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A global existence result for the
compressible Navier—Stokes—Poisson equations
in three and higher dimensions

by ZHENSHENG GAO (Xiamen and Quanzhou) and ZHONG TAN (Xiamen)

Abstract. The paper is dedicated to the global well-posedness of the barotropic
compressible Navier-Stokes—Poisson system in the whole space RY with N > 3. The global
existence and uniqueness of the strong solution is shown in the framework of hybrid Besov
spaces. The initial velocity has the same critical regularity index as for the incompressible
homogeneous Navier—Stokes equations. The proof relies on a uniform estimate for a mixed
hyperbolic/parabolic linear system with a convection term.

1. Introduction. The compressible Navier—Stokes—Poisson system takes
the form of the compressible Navier—Stokes equations forced by the electric
field which is governed by the self-consistent Poisson equation. In this paper,
we are concerned with the Cauchy problem for the isentropic compressible
Navier—Stokes—Poisson equation with external force:

8tp + le(pU) = 07
Or(pu) + div(pu @ u) — pAu — (A+p)Vdivu + VP(p) = pVP+pf,
(1.1) {AP=p—Dp,
lim &(z,t) =0,
|z]—o0

\(pa u)tZO = (/007 uO)a

for (t,z) € [0,00) x RV, N > 3. The variables are the density p > 0, the
velocity u, and the electrostatic potential ¢. Furthermore, P = P(p) is the
pressure function. The viscosity coefficients satisfy p > 0 and 2p + NA < 0.
Finally, p > 0 is the background doping profile [MRS|, which in this paper
is taken to be a positive constant for simplicity.

We now review some previous work on related topics. Global regular small
solutions to compressible Navier—Stokes were first obtained by Matsumura—
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Nishida [MNI, [MN2], and qualitative properties of the solutions were stud-
ied by Valli-Zajaczkowski [VZ]. The local and global existence of multi-
dimensional renormalized solution to NSP was obtained in [Dol, [ZT]. The
quasi-neutral limits and related combined asymptotical limits were proved
in [DJL, (DM} WJ]. The long time behavior of a global solution was inves-
tigated for the compressible NSP system in [LMZ, [ZLZ], where the optimal
decay rate of the global classical solution was obtained. The compressible
Navier—Stokes—Poisson system is related to the dynamics of self-gravitating
polytropic gaseous stars. There is also important recent progress on the ex-
istence of local and global weak solutions or renormalized solutions: see
[De, [DZ, Du, DEPS, [ST| and references therein. Some results about free
boundary problems were obtained in [Zajl], [Zaj2]. Furthermore, free bound-
ary problems for the general N-S equations were considered in [Zad|. In
particular, the global existence and uniqueness of strong solution in Besov
type spaces was shown in [HL]:

THEOREM 1.1. Let N > 3, P(p) = p*/2, p > 0 and 2u + NX > 0.
Assume pg — p € BN/2 5/2:N/2 and ug € BN/2 3/2N/2-1
two positive constants o small enough and M such that zf

. Then there exist

lpo — ﬁ‘|§1\r/2—5/2,1\//2 + HUOHEN/Q—S/Z,N/Z—l < a,
2,1 2,1

then (1.1) has a unique global solution (p,u,®) such that (p— p,u,P) belongs
to

Eo— C(R+_§N/2f5/2,N/2 (NN/273/2,N/271)N « §§{271/2,N/2+2)

N L\(RY: BN/2 1/2,N/2 (~gl/2+1/2,N/2+1)N « Eé\’fl/2+3/2,N/2+2)

and satisfies

(o= D)l < Mllpo = pll gavjz-s202 + ol gavja-s/2x72-1),

where M is independent of the initial data, and the hybrid space le’s2 '
B;ll N B  for s1 < sa.

In this paper, the initial data are supposed to be close to a stable equi-
librium with constant density. Using uniform estimates for the linearized
system with a convection term in the hybrid space, we prove the global ex-
istence of solution by compactness arguments as in [Cl [Dall, [HL [P|. Define
the following function space:

Ss5—2, s 5,542

X7 = OB By x (B)Y x Byi™)
1 : SsHINN o fs+2

NLY(R*; B3, x (B;j W ng ).

Let us now state our main result.
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MAIN THEOREM 1.2. For N > 3, let p > 0 be such that P'(p) > 0.
Then there are positive constants o and M such that for all (pg,uo, f) with

pof,OEBN/2 2N/2 EBN/2 1, fELl(R‘F;Bé\’[l/Q*l) and
llpo — P||§5{2—2,N/2 + HUOHBQ{M + Hf||L1(R+;B§{2—1) < a,

(1.1) has a unique global solution (p,u,®) such that (p—p,u, ) € XN/? and
satisfies

1o =p,u )2 < M(llpo—pll gavja-2/2 +luoll govyo-s I o o vty

]fmoreoverpo—pEBQ’l, ’U,()EBQ’l cmdeLl(Bill) forse (N/2,N/2 +1],
then (1.1) has a global solution (p — p,u,®) € XN/2 N X° with

6o = 5, ) xe < Moo = Pl g0 + luollgge + 17 1agig)
fof," o = S, N/2

The paper is structured as follows. In Section 2, we recall some Little-
wood—Paley theory for homogeneous Besov spaces and define some related
function spaces. Sections 3-4 are dedicated to reformulation of the system
and proving a priori estimates for a linearized system with convection terms.
In Section 5, we prove the global existence and uniqueness of solution.

2. Littlewood—Paley theory and function spaces. Let us introduce
the Littlewood-Paley decomposition. Choose a radial function ¢ € S(R")
supported in C = {¢€ € RV : 3/4 < |¢| < 8/3} such that

ST =1 ife#0.
q€L
The frequency localization operator A, and S, are defined by
Af =9(271D)f, S;f = Z Aqgf  forqeZ.
a<j—1

We denote the dual space of Z(RV)={feS(RY): D*f(0)=0, VaeN¢}
by Z/(RY); it can also be identified with the quotient space S’(RY)/P where
‘P is the space of polynomials. The formal equality

f= Z Aqf
qEZ

holds true for f € Z’(RY) and the right hand side is called the homogeneous
Littlewood—Paley decomposition.

DEFINITION 2.1. Let s € R and 1 < p,7 < oo. The homogeneous Besov
space By, is defined by

By, ={f € Z'®Y): ||fll, < oo},
p,T
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where

1y = 22140/ s

Let us now state some estimates for the product in Bgl

I

LEMMA 2.2 (see [Da2|). Let s >0, u € LN BSl and v € L™ N Bg”l.
Then uv € LN 3571 and

s

el

< Nullzololl gy, + ol llull 5

Let s1,s9 < N/2 with s1 + s2 > 0, u € B;ll and v € 3521 Then uv €

. —N/2
B;11+82 2 und

el - S Nl g ol
We refer to [Da2| for the proof of the following estimates for the compo-
sition of functions.

LEMMA 2.3. Let s >0 and u € L N B3 ;.

(i) Let F € VVl[iH(RN) with F(0) = 0. Then F(u) € B§1 Moreover,
there exists a one-variable function Cy, depending only on s and F,
such that

IF ()55, < Collullze)ull 5

(ii) If u,v € Bé\ﬁﬂ with v —u € B‘il for s € (=N/2,N/2] and G €
W[N/ZH?”OO(RN) with G'(0) = 0, then G(v) — G(u) € Bil and there

loc
exists a two-variable function C, depending only on s, N, and G,
such that

1G(0) =G @)l 5, < Cllullzs Nolloe )l o + o] o) o=l .

We also need hybrid Besov spaces for which regularity assumptions are
different in low frequencies and high frequencies [Dal]. We recall the defini-
tion and main properties of these spaces.

DEFINITION 2.4. Let s,t € R. We define
1 gy = D2 27040 ez + D 21 A0 e
q<0 q>0
Let m = —[N/2+4 1 — s] and define
- {feS'RY) :||fllzst <00} ifm<O0,
B;i(RN) = 1o N Pal .
: {fezZ'R ):Hf\|§§,i<oo} if m > 0.
NOTATION. We set
ULF = ZAqu and ugp = ZAqu.

q<0 q>0
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LEMMA 2.5.

0) By = B3, i

(ii) Ifs <t then le = 32 N 32 1- Otheruwise, Bgsi = B3, +Bj,.

iii) BY? coincides with the usual ihomogeneous Besov space BS ;.

2,1 2,1

(iv) If s1 < s9 and t; > to then E‘;}l’tl — E;?l’b.
Let us state some estimates for the product in hybrid Besov spaces.
LEMMA 2.6. Let s1,82>0, and f,g€ L> N §51’82 Then fgegill’” and

179l gz1e2 S W flzeellgl ggryme + 151 g2 gl zoe

Let 81752;t1)t2 < N/2 wlth mln{81 +32,t2 +t2} > 0 and let f e leytl d
g€ 352’t2 Then
||fg|| 51+ts2—N/2,t1+to—N/2 S ||f||§51,t1 HgHESQ’tQ .
B21 2,1 2,1

For a, 8 € R, let us define the following function on Z:

a ifr <o,
o) =15
6 ifr>1.

Then we have the following lemma:

LEMMA 2.7. Let F' be a smooth homogeneous function of degree m. Sup-
pose that —N/2 < s1,t1,59,to0 <1+ N/2. Then

[(F'(D)Aq(u - Va), F(D)Aqa)|
S g2 9y, N/z+1|!aHBS1 s2[|[F(D)Aqall Lz,
[(F(D)Aq(u- Va), Agh) 4 (Aq(u - Vb), F(D )Aqali,chuHBg{w
_ t1,t —m _ 51,8 —m
x (279(@" "2 (a ))||F(D)Aqa||L2||bH§;}l,t2 4 9-19°1°2(q )\|a||§;}1,52]\Aqb|]Lz),

where (-,-) denotes the L? inner product, the operator F(D) is defined by
F(D)f = F'F()Ff, and Y epcq < 1.

3. Reformulation of the original system. Without loss of generality,
we set p=1,P' (1) =1 and 2u+ X\ = 1. Let h = p — 1. Then (1.1) can be
rewritten as

(&th—f—u Vh+divu = —hdivu,

Ou~+u-Vu— Au+ Vh — V@——iAu— K(h)Vh+ f,
(3.1) 1+h
AP = h, |1‘im &(x) =
T|—00

\(h)u)tzo - (hO)uo)u
where we denote A = pA+ (A + p)Vdiv and K(h) = P'(14+h)/(1+h) — 1.
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For s € R, we denote A%z := Z1(|¢]*2). Let £ = A~ldivu be the
“compressible part” of the velocity and n = A~!curlu (with (curlz)! =
0;2" — 0;27) be the “incompressible part”. System (3.1) can be rewritten as

(ath + A +u-Vh = hdivu,

O — A — Ah— A 'h = — A7 div(u- Vu + 125 Au+ K(h)Vh)
(3.2) + A~ div f,
O — pdn = —A""curl(u- Vu + HLhAu) + A~ curl f,
u=—-A"1ve¢ - A-tdivy.

Let us observe that the third equation is, up to nonlinear terms, just the
heat equation on 7. We therefore expect to require the following lemmas to
get appropriate estimates for the incompressible part of the velocity.

LEMMA 3.1. Let s € R, r € [1,00], and suppose u solves
Oyu — pAu = f,
{uto = up.
Then there exists C > 0, depending only on N, u and r, such that, for all
0<T < oo,
||U|’LTT(B;ﬁ2/T') < C(”UOHBQI + HfHL,}F(B;J))
Moreover, v € C([0,T7; B§1)

Now, there is a linear coupling between the first two equations, which
leads us to prove estimates for the following linear system:

(3.3) Oth 4 u-Vh+ Af = F,
' HhéE+u-VE—AE—Ah— A"Th =G.

PROPOSITION 3.2. Let (h,§) be a solution of (3.3) on [0,T], assume that
1-N/2 < s<1+N/2 and set V(t) = Sg |[u(T)[| ya/241 dT. Then the following
2,1
estimate holds on [0,T]:

t
IOz + 16O+ LU, + 16 )
< 0V (lholl g2 + ol g
¢
—CV(7) _ .
+ (S)e (I ()l g2 + NG 570 dT),
where C' depends only on N and s.
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Let us now introduce the function spaces which appear in the global
existence theorem.

DEFINITION 3.3. For 7" > 0 and s € R, we define Ef. to be
(L}(0,T; Bs,,) N C([0, T); B51™%)) x (L0, T; Bs 1) n C([0, T); B )N
and set
[(h, )|l = HhHL%o(ESIQvS) + HUHLOTO(B;?;H + HhHLlT(BiI) + “u"L,}r(ngl)Q

we also use the notation E® if T' = oo, changing [0,7] into [0,00) in the
definition above.

4. Estimates for the linear model. This section is devoted to the
proof of Proposition 3.2. Let (h, &) be a solution of (3.3) and K > 0. Define

he e KV E KV F o KVOR G KV,
Applying the operator A, to (3.3), we easily infer that (Aqﬁ, AqE) satisfies
(4.1)

Ot Agh + Ag(u - Vh) + AAE = AF — KV'(t)Agh,

HAGE + Ag(u-VE) — AAE — AAh — A7 Agh = A,G — KV (1) A€

STEP 1: Low frequencies (¢ < 0). Taking the L? scalar product of the

first equation of (4.1) with A,k and of the second equation with Aqg, we
obtain the identities

% %HAqEH%z + (Aq(u - Vh), AJL) + (AAqga Aqﬁ)
= (AgF, Agh) — KV'(t)|| Aghl|22,
[AE]122 + [AAGE]2 + (Ag(u- VE), Ag) — (AAgh, AgE)
(AN AGh, AE) = (A4G, AE) — KV'(1)]| AgE] 2.

(4.2)

N | —
&.‘@N

t

We can also obtain an identity involving (/1Aq§~ , Aqé’ ). To achieve it, we
take the L? scalar product of the first equation of (4.1) with A_QAQE and
AAqg and of the second equation with AAqE and then sum the last two
resulting equalities, which yields, with the Plancherel theorem,

(4.3)

|

AT AGR|2, + (A7 Ag(u - VR), AT AGh) + (A€, AL AR)

) o = (A—lAqF,NA—lAEh) - KV’Et)||A‘1Aqh~]\%2,

51 (AAh, Ag) + HAAq§Hi2 + (AQAqi,ilAth) — [[AAGh|I72 — quhll%
= (AAF, D) + (AA,G, Agh) — 2K V' (£)(AAGh, AyE)

- (AAq(U ) Vﬁ% Aqg) - (AAqﬁv Aq(“ : v@)

N =
QU

t
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A linear combination of (4.2) and (4.3) yields

1d ~ = ~
2 dt[HA h”L2 + HA 'A hHL2 + ||Aq§HL2 2K1(AAqhv Aqf)] "'KlHAAqhH%Q
+ KlHAqhHL2 + [1 - K1]||AAq§H%2 - KI(AQAanAAqE)
= (A F, Agh) — KV'(1)|| Aghll2s — (Ag(u - VR), Agh) + (A,G, AL)
— KV' ()| Agéll72 — (Aq(u-VE), Agl) + (AT AGF, A1 Agh)
— KV' ()[4 Aghl7z — (A7 Ag(u- Vh), A7 Agh)
— K1 (AAGF, Af) + (AAG, Agh) — 2KV ()(AAgh, Ag€)
— (AA (u - Vh), AgE) — (AAgh, Ay(u - VE)).
Noticing that N N N
1Agh] L2 < § - 27| AT Aghll L2 < 51| AGhll L
for ¢ < 0, we have

[(AAGR, AgE)] < Sl AGhIZ: + 21| Agkll7,
[(A2Agh, AAE)| < §IIAAGAIT + 2 AAGE][ 7.
Hence if we take K7 = 1/8, and denote, for ¢ <0,
g = 1 AghlZz + A7 Aghl| 7 + |Agll72 — $(AAGh, AgE),
then there exist constants Cy and C5 such that
Crgg < AT AhlIZz + | Ag€ll72 < Cagg.
Thus, there exists a constant C such that, for ¢ <0,

1d .
5 g% +(C2+ KV')g;

< (AGE, Agh) = (Ag(u- Vh), Agh) + (446, Agf) = (Ag(u - VE), Agé)
+ (ATTAGE, AT AGR) — (A7 Ag(u - VR), AT AGR) — L(AAGF, A
+ (AA4,G, Ajh) — (AAq(u - Vh), Al) — (AAGh, Ay(u - VE))].
STEP 2: High frequencies (q > 0). Taking the L? scalar product of the
first equation of (4.1) with A2A,h, we get

1d
2 dt

(4.4)

(4.5) N AAGR|2s + (AA (u- V], AAGD) + (A2A.E, AAGR)
= (AAF, AAE) — KV'(8)[| AAD 7.
A linear combination of (4.2)s, (4.3)2 and (4.5) gives

1d

5 SIAAGRIZ: + 21 AgI3: — 20400k, Ag)] + 1 AARIZ:

+ HAqhHL2 + IMAqflle - (AAqhv Aqé) - 2( 1Aq%7 Aqg)
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= (AAGF, AAR) — KV (1)||AAGR|%5 — (AA,(u - VR), AA R)
+ 2(Aqév Aqg) - QKVI(t)HAqa|%2 —2(Aq(u- Vg% Aqg)
— [(AAF, AyE) + (AA,G, Agh) — 2KV (£)(AAgh, AE)
— (A4(u- Vh), Ag&) — (AAy(u - VE), Agh)).
Denote, for g > 0,
92 = HAAqh”QL2 + 2||Aqf”2L2 - 2(AAqh7 Aqf)‘
There are constants C3 and Cy4 such that

Cagy < [[AAGhII72 + | A€]172 < Cagy.
Notice that

12(AAGh, Ag8)| < My || AAE]3 TR HAA hl[32,
‘2(A_1Aq7L>Aqg)’ < MIHAAqg”%2 + 7HAqhHi2'

Thus if we take My = :1,)2, there exists a constant C such that

(4.6) +(C+KV')g?

< (AAGF, AAGh) — (AA (u - Vh), AAGh) + 2(A,G, Af)
-2(A q(u- Vf) qg) - (AAqﬁ7 Aqg) - (AAqéqu%)
+ [(AAy (- Vh), Agd) + (A (u - VE), Agh)).

Now, we combine (4.4) and (4.6), and use Lemma 2.7 to estimate the
terms involving convection in (4.4) and (4.6), and eventually get the existence
of sequence (ag)qez such that >, a, <1 and

2 d%

qEZ
@n 142 omin 1) + KV g2

' 2 dt7? e o
< caqggz—q<s—1>[up,GHESEZ,SXB;I + VI, €ll g2 s,
where x = min(C, 0).

STEP 3: The damping effect. We are now going to show that inequality
(4.7) entails a decay for h and £. We postpone the proof of smoothing prop-
erties for £ to the next step. Let 6 > 0 be a small parameter and denote
wg = gg + 62. From (4.7) and dividing by v, we find that

d .
(4.8) g + (vmin(2%, 1) + KV}l
—q(s—1 oy h, €
< Cay2 q(s )[H(F, G)||§§,—12,5XB§31 + V|| (h, §)H§§—12s XB;;l]
+4(k min(22q, 1)+ KV').
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Integrating over [0, ¢] and letting § tend to 0, we get

(4.9)  g4(t) + kmin(2%7, 1) qu(’i') dr

0
t

< gq(o) + O2—q(371) Saq(T)H(ﬁ’ é)HESEQ’SXBgzl dr

0
t

V2D ag ()|, E)l gy e — K] dr.
5 : :
By the definition of gg , we have, for any ¢q € Z,

(4.10) 207 gg 2007 max(277,29) [l |Z2 + 277V €7
Thus, we can take K large enough such that

S [Cay (), E) gyt — K27 Vgy(r)] 0.

q€EZ

Multiplying both sides of (4.9) by 2965~ according to the last inequality
and (4.10), we conclude after summation on ¢ in Z that

(411) [0l gy + €D 5y

t t

ﬂ(g [B(r)ps dr+ > §297D min(22, 1) A,(7)| dT)

0 ' q€Z0
t

< C(JIRollgz=2s + léoll g1 + JUF (Dl gs=2e + 1G]] ) dr ).

STEP 4: The smoothing effect. Once having the damping effect on h, it is
easy to get the smoothing effect on £. Thanks to (4.11), it suffices to prove it
for high frequencies only. We therefore suppose in this subsection that ¢ > 0.

Define g4 = [|A4€]| 2. From (4.2) and using Lemma 2.7, we obtain

1 d 2q .2 17
5 50+ K212 < gg(1AR gl 2 + 147 Rl + Gl )
T gV (1)(Cag2 V)] g1~ Kay).

Standard computations therefore yield

t
D 20V AL )2 + £ (Y 29TV AL () 2 dr < €0l 53~
q>1 0g>1 ’
t _ t » »
HVIG()  gs-r dr + 20 29| hy(7) || 2 dr + CV () sup |€(7) | gs-1.
0 2,1 01 [0,¢] 2,1
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Using (4.11), we eventually conclude that

t
|37 20 A8 () 12 dr < (1 4+ V) (Il -2 + ol g
0g¢>1 ’ '

¢

+ S (”FHé;EZs + ||G||§§El) dT).
0 ’ >
1

Combining the last inequality with (4.11), we complete the proof of Propo-
sition 3.2.

5. A global existence and uniqueness result. This section is de-
voted to the proof of Theorem 1.2. The scheme of the proof is a very classical
one. We use an iterative method to build approximate solutions (h™,&") of
(3.1) which are solutions of linear systems of type (3.3) coupled with a heat
equation, to which we apply Proposition 3.2 and Lemma 3.1.

In the case of smooth data, that is, for u, F' and GG continuous in time with
values in S, and for hg and & in S, it is easy to prove that (3.3) has a unique
global solution continuous with values in S. We set the first term (h°, u%) to
(0,0), and then define ((h™,u™)),en by induction. We choose (h"*1 u™+1)
as the unique smooth solution of the following linear system:

(5.1)

fathn+1 - \vd e + Agn—f—l = F™,

Qe 4 VM — AGnTL — AR — ATt = G 4 AL div
ot — pAngtl = H" + A eurl f,,

un+1 — _AflvgnJrl —A? div nn+1’

L (h"+1,§"+1, n”+1)t:0 = (hp, A~ divuy,, A7t curl Un),

with
hy, = Z Agho,  up = Z Aquo,
lg|<n lg|<n
fo= > Asf,  F'=—h"divu",
lg|<n

hn
G" =" - Vh" — A1 div <u" -Vu" + K(h™)Vh™ + T hnAu"),

H" = — A curl [ v - Vu™ + h Au™ .
1+ A"

STEP 1: Uniform estimates. In this part, we prove uniform estimates in
EN/2 for (™, u™). Defining

o= ||h()H§é\7/{2—2,N/2 + |’uO‘|Bé\j{271 + HfHLl(Bé\j{%l)’
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we are going to prove the existence of a positive M such that, if « is small
enough, the following bound holds for all n € N:

(Pn) [Py un) | pvse < Mev.

Suppose that (P,,) is satisfied and let us prove (P,+1). According to Propo-
sition 3.2 and Lemma 3.1, and the definition of (hy,, uy, fr), we have

[+ e < Cexp(Clla |y gaywen) (ol ja-zve + ol gyya-s
1l sy + 1 gamavin

n n
+ HG HLl(Bé\j{271) + HH “Ll(Bé\f{Q*l))'

Therefore, it is only a matter of proving appropriate estimates for F™ G"

and H™ using (Py). The estimate of F" is straightforward: according to

Lemma 2.6,

2 " ~Nj2— < C||n" ~N/2— ivau"™ :
(5 ) ” HLl(Bé\j{z 27N/2) = CH ”L"O(B;Y{Q 2,N/2)Hdlvu ”LI(B;]{Q)
< CM?a?.
To estimate G™ and H™, we make the following assumption on a:
a <1/(4¢%),

where C is the modulus of continuity of Bé\’f 1/ 2oy LU If (Py) is fulfilled, this
entails

(5.3) A" || Loo (Rt xRy < 1/2.

Indeed, we use
h*|pee < CIR™ || on2 < C||A"|| 5n5/2- .
1" oo < ClR" | g2 < CIR™ [ gavjz—2vr2

We then have, according to Lemmas 2.3 and 2.6,

n

1+ A"

hn

2. n
Viu 1+ A"

(5.4)

< CHVQUnHLl(Bé‘%?*l

) Leo (B2

n n 2 2
<Clu ||L1(B§{2+1)||h HLDO(BQIP) < CM-<a”.
We also have, using K (0) = 0, and Lemmas 2.2 and 2.3,

55)  IKAVE o) < CHEGM) e [ VR

LY(BY* ™
< CM?a?.
Thanks to Lemma 2.2, we easily infer

(5.6) Hun . vgnHLl(Bé\’f{Q—l) + ||U”VU"HL1(BQ{271)

< Ol | e v IV | ) < OMo.
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From (5.4)—(5.6), we finally deduce
n n 2 2
(5.7) G HLI(Bé\f{Q—l) + ||H HLl(BQ’{Q_I) < CM*“o”,

whence

(R u™ ) || gz < Cexp (CMa)(a+ M2a?).
So choosing M = 4C and assuming

M?*a <1, exp(CMa)<2 and a <1/(4C?),
(Py) is fulfilled for all n € N.

STEP 2: Fxzistence of a solution. In this part, we shall show that, up to
an extraction, the sequence ((h",u"))en converges in Z(RT x RY) to a
solution of (3.1) which has the desired regularity properties. The proof relies
on compactness arguments. To begin, we show that the first time derivative of
(h™,u™) is uniformly bounded in appropriate spaces. This enables us to apply
Ascoli’s theorem and get the existence of a limit (h,u) for a subsequence.
Now, the uniform bounds of Step 1 provide us with additional regularity and
convergence properties so that we may pass to the limit in (5.1).

It is convenient to consider the solution of a linear system with initial
data (hn, u,) and forcing term f,,. More precisely, we denote by (h},uf} ) the
solution to

875]17[7: + div u?, = 07
(5.8) ot — Au + VhY — VAR = f,,

(h’?ja UE)t:O = (hnu Un)a
and (h"™,u") = (h"—h7,u"—u?%). Obviously, the definition of (hp, un, f,) en-
tails h,, — holnBN/2 2.N/2 , Up —>u01nB N/2-1 s fn — fin LYRT; BN/2 1).
Lemma 3.1 and Prop051tlon 3.2 therefore ensure that
(5.9) (W}, u}) — (hp,ug) in EN/2)
where (hr,ur) is the solution of the linear system

O¢hy, + divuy, =0,
owur, — Auyp, + Vhr — VA_th = f,
(hr,ur)i=0 = (ho, uo).

We now have to prove the convergence of (h",@"). This is of course a trifle
more difficult and requires compactness results. Let us first state the follow-
ing lemma.

LEMMA 5.1. For all T > 0, ((h",4"))nen is uniformly bounded in
pN/2-1/2  pN/2-1/2N /252

Pmof. In all the proof, u.b. will stand for uniformly bounded.
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We first prove that 9;h" is w.b. in L*3(B, N/2 1/2), which yields the de-
sired result for A™. Let us observe that

R = —p  dive” — u” - VAT — div e 4+ div u"“.

According to Step 1, (u™)pen is w.b. in LY3(B N/2+1/2) and (h")pen is u.b. in

LOO(BN/Q) thus —h" divu™ —u"- VA" ! —divu"*! is u.b. in L4/3(Bé\’[1/2_1/2).
The definition of u'} obviously provides us with uniform bounds for div u7}

in L*3(B, N/2 1/2) so we can conclude that 9;h" is u.b. in L*3(B, N/2 1/2)
Denote £L = —A"tdivu?, fL = —A"diva", 7} = —A” 1curluL and
7 = —A"tcurla”.

Let us now prove that 9" is u.b. in L*/3(R*; §§{2_1/2’N/2_3/2) and that

o™ is w.b. in LY 3(RT; Bév 1/2_3/ 2), which gives the required result for u".
Let us recall that

OE" T = V(€" — ¢ — A div (u” -Vu™ + K(h™)VA™ + : f: = Au")
A(fn—H n+1)+A(hn+1 thrl) +A—1(hn+1 _h1£+1)7

Aun) + MA(nn+1 anrl)'

n

14 A"

o = — A7 curl <u” -V +

Results of Step 1 and an interpolation argument yield uniform bounds for
™ in L°(RT; BN LA3(RY; BY[PT?). As b is wb. in L (RT; BY[)
and &7 is w.b. in LY/3(RT; BN/2+1/2), we easily infer that u"- V(&7 — £ HL) —
A=t div(u™-Vu"+ ljl_;;n Au™)+ A € is wb. in LY3(RY; 35{2_3/2).
Using the bounds for A" in L= (R™; Bévl/Q NLY (R BN/ ), we get A" w.b. in
L*3(R*; By{*/%). We also have K (h™)VA™ wb. in LA (R* By, of
course, AR} and Ah™ are u.b. in L*/3(R*; BN/273/2) while A71A7 and A~1h"
are w.b. in L*/3 (R*; BN/2 1/2) The case of ;77" goes along the same lines.
As the terms correspondmg to K(h")Vh™, A(h™ —h7) and A1 (h™ — A7) do
not appear, we easily get 9™ u.b. in L4/3(R+; 35{2_3/2).

We can now turn to proving the existence of a solution. Let (x,)pen be
a sequence of C§° (RN) cut-off functions supported in the ball B(0,p + 1)
of RY and equal to 1 in a neighborhood of B(0,p). For any p € N and

T > 0, Lemma 5.1 and Step 1 ensure that ((xph"™, xpt"™))nen is uniformly
N/2 2 (~N/2—1/2,N/2—3/2)N) and bounded

N/2 2N/2 5

equicontinuous in C([0,7); B,

in EN/2. Moreover the mapplng u — Xpu is compact from B,

Bé\’fl/2 1/2 and from B2’1/ into BN/2 1/2,N/2— 3/2
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We apply Ascoli’s theorem to the family ((xph", xpu"))nen on the time

interval [0, p], and then use Cantor’s diagonal process. This finally provides

us with a distribution (h, %) continuous in time with values in Bévl/%lﬁ X

(Eé\fl/Q_l/Q’N/Q_?’/Q)N and a subsequence (still denoted by ((R",@")) for sim-
plicity) such that for all p € N, we have
(5.10)

(uoh" ") 7= (el xpt) in C(0,pl: By "2 (By 27NN,

This obviously implies that (A", ") tends to (h, @) in Z'(RT x RY).
~ Coming back to the uniform estimates of Step 1, we moreover see that
(h,u) belongs to

L\RT; B2 x By n Loy By P 2N« (B77HM)

and to CY/4(R*; BN/2 1/2 (BN/2 Y2NIZ=3/2)N) - Obviously, we have the
bounds provided by (Pn) for this solution.

Let us now prove that (h,u) := (hz,ur) + (h, @) solves (3.1). We first
observe that, according to (5.1),

B - VR 4 div et = —hn div
n
O ! — Au 4 VI VAT 4 K (VA" e A
= — ATV - V(T =€) + fa-

The only problem is to pass to the limit in 2’(RT x RY) in the nonlinear
terms. This can be done by using the convergence results stemming from the
uniform estimates of Step 1 and the convergences (5.9) and (5.10).

As it is just a matter of tedious verifications, as an example we handle
the term L(h™)Au" (where L(z) := z/(z + 1)). Let § € C°(R* x RY) and
p € N be such that supp @ C [0,p] x B(0,p). We use the decomposition

OL(h")Au™ — OL(h)Au = OL(h")xpA(uf —ur) + OL(R")xpA(xp(a" — )
+ 0.Au(L(xh") — L(xph))-

As OL(h™) is w.b. in L®°(R™*; BN/Q) and u? — ug in L'(RT; BN/2+1),
the first term tends to 0 in LI(BN/Zf )
of Step 1 and (5.10), x,(a" — @) — 0 in L([0,p]; BN/2+1), so that the
second terms tends to 0 in L'(R™; Bévlﬂ Y. Clearly L(xph™) — L(xph) in

L>®(RT; BN/2) so that the third term also tends to 0 in L'(R*; BN/2 1).
The other nonlinear terms can be treated the same way.
We still have to prove that h is continuous in BN/2=2.N/2 314 that u
belongs to C(R™; BN/ 2 1) The continuity of w is straightforward. Indeed, u

According to the uniform estimates
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satisfies

ou=—u-Vu+ Au — Vh+ VA~ 1h—TAu— K(h)Vh+ f

and the right-hand side belongs to L= (R*; Bévl/ 2_1),
From the equation

(5.11) hy = — div(hu) — divu

and u€ L®(R*; By 2~ 1), he L¥(RY; By{* %), we get by € LX(R*; By (7).
It still remains to prove the continuity of A in B2 N2,

Applying the operator A, to (5.11), we get
(5.12) 0rAgh = —Agy(div hu) — AAKE.
Obviously, for fixed ¢ the right-hand side belongs to LIIOC(R+;L2) so that

each Ayh is continuous in time with values in L? (thus in Bév 1/ 2).
Now, we apply the energy method to (5.12). Thanks to Lemma 2.7, we
get

1 Agh72 < ClLAGR] L2 (G2 WN2|nll, vzl vz

N |
&‘&.

+ ||/1Aq£||L2 + 14g(hdivau)llz2).

So time integration yields
¢

2N Agh(1) 2 < 2772 Agholl 2 + C | (cq(r)IIR(T)]| el g
0 : ,

+ 20D A ()| + 2872)| Ag( div ) (7) | 2) dr

Since h € LOO(BN/Q), c LY 'é\fl/%l) and hdivu € Ll(Bé\jl/z), we eventually
get

Zsup2qN/2HA h(t)]| 2
qGZ =0

S ol gavgz + (LA P oo vy Ml 1 972y + IRV Ull vz < 00

LY(B

N/2) and we

In other words, >, - Agh converges uniformly in L>*(R*;B

can conclude that h belongs to C'(R*; BN/ ).
STEP 3: Further regularity properties for more regular data. Let s €
(N/2,N/2 + 1]. Under the additional assumption hg € 32 ;U0 € B2 . and

fe Ll(BSEI), we shall prove that the sequence ((h™,u™)),en is uniformly
bounded in E?.
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Applying Lemma 3.1 and Proposition 3.2 yields
IR, ™) e < Cexp (Cll™ll s vz bl gz + Nl gy
+ anHLl(B;jll) + ”FnHLl(égf!S) + HGnHLI(B;fll)
I pg))-
According to (5.3) and Lemmas 2.3, 2.6 and 2.7, we can write
™ s B2y S WA e rpvyz2vrzy ldiv 6l 5.
B e g I 7
|’Gn|’L1(B§31) + ||Hn"L1(B§31) S ||un||L2(BéV,{2)‘|vun"L2(B§31)
B e I i
T LA T PPt
We thus have
(5.13) (" w" ) < Cexp(Cllul] y gvyzea) ) lholl gy 2= + ol g2

F A gy + IR w2 l[(A" u™)l| s

Now, we conclude that ((hn,un))nen is uniformly bounded in E®. Indeed,
we can deduce by induction from (5.13) and assumption (P,) that

| w ) e < 2C exp (CMa) (ol -2 + luoll sy + 11 )

This clearly enables us to prove that the solution (h,w) built in the previous
section also belongs to E°.

STEP 4: Uniqueness. Suppose that (hi,u;) and (hg, u2) solve (3.1) with
the same initial data. If we define 6h = ho — h1 and du = us — uy, then
(6h, du) solves
Opdh + ug - VSh + A€ = JF,

Oh0E + ug - V6E — ASE — ASh — A~15h = 6G,

(5.14)

0s6n — uAdén = 0H,

Su = —A"'VE + AL div o,
with
0F = —du-Vhy —dhdivus — hy divdu,

. h h
6G = uy - V6E — A div <u2 -Vou+ du - Vuy + <1 —|-2h2 1 +1h1).,4u2
hy
+ T+ h A5u> + A(H (he) — 2 (h1))
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h h
SH = —A~1 curl(uz'V5“+6u'vul + (1 +2h2 1 ‘|‘lh1>AU2
hy
+ 1+h1A5u>’

and ¢ (z) = {; K(y) dy.
Since (h1,u1), (he,u2), (0h,du) € EN/Q, we can easily prove that 0F €
L3 (BN/2 5/2:N/2= 1/2) nd 6G,6H € L} (BN/2 3/2) for any finite T'. Apply
Lemma 3.1 and Proposition 3.2 to (5. 14) with s = N/2 — 1/2 to get
(5.15) 5k, )l gyre-12 < Coxplelual gy
X (||6F||L%ﬂ(éé\f{?—f’/l]\’/?—l/?) + ||5G||L%-‘(Bé\f{2_3/2) + HdHHL%(Bé\”{Q—?’/?))
Noticing that
% e LBy 2N n Lh(By]),
ut u? e LF (35{2 YL B[P
and
[hall Lo o,y xrry < 1/2,  [[hell oo (o, r)xrry < 1/2,
by the construction of solutions, we have with the help of interpolation ar-
guments
||5FHL%(§5{2*5/2,N/2*1/2) S thLFHLlT(Bé\j{Q)||5ULF”L°°(BQ{273/2)
+ thHFHL%"(Bg{Z)H(suHFHL,}F(Bg{QH/Q)

wyoi 0]
1

+ el

LOO(BN/2 5/2,N/2— 1/2),

160G, 1 ponv/2— 3/2) + [0 H]|

N/2— 3/2)

L} (B Li(By

~ HUQHL%O(BQ]{Q*HHéuHL%(Bé\j{QJFl/z) + ”uluL%O(Bé\’[{2*1)||6u”Ll (BN/2+1/2)
4 et Wl gy o 19 e s
1l g 190l e + Tl )

Hllhall oo g2 10BN o 2172y

L (B
Coming back to (5.15), we eventually get
100, Su)ll pvsa-1/2 < Z(T)|[(0h, 6u)| gv/z-1/2,
T T
with limsupp_,o+ Z(T') < CE(0).
Supposing that Ca < 1, we get [[(6h, 6u)|| v/2-1/2 = 0 for a T > 0 small
enough, hence (hg,u2) = (h1,u1) on [0,T]. !
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Let T}, (supposedly finite) be the largest time such that the two solutions
coincide on [0, T),]. If we denote

(hi(t), i () := (hi(t — Tp), ui(t — T))), i=1,2,

we can use the above arguments and the fact that ||h;(0)][~ < 1/4 to
prove that (ha,u2) = (h1,u1) on a suitable small interval [0,¢] (¢ > 0). This
completes the proof.
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