
∪ S(d/2 + π, ε/2))n) then also

uθ(t, z) =
1

(4πt)n/2

�

(eiθ/2R)n
e−e

iθ|x|2/(4t)ϕ(z + x) dx.

Proof. Let ε and θ be as in the statement. First, assume that n is odd.
By Proposition 2.3, (4.6) and Lemma 3.2, we have
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uθ(t, z) =
1√
t

∞(θ)�

0

(B̃û)(s, z) 1√
π
e−s/(4t) d

√
s

s=τ2
=

1√
πt

∞(θ/2)�

0

(B̃û)(τ2, z)e−τ2/(4t) dτ

=
1√
πt

∞(θ/2)�

0

e−τ
2/(4t) 1

(n− 2)!!
∂τ (τ

−1∂τ )
(n−3)/2τn−2N(ϕ; τ, z) dτ.

Next, by (1 + (n− 3)/2)-fold integration by parts, we obtain

uθ(t, z) =
1√
πt

∞(θ/2)�

0

τ

2t
e−τ

2/(4t) 1

(n− 2)!!
(τ−1∂τ )

(n−3)/2τn−2N(ϕ; τ, z) dτ

=
1

(n− 2)!!(2t)(n−1)/2
√
πt

∞(θ/2)�

0

e−τ
2/(4t)τn−1N(ϕ; τ, z) dτ.

Finally, using the definition of the integral means over the sphere, we get

uθ(t, z) =
1

(n− 2)!!(2t)(n−1)/2
√
πt

∞(θ/2)�

0

e−τ
2/(4t)τn−1

�

S(0,1)

ϕ(z + τy) dS(y) dτ

τy=x
=

1

(4πt)n/2

�

(eiθ/2R)n
e−e

iθ|x|2/(4t)ϕ(z + x) dx,

since

1

nα(n)
=
Γ (1 + n/2)

nπn/2
=

n!!π1/2

2(n+1)/2nπn/2
=

(n− 2)!!

2(n+1)/2π(n−1)/2
.

Analogously, for n even, we apply Definition 2.2, (4.6) and Lemma 3.2
to calculate

uθ(t, z) =
1

t

∞(θ)�

0

e−s/t(Bû)(s, z) ds

s=τ2
=

1

t

∞(θ/2)�

0

e−τ
2/t(Bû)(τ2, z)2τ dτ

=
2

t

∞(θ/2)�

0

e−τ
2/tτ

1

(n− 2)!!
(τ−1∂τ )

(n−2)/2τn−2N(ϕ; 2τ, z) dτ.

By (n − 2)/2-fold integration by parts and by the definition of the integral
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mean over the sphere, we have

uθ(t, z) =
2n/2

tn/2(n− 2)!!

∞(θ/2)�

0

e−τ
2/tτn−1

�

S(0,1)

ϕ(z + 2τy) dS(y) dτ

2τ=σ
=

1

(2t)n/2(n− 2)!!

∞(θ/2)�

0

e−σ
2/(4t)σn−1

�

S(0,1)

ϕ(z + σy) dS(y) dσ

σy=x
=

1

(4πt)n/2

�

(eiθ/2R)n
e−e

iθ|x|2/(4t)ϕ(z + x) dx,

since

1

nα(n)
=
Γ (1 + n/2)

nπn/2
=

n!!

2n/2nπn/2
=

(n− 2)!!

2n/2πn/2
.
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