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On the convergence of sequences of iterates

of random-valued vector functions

by Rafał Kapica (Katowice)

Abstract. Given a probability space (Ω,A, P ) and a subset X of a normed space
we consider functions f : X × Ω → X and investigate the speed of convergence of the
sequence (fn(x, ·)) of the iterates fn : X × ΩN

→ X defined by f1(x, ω) = f(x, ω1),
fn+1(x, ω) = f(fn(x, ω), ωn+1).

Assume that (Ω,A, P ) is a probability space andX is a nonempty subset
of a separable normed space. Let B stand for the σ-algebra of all Borel
subsets of X. We say that f : X × Ω → X is a random-valued vector
function if it is measurable with respect to the product σ-algebra B⊗A. We
define the iterates fn, n ∈ N, on the set X ×Ω∞ as follows:

f1(x, ω1, ω2, . . .) = f(x, ω1),

fn+1(x, ω1, ω2, . . .) = f(f
n(x, ω1, ω2, . . .), ωn+1).

These iterates were defined independently in [4] and [5] and then studied
also in [10], [2] in the scalar case and in [7] in the vector case. They are useful
for instance in solving functional-integral equations (see, e.g., [3], [6]). In [7]
some conditions are established which guarantee the convergence (a.s. and
in L1) of (fn(x, ·)) with respect to the product measure.
For a real function f of the form

f(x) = Φx+ x1+αG(x)

where α is a positive number, G is a bounded function and Φ ∈ [0, 1],
we have very useful theorems of W. J. Thron [12] which say how fast the
sequence of iterates converges to zero, the unique fixed point, depending on
whether Φ ∈ (0, 1), Φ = 0 or Φ = 1 (see also [11; §1.3]). Some stochastic
versions of Thron’s theorems were obtained in [2] for scalar functions and
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in [8] for vector functions with derivative satisfying the assumptions of the
Krein–Rutman theorem [9] (cf. also [13], [14]).
The present paper is intended as an attempt to get results on the speed

of convergence of iterates of a random-valued vector function f : X×Ω → X
of the form

f(x, ω) = Φ(ω)x+H(x)G(x, ω)

in the case where X is a subset of a separable normed space.
Let f : X × Ω → X be a random-valued function on (Ω,A, P ). Then

fn : X ×Ω∞ → X is a random-valued function on the product probability
space (Ω∞,A∞, P∞). More exactly, the nth iterate fn is B⊗An-measurable,
where An denotes the σ-algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω
∞ : (ω1, . . . , ωn) ∈ A}

with A from the product σ-algebra An.
We start with the simplest case where f has the form

(1) f(x, ω) = xΦ(ω) for x ∈ X and ω ∈ Ω,

improving in particular Proposition 2 of [7] where the L1-boundedness of
(fn(x, ·)) was additionally assumed.

Proposition 1. Assume that Ω is not an atom of P , x ∈ X \ {0} and
f has the form (1) with Φ : Ω → R integrable. Then the sequence

(

fn(x, ·)
)

is uniformly integrable if and only if either E|Φ| < 1 or |Φ| = 1 a.s.

Proof. Clearly

(2) fn(x, ω) = x
n
∏

k=1

Φ(ωk) on Ω∞.

Assume that the sequence (fn(x, ·)) is uniformly integrable. We shall show
that

(3) E|Φ| ≤ 1.

Suppose not and let A be a measurable set such that

P (A) < 1 and
\
A

|Φ| dP > 0.

On account of (2) for all m,n ∈ N we have\
{ω∈Ω∞: ω1,...,ωm∈A}

‖fm+n(x, ·)‖ dP∞ = ‖x‖
(\
A

|Φ| dP
)m

(E|Φ|)
n
.

Hence

sup
n∈N

\
{ω∈Ω∞: ω1,...,ωm∈A}

‖fn(x, ·)‖ dP∞ =∞ for m ∈ N.



Iterates of random-valued functions 195

This together with

lim
m→∞

P∞({ω ∈ Ω∞ : ω1, . . . , ωm ∈ A}) = lim
m→∞

P (A)
m
= 0

contradicts the uniform integrability of (fn(x, ·)) and ends the proof of (3).
From (2) and (3) it follows that (fn(x, ·)) is L1-bounded. Due to [7; Propo-
sition 2] we have E|Φ| < 1 or |Φ| = 1 a.s. as desired.
According to (2) we have

E‖fn(x, ·)‖ = ‖x‖(E|Φ|)
n
for every n ∈ N,

and if E|Φ| < 1, then the sequence (fn(x, ·)) converges to 0 in L1; in par-
ticular it is uniformly integrable. In the case where |Φ| = 1 a.s., the uniform
integrability of (fn(x, ·)) is obvious.

Clearly, if Ω is an atom of P , then every sequence of integrable ran-
dom variables is uniformly integrable. In view of Proposition 1 we may
conclude that if Ω is not an atom of P , f has the form (1) and x ∈ X \ {0},
then (fn(x, ·)) converges in L1 to zero if and only if E|Φ| < 1. Moreover, if
−∞ < E log |Φ| < 0, then it also converges almost surely, which follows from

∣

∣

∣

n
∏

k=1

Φ(ωk)
∣

∣

∣
=

(

exp

{

1

n

n
∑

k=1

log |Φ(ωk)|

})n

and from the Kolmogorov strong law of large numbers. Obviously, the speed
of convergence of (2) depends on the real factor

∏n
k=1 Φ(ωk) only.

We shall show that the above fact holds in a more general setting, when
the random-valued function has a more general form and instead of one func-
tion we “iterate” a sequence of random-valued functions ϕn : X×Ωn→X,
where Ωn is an arbitrary probability space. In this case by the nth iterate
we understand the random-valued function fn : X ×

∏∞
k=1Ωk → X where

f0(x, ω1, ω2, . . .) = x, fn(x, ω1, ω2, . . .) = ϕn(f
n−1(x, ω1, ω2, . . .), ωn)

(cf. [8; Remark 3.1]).
Suppose now that ϕn : X ×Ωn → X has the form

ϕn(x, ω) = Φn(ω)x+Hn(x)Gn(x, ω),

where Φn : Ωn → (0,∞) is a positive random variable, Hn : X → R is
Borel and Gn : X ×Ωn → X is a random-valued function for every n ∈ N.
Clearly ϕn and their iterates f

n are random-valued functions. Following [2]
we consider the following two conditions:

(i) for every n ∈ N there exists a nonnegative random variable Mn and
positive constants α, βn such that

‖Gn(x, ω)‖ ≤Mn(ω) for x ∈ X, ω ∈ Ωn,

E(‖ϕn(x, ·)‖
α) ≤ βn‖x‖

α for x ∈ X
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and

(4) lim sup
n→∞

(β1 · · ·βnE(Mn/Φn))
1/n < 1;

(ii) x∗ is a continuous linear functional such that

x∗x > 0, |Hn(x)| ≤ x
∗x‖x‖α for x ∈ X, n ∈ N.

In what follows we denote by Ω∞ the product
∏∞
n=1Ωn equipped with

the product measure. We start with the following result.

Theorem 1. If (i) holds, then for all x ∈ X and almost every ω ∈ Ω∞

the sequence

(5)

(

x∗
fn(x, ω)
∏n
k=1 Φk(ωk)

)

converges to a positive random variable for every x∗ satisfying (ii).

This theorem will be proved together with the following one.

Theorem 2. Assume (i) and (ii) hold for an x∗. Then, for all x ∈ X,

(6) 0 < lim inf
n→∞

‖fn(x, ω)‖
∏n
k=1 Φk(ωk)

and lim sup
n→∞

‖fn(x, ω)‖
∏n
k=1 Φk(ωk)

<∞ a.s.

Moreover , if additionally the sequence (logΦn(ωn)) satisfies the Kolmogorov
strong law of large numbers, then, for x ∈ X,

lim
n→∞

(

log n
√

‖fn(x, ·)‖ −
1

n

n
∑

k=1

E logΦk

)

= 0 a.s.

In particular , if the Φn are identically distributed and E|logΦ1| <∞, then

lim
n→∞

n

√

‖fn(x, ·)‖ = exp{E logΦ1} a.s.

Proofs. Let x∗ satisfy (ii). Since

0 <
x∗fn(x, ω)

x∗fn−1(x, ω)
= Φn(ωn) +

Hn(f
n−1(x, ω))

x∗fn−1(x, ω)
x∗Gn(f

n−1(x, ω), ωn),

we have

x∗fn(x, ω) = x∗x

n
∏

k=1

(

Φk(ωk) +
Hk(f

k−1(x, ω))

x∗fk−1(x, ω)
x∗Gk(f

k−1(x, ω), ωk)

)

.

Cosequently,

x∗
fn(x, ω)
∏n
k=1 Φk(ωk)

= x∗x

n
∏

k=1

(

1 +
Hk(f

k−1(x, ω))

x∗fk−1(x, ω)

x∗Gk(f
k−1(x, ω), ωk)

Φk(ωk)

)

.
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To get the convergence of (5) to a positive and finite limit it is enough to
show that the series

(7)
∞
∑

n=1

∣

∣

∣

∣

Hn(f
n−1(x, ω))

x∗fn−1(x, ω)

x∗Gn(f
n−1(x, ω), ωn)

Φn(ωn)

∣

∣

∣

∣

converges. To do this observe that by (i) and (ii) we have
∣

∣

∣

∣

Hn(f
n−1(x, ω))

x∗fn−1(x, ω)

x∗Gn(f
n−1(x, ω), ωn)

Φn(ωn)

∣

∣

∣

∣

≤ ‖x∗‖ ‖fn−1(x, ω)‖
α Mn(ωn)

Φn(ωn)

and

E(‖fn(x, ·)‖α) ≤ βnE(‖f
n−1(x, ·)‖)α ≤ · · · ≤ βn · · ·β1‖x‖

α,

whence according to (4) the series

(8)
∞
∑

n=1

E(‖fn−1(x, ·)‖α)E(Mn/Φn)

converges. Consequently, for every x ∈ X and a.s. ω ∈ Ω∞ the series (7)
converges for every x∗ satisfying (ii). This ends the proof of Theorem 1 and
of the first part of (6).

Fix now x ∈ X. Then

‖fn(x, ω)‖

‖fn−1(x, ω)‖
≤ Φn(ωn) +

|Hn(f
n−1(x, ω))| ‖Gn(f

n−1(x, ω), ωn)‖

‖fn−1(x, ω)‖

≤ Φn(ωn) + ‖x
∗‖ ‖fn−1(x, ω)‖αMn(ωn),

whence

‖fn(x, ω)‖
∏n
k=1 Φk(ωk)

≤ ‖x‖
n
∏

k=1

(

1 + ‖x∗‖ ‖fk−1(x, ω)‖α
Mk(ωk)

Φk(ωk)

)

.

Since the convergence of the series (8) implies a.s. convergence of the product
on the right hand side, this inequality proves the second part of (6).

The second assertion of Theorem 2 follows easily from (6) and from the
equality

log n
√

‖fn(x, ω)‖ −
1

n

n
∑

k=1

E logΦk

=
1

n
log
‖fn(x, ω)‖
∏n
k=1 Φk(ωk)

+
1

n

n
∑

k=1

(

logΦk(ωk)− E logΦk
)

.

We now deduce a corollary concerning l1. We call an element of l1 positive
if it is nonzero and has all the coordinates nonnegative.
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Corollary 1. Let X be a set of positive elements of l1 and suppose f
has the form

f(x, ω) = Φ(ω)x+H(x)G(x, ω)

with a random variable Φ : Ω → (0,∞), a Borel H : X → R and a random-

valued function G : X ×Ω → X. Assume that there exist a positive random
variable M and constants α > 0, β ∈ (0, 1) such that

E(M/Φ) <∞, ‖G(x, ω)‖ ≤M(ω) for x ∈ X, ω ∈ Ω,

|H(x)| ≤ ‖x‖1+α, E‖f(x, ·)‖α ≤ β‖x‖α for x ∈ X.

Then for every x ∈ X the sequence
(

fn(x, ω)
∏n
k=1 Φ(ωk)

)

converges a.s. to a measurable function with positive values in l1. Moreover ,
if E|logΦ| <∞, then, for x ∈ X,

lim
n→∞

n

√

‖fn(x, ·)‖ = exp{E logΦ} a.s.

Proof. Fix x ∈ X, x∗ ∈ l∗1 and let x
∗
1, x
∗
2 ∈ l

∗
1 be positive functionals

such that x∗ = x∗1 − x
∗
2. Replacing (if necessary) x

∗
i by x

∗
i + x

∗
0, where

x∗0(x) =
∑∞
n=1 xn, we may assume that

|H(x)| ≤ x∗i x‖x‖
α and x∗i x > 0 for x ∈ X, i = 1, 2.

By Theorem 1,
(

x∗i
fn(x,ω)
∏

n

k=1
Φ(ωk)

)

converges a.s., hence so does
(

x∗ fn(x,ω)
∏

n

k=1
Φ(ωk)

)

,

and the exceptional set is independent of x∗. Since l1 is weakly sequentially
complete, this shows that for a.e. ω ∈ Ω∞ the sequence

(

fn(x, ω)
∏n
k=1 Φ(ωk)

)

weakly converges and by the Banach–Schur property of l1 (which means
that every weakly convergent sequence is strongly convergent; see, e.g., [1;
p. 200]) it converges in norm. Clearly, the limit is nonnegative and by the
first part of (6) it is nonzero.

Note that Corollary 1 also holds if X is a subset of an arbitrary finite-
dimensional normed space.
Now we proceed to the case where Φ = 0. The following simple lemma

will be used in the proof of Theorem 3.

Lemma 1. If un, Rn, vn are integrable random variables such that

(9) un ≤ Rn ≤ vn,

∞
∑

n=1

E(vn − un) <∞

and one of the series
∑∞
n=1un,

∑∞
n=1vn converges a.s., then so does

∑∞
n=1Rn.
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Theorem 3. Assume that there exist positive random variables ξn, ζn
on Ωn and a constant γ > 1 such that

‖x‖γξn(ω) ≤ ‖ϕn(x, ω)‖ ≤ ‖x‖
γζn(ω) for x ∈ X, ω ∈ Ωn, n ∈ N.

If the series
∞
∑

n=1

γ−nE log ξn,

∞
∑

n=1

γ−nE log ζn

converge and

(10)
∞
∑

n=1

γ−2nD2 log ξn <∞ or

∞
∑

n=1

γ−2nD2 log ζn <∞,

then for every x ∈ X \ {0} the sequence

(11) (‖fn(x, ·)‖γ
−n

)

converges a.s. to a positive random variable.

Proof. Let

Fn(x, ω) =
‖ϕn(x, ω)‖

‖x‖γ

for x ∈ X \ {0}, ω ∈ Ωn, n ∈ N. Clearly

Fn(x, ω) > 0 for x ∈ X \ {0}, ω ∈ Ωn, n ∈ N,

and an easy induction shows that

‖fn(x, ω)‖ = ‖x‖γ
n

n
∏

k=1

Fk(f
k−1(x, ω), ωk)

γn−k .

Therefore

log ‖fn(x, ω)‖γ
−n

= log ‖x‖+
n
∑

k=1

γ−k logFk(f
k−1(x, ω), ωk)

and to get the a.s. convergence of (11) to a positive random variable it is
enough to show that the series

(12)

n
∑

k=1

γ−k logFk(f
k−1(x, ω), ωk)

converges a.s. To this end put

un(ω) =
log ξn(ωn)

γn
, Rn(ω) =

logFn(f
n−1(x, ω), ωn)

γn
, vn(ω) =

log ζn(ωn)

γn
,

observe that (9) holds and assume that the first series in (10) converges.
Since the un are independent random variables and the series

∑∞
n=1Eun

and
∑∞
n=1D

2un converge, it follows that
∑∞
n=1 un converges a.s. Applying

Lemma 1 we get the desired a.s. convergence of (12).
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Note that if ξn and ζn do not depend on n, and log ξ1 and log ζ1 are
integrable, then the series

∑∞
n=1 un and

∑∞
n=1 vn (defined in the above

proof) converge absolutely a.s. This leads us to the following corollary.

Corollary 2. Assume that there exist positive random variables ξ, ζ
on Ω and a constant γ > 1 such that

‖x‖γξ(ω) ≤ ‖f(x, ω)‖ ≤ ‖x‖γζ(ω) for x ∈ X,ω ∈ Ω.

If log ξ and log ζ are integrable then for every x ∈ X \ {0} the sequence

(‖fn(x, ·)‖γ
−n

)

converges a.s. to a positive random variable.
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