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Toric Hermitian surfaces and almost Kähler structures

by Włodzimierz Jelonek (Kraków)

Abstract. The aim of this paper is to investigate the class of compact Hermitian
surfaces (M, g, J) admitting an action of the 2-torus T 2 by holomorphic isometries. We
prove that if b1(M) is even and (M, g, J) is locally conformally Kähler and χ(M) 6= 0 then
there exists an open and dense subset U ⊂M such that (U, g|U ) is conformally equivalent
to a 4-manifold which is almost Kähler in both orientations. We also prove that the class
of Calabi Ricci flat Kähler metrics related with the real Monge–Ampère equation is a
subclass of the class of Gibbons–Hawking Ricci flat self-dual metrics.

0. Introduction. Let (M, g, J) be a compact Hermitian surface with
J-invariant Ricci tensor and even first Betti number b1. Then it admits a
non-trivial isometry group G = Iso(M, g). The identity component G0 of G
is a compact, connected Lie group whose center is at least one dimensional.
Let us assume that dimG ≥ 2. Then G0 contains a 2-torus T 2, which is
contained in a maximal torus T of G0.
The aim of this paper is to investigate compact Hermitian surfaces

(M, g, J) admitting an action of a 2-torus T 2 by biholomorphic isometries.
In [L] LeBrun has proved that if there exists a compact Einstein Hermitian
structure different from the Page Einstein structure [P] on the first Hirze-
bruch surface F1 then it is the blow up M of CP

2 in two or three points. It
is known that the blow up of CP 2 in three points admits an Einstein–Kähler
metric [T-2]. On the other hand, the connected component of the group of
isometries ofM in the case of the blow up of CP 2 in two points is a 2-torus T 2

which acts on M by biholomorphic isometries. In [J-4] the author classified
the Riemannian bi-Hermitian Gray structures (i.e. Gray metrics admitting
two differently oriented orthogonal complex structures) on Hirzebruch sur-
faces which are of co-homogeneity 1. (We should warn the reader that the
notion of a bi-Hermitian surface has been recently used also in a different
sense, namely to mean a surface admitting two positively oriented Hermitian
structures). Other such surfaces if exist are ruled surfaces of genus 0 with
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an appropriate metric whose identity component of the isometry group is
again a 2-torus T 2 acting by biholomorphic isometries. These two examples
gave the motivation for the study of toric Hermitian surfaces.

1. Hermitian 4-manifolds. Let (M, g, J) be an almost Hermitian
manifold. We say that (M, g, J) is a Hermitian manifold if its almost Her-
mitian structure J is integrable. In the following we shall consider 4-dimen-
sional Hermitian manifolds (M, g, J) which we shall also call Hermitian sur-
faces. Such manifolds are always oriented and we choose an orientation in
such a way that the Kähler form Ω(X,Y ) = g(JX, Y ) is self-dual (i.e.
Ω ∈ ∧+M). The vector bundle of self-dual forms admits a decomposition
(1.1)

∧+
M = RΩ ⊕ LM,

where LM denotes the bundle of real J-skew-invariant 2-forms (i.e. LM =
{Φ ∈ ∧M : Φ(JX, JY ) = −Φ(X,Y )}). The bundle LM is a complex line
bundle over M with the complex structure J defined by (JΦ)(X,Y ) =
−Φ(JX, Y ). For a 4-dimensional Hermitian manifold the covariant deriva-
tive of the Kähler form Ω is locally expressed by

(1.2) ∇Ω = a⊗ Φ+ J a⊗ JΦ,
where J a(X) = −a(JX). The Lee form θ of (M, g, J) is defined by the
equality

(1.3) dΩ = θ ∧Ω.
We have θ = −δΩ ◦ J . The conformal scalar curvature κ of an almost
Hermitian manifold (M, g, J) is defined by

(1.4) κ = τ − 32 (|θ|2 + 2δθ).
We denote by iso(M) the Lie algebra of the group of isometries Iso(M) of
(M, g).

Proposition 1. Assume that (M, g, J) is a compact locally conformally
Kähler surface such that the Euler characteristic χ(M) is not zero or which
is conformally Kähler. Then

θ(ξ) = 0

for every holomorphic Killing vector field ξ ∈ iso(M).

Proof. Note that LξΩ = 0 and consequently 0 = dLξΩ = LξdΩ =
Lξ(θ ∧Ω) = Lξθ ∧Ω. Consequently, dθ(ξ) = 0 and θ(ξ) = const. Note that
θ♯ ∈ X(M) vanishes somewhere on M , since χ(M) 6= 0 or because θ = df
and M is compact. Consequently, θ(ξ) = 0.

Corollary 1. Let (M, g, J) be a compact Hermitian locally conformally
Kähler surface with b1 even. Then an infinitesimal isometry ξ of (M, g) is
holomorphic if and only if θ(ξ) = 0.
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Proof. The surface (M, g, J) is conformally Kähler by a result of I. Vais-
man [V]. Let θ = df be the Lee form of (M, g, J). Then g = exp(−f)g is a
Kähler metric onM . If θ(ξ) = 0 then ξf = 0 and consequently, ξ ∈ iso(M, g).
On the other hand, it is well known that on a compact Kähler manifold every
Killing vector field is holomorphic (see [Kob, p. 93, Th. 4.3]).

Let R mean the curvature tensor of (M, g) and let R denote the corre-
sponding endomorphism R : ∧2M → ∧2M . Let us define B = 12 (R−∗R∗);
W = 1

2 (R + ∗R∗)0 = 1
2 (R + ∗R∗) − τ

12 Id; W
+ = 1

2 (W + ∗W ); W− =
1
2 (W − ∗W ). Then

R = τ

12
Id+B +W+ +W−.

The Ricci tensor ̺ of a Hermitian manifold (M, g, J) is said to be Hermi-
tian if ̺(X,Y ) = ̺(JX, JY ) for allX,Y ∈ X(M). If (M, g, J) is a Hermitian
conformally Kähler surface then

(1.5) W+Ω = 16κΩ, W+Φ = − 112κΦ if Φ ∈ LM.

An opposite (almost) Hermitian structure on a Hermitian 4-manifold
(M, g, J) is an (almost) Hermitian structure J whose Kähler form (with
respect to g) is anti-self-dual. A bi-Hermitian surface is a Hermitian surface
which admits an opposite Hermitian structure.

On any almost Kähler non-Kähler 4-manifold (M, g, J) there are two
natural distributions D = {X ∈ TM : ∇XJ = 0} and D⊥ defined in
the open set U = {x : |∇Jx| 6= 0}. We call D the nullity distribution of
(M, g, J). From (1.2) it is clear that D is J-invariant and that dimD = 2 in
U = {x ∈ M : ∇Jx 6= 0}. By D⊥ we denote the orthogonal complement of
D in U . On U we can define an opposite almost Hermitian structure J by
setting JX = JX if X ∈ D⊥ and JX = −JX if X ∈ D; we shall call it the
natural opposite almost Hermitian structure. We have (see [J-3])

Theorem 1. Assume that (M, g, J) is a compact conformally Kähler
Hermitian surface with J-invariant Ricci tensor and let (M, g0, J) be a
Kähler surface in the conformal class (M, [g], J). Then both (M, g, J),
(M, g0, J) admit a holomorphic Killing vector field ξ with zeros such that
∇ξJ = 0, where ∇ is the Levi-Civita connection of (M, g). Moreover ξ =
J∇u where∇ is the Levi-Civita connection of (M, g0), u is a positive, smooth
function on M such that g = u−2g0, and

(1.6)
∇ξ0ξ0 = −∇α+ αJξ0, g0(ξ, ξ) = α

2,

θ(X) = −2αg(Jξ0, X),
where ξ0 =

1√
g(ξ,ξ)

ξ is defined in U = {x : ξx 6= 0}, α = 1
2
√
2

√

g(∇J,∇J).
The Killing vector field ξ belongs to the center z(iso(M)) of iso(M).
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We say that a holomorphic Killing vector field η on (M, g, J) is potential
with potential function f if η = J(∇f) where ∇f is the gradient of f with
respect to g.

Corollary 2. Assume that (M, g, J) is a compact conformally Kähler
non-Kähler Hermitian surface with J-invariant Ricci tensor and let η be
a potential holomorphic Killing vector field for (M, g, J). Then η = cξ for
some c ∈ R− {0}.

Proof. Since (M, g, J) is conformally Kähler, there exists a non-constant
function φ ∈ C∞(M) such that θ = dφ. It follows that the metric g =
exp(−φ)g is Kähler. Denote by ∇ the Riemannian connection for (M, g).
Then

∇XY = ∇XY − 12 (dφ(X)Y + dφ(Y )X − g(X,Y )∇φ).
Now assume that η = ∇f for some f ∈ C∞(M). Then η is a vector field with
zeros. Since θ(η) = 0 it follows that η is also a holomorphic Killing vector
field for (M, g, J). Consequently, there exists a function h ∈ C∞(M) such
that η = J(∇h). Note that ∇h = exp(−φ)∇h. Consequently, exp(φ)dh = df
and dφ∧dh = 0. It follows that there exists a function c ∈ C∞(M) such that
∇f = c∇φ. Denote by KXY the difference tensor KXY = ∇XY − ∇XY .
Then KηX = −12 (dφ(X)η−g(η,X)∇φ). Since η = cJ(∇φ) it is not difficult
to show that [Kη, J ] = 0 and consequently ∇ηJ = 0. It follows that η ∈
Γ (D). Since ξ ∈ Γ (D) and θ(η) = 0 it follows that ξ, η are parallel and
consequently, there exists a constant c ∈ R such that η = cξ.

2. Toric Hermitian surfaces. In this section we shall give the descrip-
tion of compact Hermitian surfaces whose group of holomorphic isometries
contains a 2-torus.

Lemma A. Assume that a Riemannian manifold (M, g) admits two com-
muting Killing vector fields ξ, η. Then

R(ξ, η)X = [T,K]X,

where T = ∇ξ, K = ∇η and [T,K] = T ◦K −K ◦ T .

Proof. Define ψ(x) = g(ξx, ηx). Since [ξ, η] = 0 it is clear that Xψ =
g(∇Xξ, η) + g(ξ,∇Xη) = −2g(∇ξη,X). Consequently,
(2.1) Tη = Kξ = −12∇ψ.
The relations (2.1) imply

R(X, ξ)η + T ◦KX = −12∇X∇ψ, R(X, η)ξ +K ◦ TX = −12∇X∇ψ.
Thus R(ξ, η)X = R(X, η)ξ −R(X, ξ)η = [T,K]X.
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Definition. A toric Hermitian surface (M, g, J) is a Hermitian surface
which admits two linearly independent, commuting holomorphic Killing vec-
tor fields ξ, η such that Ω(ξ, η) = 0.

Let T be a connected subgroup of Iso(M, g) corresponding to the Abelian
Lie algebra t = span{ξ, η} ⊂ iso(M, g). By a volume function of the toric
action of T on (M, g) we mean any function V = g(ξ, ξ)g(η, η) − g(ξ, η)2,
where ξ, η is any basis of t. Note that V is determined uniquely up to a
constant factor. Note that we do not assume that T is a torus.

Remark. Recall that a symplectic 4-manifold is called toric if it admits
a Hamiltonian action of a 2-torus T with an invariant moment map. Thus if
(M, g, J) is Kähler then our definition does not coincide with the usual one.
However, it does if T is a 2-torus and M is simply connected and Kähler.
We have:

Proposition 2. Assume that (M, g, J) is a compact locally conformally
Kähler Hermitian surface with two commuting holomorphic Killing vector

fields ξ, η and non-vanishing Euler characteristic. Then Ω(ξ, η) = 0 on the
whole of M . If (M, g, J) is conformally Kähler and χ(M) = 0 then either
Ω(ξ, η) = 0 on the whole of M , or Ω(ξ, η) 6= 0 on the whole of M and the
Lee form of (M, g, J) equals θ = −d ln |Ω(ξ, η)|.
Proof. Note that

d(Ω(ξ, η)) = d(iξiηΩ) = dΩ(ξ, η, ·) = −θΩ(ξ, η),
since Proposition 1 implies θ(ξ) = θ(η) = 0. Consequently, in the open
subset U = {x ∈ M : Ω(ξ, η) 6= 0} we have θ = −d ln |Ω(ξ, η)|. Since θ is
a smooth 1-form on M it follows that either U = ∅ or Ω(ξ, η) 6= 0 on the
whole of M .

Now we shall show

Corollary 3. Let g be a Gray bi-Hermitian metric (see [J-1]) on one of
the Hirzebruch surfaces Fk. Then (Fk, g) is a toric Hermitian surface with
respect to both complex structures J, J on Fk.

Proof. Let ξ, ξ be potential Killing holomorphic fields for (Fk, g, J) and
(Fk, g, J) respectively. If ξ∧ ξ = 0 then (Fk, g) is of co-homogeneity 1 and is
toric with respect to J, J . Assume that ξ ∧ ξ 6= 0. From [J-1] it follows that
the Lee forms θ, θ satisfy an equation

θ + θ = d ln |λ− µ|.
Thus θ(ξ) = d ln |λ − µ|(ξ) − θ(ξ) = 0. Analogously θ(ξ) = 0. It follows
from Corollary 1 that ξ ∈ hol(Fk, J) and ξ ∈ hol(Fk, J). Theorem 1 implies
[ξ, ξ] = 0. Since χ(Fk) 6= 0 the result is a consequence of Proposition 2.
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Let F be an oriented distribution of constant dimension k. Then by
the characteristic form of F we mean the form ωF = e1 ∧ · · · ∧ ek where
{e1, . . . , ek} is any oriented, orthonormal basis of F .

Lemma B. Let (M, g, J) be a 4-dimensional Hermitian manifold. Let ξ, η
be two linearly independent commuting Killing vector fields, holomorphic
with respect to J and such that Ω(ξ, η) = 0, where Ω is the Kähler form of
(M, g, J). Let U = {x : ‖ξx ∧ ηx‖ 6= 0} ⊂ M and consider the distribution
V = span

R
{ξ, η} in U . Then U is an open and dense subset ofM , V ⊥ = JV ,

KV ⊂ V ⊥, TV ⊂ V ⊥ where T,K are as in Lemma A. What is more, V, JV
are integrable distributions, the form Φ = ωJV +ωV , where ωJV , ωV are the
characteristic forms of the foliations V, JV respectively , belongs to LJM ,
and JV is totally geodesic. The characteristic form ωJV of the foliation
JV is closed. Moreover if (M, g, J) is Kähler , or compact and conformally
Kähler , then KV ⊥ ⊂ V , TV ⊥ ⊂ V , the form Φ = ωJV +ωV is an eigenform
of the positive Weyl tensor W+, and the form Φ = ωJV −ωV is an eigenform
of the negative Weyl tensor W−.

Proof. Note first that U is an open and dense subset ofM . It is clear from
the assumptions that V ⊥ = JV . Define φ(x) = g(ξ, ξ)x, ψ(x) = g(ξ, η)x,
χ(x) = g(η, η)x. Then Tξ = −12∇φ, Tη = Kξ = −12∇ψ, Kη = −12∇χ.
Since ξ, η are perpendicular to ∇φ, ∇ψ, ∇χ it follows that KV ⊂ V ⊥ and
TV ⊂ V ⊥. Note that J is integrable and consequently Jξ, Jη are real holo-
morphic vector fields. Thus [Jξ, Jη] = 0 and it follows that JV is integrable.
Moreover JV is totally geodesic, since it is the orthogonal complement of a
distribution spanned by Killing vector fields. Since the orthogonal comple-
ment of JV is the involutive distribution V it follows that the characteristic
form of JV is closed.

Let E1, E2 be an orthonormal basis of V . Consequently, E3 = JE1, E4 =
JE2 is an orthonormal basis of V

⊥. We have Ω = E1∧E3+E2∧E4. The form
Φ = E1∧E2−E3∧E4 belongs to LJM and the form Φ = E1∧E2+E3∧E4
belongs to

∧−
M . Note that ωV = E1 ∧ E2 and ωJV = −E3 ∧ E4 are the

characteristic forms of the foliations V, JV respectively. Now, assume that
(M, g) is conformally Kähler, i.e. there exists a function f ∈ C∞(M) for
which the metric exp(−f)g is Kähler, and θ = df . Note that KJV ⊂ V if
and only if g(KJη, Jξ) = 0.

We shall show that g(∇Jηη, Jξ) = 0. Note that
g(∇Jηη, Jξ) = g(∇η(Jη), Jξ) = g(∇ηJ(η), Jξ) + g(J∇ηη, Jξ)

= g(∇ηJ(η), Jξ).
On the other hand,

g(∇XJ(Y ), Z) = 32 (dΩ(X, JY, JZ)− dΩ(X,Y, Z))



Toric Hermitian surfaces 209

since J is Hermitian. Consequently,

(2.2) g(∇ηJ(η), Jξ) = 32 (−dΩ(η, Jη, ξ)− dΩ(η, η, Jξ)) = −32dΩ(η, Jη, ξ).
If (M, g, J) is Kähler then the result is obvious. Now assume thatM is com-
pact conformally Kähler. It is clear from Corollary 1 that θ(ξ) = θ(η) = 0.
Thus Ω(ξ, η) = 0 implies that dΩ(η, Jη, ξ)=0 and consequently, g(KJη, Jξ)
= 0. Analogously one can prove that TJV ⊂ V . Let E1, E2 be an orthonor-
mal basis of V . Write c(x) = ‖ξx ∧ ηx‖. Then

cR(E1 ∧ E2)X = ±R(ξ, η)X = ±[T,K]X.
Note that [T,K] preserves both distributions V, JV . Consequently,

R(E1, E2) = αΦ+ βΦ.

It follows that R(E1 ∧ E2) = αΦ + βΦ. Note that E1 ∧ E2 = 1
2 (Φ + Φ).

Thus R( 12 (Φ + Φ)) = αΦ + βΦ. Since for every holomorphic Killing vector
field ζ we have θ(ζ) = 0 it follows that both ξ, η are holomorphic Killing
vector fields for the Kähler metric exp(−f)g. Note further that ∇ξJ =
∇ηJ = 0 since ∇J = 0, where ∇ is the Levi-Civita connection of the Kähler
metric exp(−f)g. Consequently, [T , J ] = [K,J ] = 0 where we have set
T = ∇ξ, K = ∇η. It follows that J ◦ [T ,K] = [T ,K] ◦ J and consequently
R( 12 (Φ+Φ)) = βΦ, where R is the curvature tensor of the Kähler manifold
(M, exp(−f)g). Since exp(−f)g is a Kähler metric and Φ ∈ LJM it is clear
that R(Φ) = 0. Consequently, R(Φ) = 2βΦ, which means that W (Φ) =
W
−
(Φ) = λΦ. Since the Weyl tensor W is a conformal invariant of the

conformal manifold (M, [g]) it follows that Φ,Φ are eigenvectors of the Weyl
tensors W+,W− of (M, g) respectively.
We also have W (Φ) = W+(Φ) = − κ

12Φ where κ is the conformal scalar
curvature of (M, g, J). Note also that α = 1

24 (τ − κ).
Now we shall give several interesting examples of almost Kähler struc-

tures on compact and non-complete 4-dimensional Riemannian manifolds.
Namely we shall prove

Theorem 2. Assume that (M, g, J) is Kähler or compact conformally
Kähler 4-dimensional toric Hermitian surface. Let v be a volume function
of a toric action. Then there exists an open and dense subset U ⊂ M and
a function f ∈ C∞(U) such that the Hermitian surface (U, g∗), where g∗ =
fg|U , satisfies the following conditions:
(a) U = {x ∈M : v(x) 6= 0},
(b) f = 1/

√
v,

(c) the eigenspace LJM of the Weyl tensor W
+ of (U, g∗) is spanned by

two Kähler forms Φ, Ψ of two orthogonal almost Kähler structures
compatible with the metric g∗,



210 W. Jelonek

(d) the almost Hermitian structure Φ which is the natural opposite struc-
ture with respect to Φ is globally defined on U and Φ is an almost
Kähler structure on (U, g∗),

(e) the form Φ is an eigenvector of the negative Weyl tensor W−.

Proof. We have two holomorphic Killing fields ξ, η such that [ξ, η] = 0.
Recall that if ξ, η is a basis of an Abelian subalgebra t ⊂ iso(M, g) then
the volume function of the toric action is v = g(ξ, ξ)g(η, η)− g(ξ, η)2. Then
v ∈ C∞(M) and let U = {x ∈ M : v(x) 6= 0}. It is clear that U is an
open and dense subset of M . On U there is defined a frame ξ, η, Jξ, Jη.
Note that any two of the vector fields of the frame commute. Denote by
θξ, θη, θJξ, θJη the dual co-frame. Then dθξ = dθη = dθJξ = dθJη = 0.
Define V = span{ξ, η}. Then V ⊥ = JV = span{Jξ, Jη}.
Now we define an orthonormal frame on U by

E1 =
1√
φ
ξ, E2 =

1
√

g(η⊥, η⊥)
η⊥, E3 = JE1, E4 = JE2,

where

η⊥ = η − g(ξ, η)

g(ξ, ξ)
ξ and φ = g(ξ, ξ).

Let {θ1, θ2, θ3, θ4} be a dual orthonormal co-frame. Then

(2.3)

θξ =
1√
φ
(θ1 − cos(ξ, η)θ2), θη =

1
√

g(η⊥, η⊥)
θ2,

θJξ =
1√
φ
(θ3 − cos(ξ, η)θ4), θJη =

1
√

g(η⊥, η⊥)
θ4.

Note that

(2.4) θξ ∧ θη =
1√
v
θ1 ∧ θ2, θJξ ∧ θJη =

1√
v
θ3 ∧ θ4.

If we change conformally the metric g to g∗ = fg and define an orthonor-
mal frame {Ef1 , Ef2 , Ef3 , Ef4 } and an orthonormal co-frame {θf1 , θf2 , θf3 , θf4 }
with respect to g∗ analogously to the above then θ

f
i =
√
fθi. Consequently,

if we take f = 1/
√
v then

(2.5) θξ ∧ θη = θf1 ∧ θf2 , θJξ ∧ θJη = θf3 ∧ θf4
on U . In what follows we shall only consider the metric g∗ on U and we shall
write θi = θfi . Let Φ = θ1 ∧ θ2 + θ3 ∧ θ4. Note that the Kähler form Ω∗ =
g∗(JX, Y ) of the Hermitian structure J of (U, g∗) equalsΩ∗ = θ1∧θ3+θ2∧θ4.
Thus Ω∗ ∧ Φ = 0 and J, Φ♯ are orthogonal. Now it is clear that dΦ = 0,
i.e. Φ♯ is an almost Kähler structure on (U, g∗). It follows that (see [S])
Ψ ♯ = J ◦ Φ♯ is also an almost Kähler structure on (U, g∗). Note that Ψ =
θ1∧θ4−θ2∧θ3. Since ξv = ηv = 0 it follows that ξ, η are holomorphic Killing
vector fields on (U, g∗, J). Consequently, Lemma B implies that ωJV = θ3∧θ4
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is a closed form. Thus the closed 2-form Φ = θ1 ∧ θ2− θ3 ∧ θ4 determines an
opposite almost Kähler structure compatible with g∗. In view of Lemma B
this form is an eigenvector of the negative Weyl tensor W− of (U, g∗). Since
the distribution JV is totally geodesic and preserved by the almost Kähler

structure Φ♯ it follows that Φ
♯
is the natural opposite almost Hermitian

structure of Φ♯. Since (M, g, J) is conformally Kähler, Ω is an eigenvalue of
the positive Weyl tensor W+ and W+ is degenerate. The eigenspace LJM
corresponding to the eigenvalue of double multiplicity is clearly spanned by
the forms Φ, Ψ .

S. Salamon introduced in [S, p. 117, (c)] a class of compact complex
4-manifolds (M, g) admitting a circle of almost Kähler structures Ωt =
cos t Φ + sin t Ψ where g(Φ, Ψ) = 0. It is clear that the form µ = Φ + iΨ
is a holomorphic symplectic form trivializing the canonical bundle of M .
Consequently, the Kodaira theorem ([Kod, Th. 19]) asserts that any such
manifold is of the form C

2/Γ where Γ is a group of affine transformations
leaving invariant the standard symplectic form dz1 ∧ dz2 (see [S], [Kod]). In
[S] there is given an example of such manifolds called the Kodaira–Thurston
manifold. Below we present other elementary examples on a standard 4-torus
T 4 = C

2/Γ .

Corollary 4. On the torus T 4 there exist uncountably many Rieman-
nian metrics gφ,ψ admitting in both orientations a circle of almost Kähler
structures which are eigenvalues of the Weyl tensor W of (T 4, gφ,ψ). The
manifolds (T 4, gφ,ψ) are not hyper-Kähler. These metrics are parameterized
by smooth, real , periodic functions φ, ψ : R→ R.

Proof. Consider the 2-tori T 2 = R
2/2πZ

2 with metric

gφ = dt
2 + exp 2φ(t)ds2

and standard complex structure Jφ, where φ : R→ R is a smooth, periodic
function satisfying φ(t + 2π) = φ(t) and Jφ(∂/∂t) = exp(−φ)∂/∂s. It is
clear that (T 2, gφ) admits in general only one Killing vector field ξφ = ∂/∂s.
Note that on T 4 we have two complex structures of interest: J = Jφ + Jψ,
J = Jφ − Jψ, and both (T 4, g, J) and (T 4, g, J), where g = gφ + gψ, are
Kähler with two holomorphic Killing vector fields ξφ, ξψ. Now if (T

4, g) =
(T 2, gφ) × (T 2, gψ) then the Kähler surface (T 4, g) (in both orientations)
admits two holomorphic Killing vector fields ξφ, ξψ such that [ξφ, ξψ] = 0
and Ω(ξφ, ξψ) = 0. In our case the function v = exp(2φ + 2ψ) is nowhere
zero on M = T 4. Consequently, the manifold (T 4, gφ,ψ) with the metric
gφ,ψ = exp−(φ + ψ)g admits in both orientations two circles of almost
Kähler structures. Every circle spans an eigenspace of the Weyl tensor W±

corresponding to the eigenvalue of W± of multiplicity 2.
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Proposition 3. Let (M, g, J) be a compact conformally Kähler Hermi-
tian surface with χ(M) 6= 0 whose group of holomorphic isometries contains
a 2-torus. Then there exists an open and dense subset U of M such that
(U, g|U) is locally isometric to the manifold (R4, g0), where

g0 = φ(x1, x2)dx
2
1 + 2χ(x1, x2)dx1 ⊙ dx2 + ψ(x1, x2)dx22(2.6)

+ φ(x1, x2)dx
2
3 + 2χ(x1, x2)dx3 ⊙ dx4 + ψ(x1, x2)dx24,

φ(x) > 0, ψ(x) > 0, V (x) > 0 on R
2 where V (x) = φψ − χ2 and φ, ψ, χ ∈

C∞(R2). The complex structure on (R4, g0) is induced from C
2 = R

4, ex-
plicitly J(∂/∂x3) = ∂/∂x1, J(∂/∂x4) = ∂/∂x2. The fields ξ = ∂/∂x3, η =
∂/∂x4 are holomorphic vector fields on (R

4, J) and g(ξ, ξ) = φ, g(ξ, η) = χ,
g(η, η) = ψ. The Kähler metric

g0 =
∂2f

∂x21
dz1 ⊗ dz1 +

∂2f

∂x1∂x2
dz1 ⊗ dz2(2.7)

+
∂2f

∂x1∂x2
dz2 ⊗ dz1 +

∂2f

∂x22
dz2 ⊗ dz2,

where f is some strictly convex function on R
2, is toric.

Proof. See also [A]. Define U = {x ∈M : the T 2-action is free at x} and
let V = g(ξ, ξ)g(η, η)− g(ξ, η)2 = φψ − χ2. Then U = {x : V (x) 6= 0} and
ξ 6= 0, η 6= 0 on V . Since the frame ξ, η, Jξ, Jη consists of Poisson commuting
vector fields, we can find local coordinates on U such that ξ = ∂/∂x3,
η = ∂/∂x4, Jξ = ∂/∂x1, Jη = ∂/∂x2. Now since (M, g, J) is conformally
Kähler, the conformal Kähler manifold is also toric. Assume that the metric
g = F 2g0 is Kähler for some smooth function F . Note that θ = −2d lnF ,
and so F depends only on x1, x2. It is well known that if ω = i

∑

gijdzi∧dzj
is the Kähler form of a Kähler manifold (M, g, J) then locally ω = i∂∂f for
a certain real function f defined locally on M . In our case

g = φdz1 ⊗ dz1 + χ(dz1 ⊗ dz2 + dz2 ⊗ dz1) + ψdz2 ⊗ dz2
and

ω = i(φdz1 ∧ dz1 + χ(dz1 ∧ dz2 + dz2 ∧ dz1) + ψdz2 ∧ dz2),
where z1 = x3+ ix1, z2 = x4+ ix2 are local holomorphic coordinates on M .
Since φ, χ, ψ depend only on x1, x2, to find examples of Kähler toric metrics
we can consider the class of Kähler metrics for which f = f(x1, x2), where we
assume the function Φ(z1, z2) = f(x1, x2) to be strictly plurisubharmonic,
which means that the matrix (∂2Φ/∂zi∂zj) is positive definite, equivalently
the matrix

A =

(

∂2f/∂x21 ∂2f/∂x1∂x2

∂2f/∂x1∂x2 ∂2f/∂x22

)



Toric Hermitian surfaces 213

is positive definite. Now it is easy to check that such metrics are toric Kähler
metrics with holomorphic Killing vector fields ξ = ∂/∂x3, η = ∂/∂x4. For
such metrics

φ =
∂2f

∂x21
, χ =

∂2f

∂x1∂x2
, ψ =

∂2f

∂x22
.

Corollary 5. Let (M, g, J) be a Kähler toric surface. Then the Ricci
form and scalar curvature τ of (M, g, J) are determined by the volume func-
tion V of the toric action and ̺ = −i∂∂ lnV , τ = −∆ lnV in U = {x ∈M :
V (x) 6= 0}. Assume that on (M,J) there are given two toric Kähler metrics
g, g′ with the same Kähler class (i.e. [ω] = [ω′]) and with the same volume
function of toric actions. If M is compact then g = g′.

Proof. The first part is obvious. The second is a consequence of the
uniqueness part of the Calabi–Yau theorem (see [T-2]), since if ̺ = ̺′ on an
open and dense subset of M then ̺ = ̺′ on the whole of M .

Now we shall find conditions for the metric g0 to be a toric Kähler
metric which admits a negative almost Kähler structure constructed by the
methods developed above. Note that the volume function V of a toric action
generated by the fields ξ, η equals exactly V = detA = H(f) where H(f)
denotes the Hessian determinant of f : U → R with respect to the Euclidean
metric on U ⊂ R

2. Thus we get

Theorem 3. Assume that the function Φ(z1, z2) = f(x1, x2) is strictly
plurisubharmonic on M = R

2 × iU . Then the manifold M with the metric

g =
1

√

H(f)

(

∂2f

∂x21
dz1 ⊗ dz1 +

∂2f

∂x1∂x2
dz1 ⊗ dz2(2.8)

+
∂2f

∂x1∂x2
dz2 ⊗ dz1 +

∂2f

∂x22
dz2 ⊗ dz2

)

admits in the positive orientation a circle of almost Kähler structures which

are eigenvectors of the Weyl tensor W+, and admits in the negative orien-
tation an almost Kähler structure which is an eigenvector of the Weyl ten-

sor W−. If H(f) is not constant then every almost Kähler structure from
the circle is non-Kähler.

Proof. If there exists a (positive) Kähler structure on (M, g, J) different
from J then (M, g, J) is hyper-Kähler. Then H(f) = const (see below).

Consequently, in that way we obtain a toric Kähler surface with an op-
posite almost Kähler structure if and only if detA = const, which means
that (M, g, J) is a Ricci flat Kähler surface, in particular, is an Einstein
4-manifold.
Summarizing we obtain a large class of Einstein almost Kähler metrics (in

fact Ricci flat and hence hyper-Kähler) which we shall call Calabi metrics:
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Theorem 4. Assume that Φ(z1, z2) = f(x1, x2) is a strictly plurisub-
harmonic function on U ⊂ R

2. Assume that the function f satisfies the real
Monge–Ampère equation

H(f) = det

(

∂2f/∂x21 ∂2f/∂x1∂x2

∂2f/∂x1∂x2 ∂2f/∂x22

)

= 1.

Then the toric Kähler metric on the manifold M = R
2 × iU given by

ω = i

(

∂2f

∂x21
dz1 ∧ dz1 +

∂2f

∂x1∂x2
(dz1 ∧ dz2 + dz2 ∧ dz1) +

∂2f

∂x22
dz2 ∧ dz2

)

is Ricci flat and admits (in the reversed orientation) an almost Kähler struc-
ture I which is an eigenvalue of the Weyl tensor W− of (M, g, J). The
structure I is Kähler if and only if f is a quadratic polynomial. The class
of Calabi metrics is a subclass of the class of Gibbons–Hawking metrics.

Proof. The above metric coincides with the old Calabi construction
([Ca-1], [B, p. 423]). Note that ω2 = −H(f)dz1∧dz1∧dz2∧dz2. Clearly the
Ricci tensor of (M, g, J) is ̺ = i∂∂ lnH(f) = 0. The holomorphic Killing
vector fields are ξ = Re ∂/∂z1, η = Re ∂/∂z2. The volume function of the
toric action defined by ξ, η equals H(f) = 1. Thus our theorem is a conse-
quence of the results of Calabi and of Theorem 2 and Proposition 3. Since
the almost Kähler structure I of the above examples is an eigenvalue of the
Weyl tensor W− and clearly the Ricci tensor of (M, g, J) is I-invariant it
follows that Calabi metrics satisfy the Gray third symmetry condition G3.
The metrics satisfying this condition are classified in [A-A-D]. If (Σ, gΣ) is
a Riemannian surface with local isothermal coordinates x, y and h = w+ iv
is a holomorphic function on Σ then the general G3 almost Kähler metric
on Σ × R

2 is

g = gΣ + wdz
2 +
1

w
(dt+ vdz)2.

The metric g carries a Kähler structure with Kähler form ω = ΩΣ +dz∧dt.
The Killing fields K1 = ∂/∂z, K1 = ∂/∂t are holomorphic with respect to
this Kähler structure, but ω(K1,K2) = 1, i.e. the action is not toric. Note
that the volume function V = g(K1,K1)g(K2,K2) − g(K1,K2)2 of the ac-
tion generated by K1 = ∂/∂z, K1 = ∂/∂t on a general almost Kähler G3
4-manifold is constant. Note that every Gibbons–Hawking metric is toric
Kähler in our sense, with respect to a Kähler structure orthogonal to J ,
which is straightforward from their explicit construction. Note that the Cal-
abi metrics cannot be complete and that always U 6= R

2, which follows from
the study of improper affine spheres ([Po], [Ca-2], [J-2]).

We shall finish with a certain local characterization of almost Kähler
manifolds admitting an opposite (negative) almost Kähler structure. Our
result is inspired by some well known results from foliation theory.
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We shall say that a point x0 ∈M is a point of positive sectional curvature
of (M, g) if K(π) > 0 for all 2-planes π ⊂ Tx0M where K denotes the
sectional curvature of (M, g). Let P (M, g) = {x : x is a point of positive
sectional curvature of (M, g)}. Then P (M, g) is an open subset of M . We
shall prove (see also [W, p. 16, Prop. 2.7]):

Theorem 5. Assume that (M, g, J) is an almost Kähler 4-manifold ad-
mitting an opposite almost Kähler structure J . Then P (M, g) = ∅. If the
sectional curvature of (M, g, J) is non-negative then (M, g, J) is locally a
product of two Riemannian surfaces with non-negative curvature and J, J
are Kähler.

Proof. Let ω, ω be the Kähler forms of (M, g, J),(M, g, J) respectively.
Define ω1 =

1
2 (ω+ ω), ω2 =

1
2 (ω− ω). Then ω2i = 0 and there exists a local

frame {e1, e2, e3, e4} such that ω1 = e1 ∧ e2 and ω2 = e3 ∧ e4. The forms
ωi define two minimal foliations as follows: F1 = {X ∈ TM : iXω2 = 0} =
span{e1, e2}, F2 = {X ∈ TM : iXω1 = 0} = span{e3, e4}. Now we shall
use the Weitzenböck formulas to calculate |∇ωi|2. Since ∆ω = ∆ω = 0 it
follows that ∆ωi = 0. Thus

(2.9) 0 = ∆ωi = ∇∗∇ωi +
∑

ej ∧ (ieiR(ei, ej).ωi).
Now we compute ej ∧ (ieiR(ei, ej).ω) where ω = ω1:
ej ∧ (ieiR(ei, ej).ω) =

∑

(ej ∧ (iei(e1 ∧ e2)(R(ei, ej)., .)

+ iei(e1 ∧ e2)(., R(ei, ej).)))
=
∑

(ej ∧ (g(R(ei, ej)ei, e1)e2 − g(R(ei, ej)ei, e2)e1)

+ ej ∧ (δ1ig(R(ei, ej)ek, e2)ek − δ2ig(R(ei, ej)ei, e1)ek))

=
∑

(g(R(ei, ej)ek, e2)ej ∧ e2 − g(R(ei, ej)ei, e1)e1 ∧ ej)

+ g(R(e1, ej)ek, e2)ej ∧ ek − g(R(e2, ej)ek, e1)ej ∧ ek).
On the other hand, since g(ωi, ωi) = 1 we get g(∇∗∇ωi, ωi) = g(∇ωi,∇ωi).
Thus we obtain

(2.10) g(∇ω1,∇ω1) = −2
∑

i>2

(K(ei ∧ e1) +K(ei ∧ e2)).

Analogously we obtain

(2.11) g(∇ω2,∇ω2) = −2
∑

i<3

(K(ei ∧ e3) +K(ei ∧ e4)).

Thus P (M, g) is empty. If the sectional curvatureK of (M, g) is non-negative
then∇ω1 = 0,∇ω2 = 0 and (M, g) is locally a product of two (real) Rieman-
nian surfaces with non-negative curvature and natural Kähler structures.
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Example. The projective space CP 2 with the Fubini–Studi metric does
not admit any local opposite almost Kähler structure, although it admits
plenty of local opposite complex orthogonal structures. The metrics (2.8)
cannot have points of positive sectional curvature.

The paper was supported by KBN grant 2P0 3A 023 24. I am grateful to
Prof. Ilka Agricola, Prof. Thomas Friedrich and the Institute of Mathematics
of Humboldt University for warm hospitality.
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